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1)   A l’équilibre thermique,  𝜑𝑇 = 𝐼 →  𝑻𝟎 = √
𝑰

𝒔

𝟒
= 𝟐, 𝟓. 𝟏𝟎𝟐 𝑲 

Cette température est insuffisante, il faut tenir compte de l’atmosphère et de l’effet de serre. 

 

2)   Les équilibres de l’atmosphère et de la Terre impliquent que  2𝜑𝑎 = 𝜑𝑇  et  𝐼 + 𝜑𝑎 = 𝜑𝑇 . 

Ainsi,  𝐼 = 𝜑𝑎  →  𝑻𝒂 = 𝟐, 𝟓. 𝟏𝟎𝟐 𝑲  et  𝑻𝟎 = √𝟐
𝟒

 𝑻𝒂 = 𝟑, 𝟎. 𝟏𝟎𝟐 𝑲   C’est plus réaliste. 

 

3)   L’atmosphère est constituée de 𝟖𝟎% de diazote et de 𝟐𝟎% de dioxygène  → 𝑴 = 𝟐𝟗 𝒈.𝒎𝒐𝒍−𝟏 

 

4-5)   L’équilibre hydrostatique se traduit par  𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑃 = 𝜇𝑔  , c’est-à-dire  
𝒅𝑷

𝒅𝒛
= −𝝁(𝒛)𝒈 = −

𝑴𝒈𝑷(𝒛)

𝑹𝑻(𝒛)
  (∗) 

avec l’axe 𝑧 orienté vers le haut. D’après le modèle isentropique,  
𝑑𝑇

𝑇(𝑧)
+ (

1

𝛾
− 1)

𝑑𝑃

𝑃(𝑧)
= 0 . 

On en déduit que  
𝑑𝑇

𝑑𝑧
= −

(𝛾 − 1) 𝑀𝑔

𝛾𝑅
 →  𝑻(𝒛) = 𝑻𝟎 −

𝑴𝒈

𝑪𝒑
𝒛      Γ = −

2𝑀𝑔

7𝑅
= −𝟏𝟎−𝟐 𝑲.𝒎−𝟏 = −𝟏𝟎 𝑲. 𝒌𝒎−𝟏 

 

6)   Toujours d’après le modèle isentropique,  
𝑑𝑇

𝑇(𝑧)
=

𝑅𝑑𝑃

𝐶𝑝𝑃(𝑧)
 →  𝑻𝒇 = 𝑻𝒊 (

𝑷𝒇

𝑷𝒊
)
𝑹 𝑪𝒑⁄

 

 

7)   Si  𝑻𝒇 < 𝑻(𝒛𝒊 + 𝒅𝒛), le système a une masse volumique  𝜇𝑓 =
𝑀𝑃(𝑧𝑖+𝑑𝑧)

𝑅𝑇𝑓
>

𝑀𝑃(𝑧𝑖+𝑑𝑧)

𝑅𝑇(𝑧𝑖+𝑑𝑧)
= 𝜇é𝑞 statique. 

Le poids l’emporte, la parcelle redescend, l’atmosphère est stable. 

 

8)   Si  𝑇𝑓 = 𝑇(𝑧𝑖 + 𝑑𝑧), la parcelle est à l’équilibre, on s’attend à retrouver le gradient  𝚪 = −
𝑴𝒈

𝑪𝒑
 . 

Et en effet,  𝑇(𝑧𝑖 + 𝑑𝑧) = 𝑇(𝑧𝑖) (
𝑃(𝑧𝑖) + 𝑑𝑃

𝑃(𝑧𝑖)
)
𝑅 𝐶𝑝⁄

~ 𝑇(𝑧𝑖) (1 +
𝑅𝑑𝑃

𝐶𝑝𝑃(𝑧𝑖)
) = 𝑇(𝑧𝑖) −

𝑴𝒈

𝑪𝒑
𝑑𝑧  d’après (∗). 

Dans le modèle d’atmosphère isentropique, l’équilibre n’est jamais rompu. D’autre part, il est légitime de 

considérer les mouvements convectifs comme étant essentiellement adiabatiques car les échanges 

thermiques sont beaucoup plus lents que les actions mécaniques. 

 

  

𝜑𝑆 = 𝐼 

𝜑𝑇 

𝜑
𝑆
= 𝐼 

𝜑
𝑇
 𝜑

𝑎
 

𝜑
𝑎
 

Terre 

Atmosphère 

Terre 



9)   En s’élevant, la température de la parcelle diminue de 𝟏𝟎 𝑲. 𝒌𝒎−𝟏. Dans les hautes couches, 

le gradient de température est quasi nul, 𝑇𝑓 est donc inférieure à 𝑇(𝑧𝑖 + 𝑑𝑧), l’atmosphère est stable. 

Dans les basses couches, le gradient de température vaut environ −𝟐𝟎 𝑲. 𝒌𝒎−𝟏, 𝑇𝑓 est donc supérieure à 

𝑇(𝑧𝑖 + 𝑑𝑧), l’atmosphère est instable. 

 

10)   La partie verticale à gradient de température nul correspond à la stratosphère. La partie oblique à 

gradient de température environ égal à  −𝟕 𝑲. 𝒌𝒎−𝟏 (> −10 𝐾. 𝑘𝑚−1 ) correspond à la troposