
Planche d’exercices T4

Banque CCINP : 13, 41 Q1).

Valeurs d’adhérence

Exercice 1 (Suites réelles, limite supérieure, limite inférieure). a) Donner un exemple d’une suite réelle
(un) ayant une unique v.a. dans R mais qui ne converge pas.

b) Soit (un) ∈ RN une suite bornée. On définit, pour tout n ∈ N, les suites u+n = sup{uk, k ≥ n} et
u−n = inf{uk, k ≥ n}.

(i) Montrer que les deux suites (u+n) et (u−n) sont convergentes. On note L = limu+n et l = limu−n.
(ii) (Plus difficile) Montrer que L et l sont deux valeurs d’adhérences de (un).
(On pourra utiliser la caractérisation : λ est v.a. ssi ≪ tout voisinage de λ est atteint une infinité de

fois ≫.)
(iii) Montrer que toute valeur d’adhérence λ de (un) est comprise entre l et L.

Indication – on a pour tout n ∈ N, u−n ≤ un ≤ u+n.

Exercice 2. Soit (an), (bn), (cn) trois suites réelles telles que an +bn +cn Ð→
n→+∞

0 et ean +ebn +ecn Ð→
n→+∞

3.

Montrer que ces suites convergent et préciser leurs limites.

Exemples de compacts ou pas

Exercice 3 (Dans R2). Soit E1 = {(x, y) ∈ R2, x2 + y2 = 1} et E2 = {(x, y) ∈ R2, x2 − y2 = 1}.
Est-ce que E1 (resp. E2) est compact ?
La préimage d’un compact par une fonction continue est-elle un compact ?

Exercice 4 (Dans Mn(K)). Les sous-ensembles suivants de Mn(K) sont ils compacts :
(i) GLn(K) (ii) {A ∈ Mn(K), ∣∣A∣∣ = 1} (où ∣∣ ∣∣ est une norme quelconque fixée sur A, (iii) l’ensemble

des matrices nilpotentes ?

Exercice 5. La réunion (resp. l’intersection) de deux compacts d’un e.v.n. E est elle encore un compact
de E ?

Exercice 6 (Théorème des compacts emboités : intersection décroissante de compacts).
a) Soit (Kn)n∈N une famille décroissante de compacts non vide d’un e.v.n. (E, ∣∣ ∣∣) i.e. telle que

∀n ∈ N, Kn+1 ⊂Kn.
Montrer que K ∶= ⋂n∈NKn est encore non vide et compact.
On pourra considérer une suite (xn) telle que pour tout n ∈ N, xn ∈Kn.

b) Si A est une partie non vide bornée de E, justifier que son diamètre :

δ(A) = sup{ ∣∣a − b∣∣, (a, b) ∈ A2}

est bien défini.
c) On reprend les hypothèses du a) et on suppose en outre que δ(Kn) Ð→

n→+∞
0. Que dire alors de

⋂n∈NKn ?

Fonctions continues sur un compact

Exercice 7. Pour toute A ∈Mn(K), on note ∣∣A∣∣ = max
(i,j) ∈⟦1,n⟧

∣ai,j ∣ la norme infinie de A.

Montrer qu’il existe une constante Cn qui ne dépend que de n telle que :

∀A ∈Mn(K), ∣det(A)∣ ≤ Cn∣∣A∣∣n

Exercice 8 (Distances atteintes ou pas). Soit (E, ∣∣ ∣∣) un e.v.n. A une partie de E et x ∈ E.

a) Définir la distance de x à A.

b) (i) Montrer que si A est compact alors il existe un a ∈ A tel que d(x,A) = ∣∣x − a∣∣.
(ii) Montrer que si E est de dim. finie et A est fermé alors il existe un a ∈ A tel que d(x,A) = ∣∣x−a∣∣.

c) Si A et B sont deux parties de E, définir la distance d(A,B) entre ces deux parties.

d) Donner un exemple de deux parties fermées A et B de R ou de R2 telles que d(A,B) = 0 et A∩B = ∅.
Indication – Je te colle mais je ne touche pas...en grec cela se dit...

e) Montrer que si A est compact dans E et B est une partie fermée de E et que E est de dimension
finie alors il existe une couple (a, b) ∈ A ×B tel que d(A,B) = ∣∣a − b∣∣.

Exercice 9 (Bijectivité des isométries d’un compact).

1



Planche d’exercices T4

a) Soit K un compact d’un e.v.n. et f ∶ K →K une application isométrique i.e. telle que ∀(x, y) ∈K2,
∣∣f(x) − f(y)∣∣ = ∣∣x − y∣∣
On veut montrer que f est automatiquement surjective.

Pour cela :

i) on fixe un x0 ∈ K, et on considère la suite (xn) ∈ KN définie par n ≥ 1, xn+1 = f(xn) montrer
que pour tout ε > 0 il existe un élément xn ∈ f(K) tel que ∣∣x0 − xn∣∣ < ε et donc que f(K) est
dense dans K.

ii) Conclure que f(K) =K.

b) Donner un exemple d’un sous-ensemble F d’un e.v.n. avec une isométrie f ∶ F → F non surjective.

Obtenir des max et de min sans compacité au départ (compacité locale + limites)

Exercice 10 (Fonctions coercives : généralisation d’un exercice connu dans R ). Soient E un e.v.n. de
dim. finie et f ∶ E → R une application continue telle que f(x) Ð→

∣∣x∣∣→+∞
+∞ (on dit que f est coercive).

Montrer que f admet un minimum global sur E.

Exercice 11 (Avec ou sans le précédent... important). Soit E un e.v.n. qcq et F un s.e.v. de dim. finie
de E. Soit a ∈ E. On note d(a,F ) = inf{∣∣a − v∣∣, v ∈ F}.

Montrer que cet inf. est atteint i.e. il existe un v0 ∈ F tel que ∣∣a − v0∣∣ = d(a,F ).

Suites de fonctions définies sur un compact

Exercice 12 (Théorème de Dini : avec intersection décroissantes de compacts). Soit K un compact d’un
e.v.n. (fn) ∈ C(K,R)N une suite de fonctions continues sur K.

On suppose que la suite (fn) est décroissante, ce qui signifie que pour chaque x ∈ K fixé, ∀n ∈
N, fn+1(x) ≤ fn(x).

a) On suppose que (fn) converge simplement vers la fonction nulle. On va montrer que la convergence
est uniforme.

On fixe un ε > 0. Pour chaque n, on pose :

Kn = {x ∈K, fn(x) ≥ ε}

i) Montrer que Kn est un compact.

ii) Conclure en considérant ⋂n∈NKn.

b) On suppose maintenant que (fn) CVS vers une fonction continue f . Montrer encore que la conver-
gence est uniforme grâce au a).

Connexité par arc

Exercice 13. a) Justifier que R ∖ {0} d’un côté et R2 ∖ {0} de l’autre ne sont pas homéomorphes.
b) En déduire que R et R2 ne sont pas homéomorphes.

Exercice 14. Montrer un produit de deux parties connexes par arc est connexe par arc.

Exercice 15. Montrer qu’il n’existe pas d’homéomorphisme envoyant la lettre I sur la lettre O, ni d’homéo
entre O et B.

Exercice 16.

a) Soit I un intervalle réel et f de classe C1(I,R). Montrer que f ′(I) est un intervalle.

b) Donner un exemple de fonction dérivable qui n’est pas de classe C1.
c) Soit I un intervalle réel. Montrer que l’ensemble C = {(x, y) ∈ I2, x < y} est connexe par arcs.

d) Théorème de Darboux : Soit I un intervalle réel.et f une fonction dérivable sur I.Montrer que
f ′ (I) est un intervalle.

Indication fournie par l’examinateur pendant l’épreuve pour le d) :

Soit τ ∶ (x, y) ↦ f(x)−f(y)
x−y , montrer que τ(C) ⊂ f ′(I) ⊂ τ(C)

2


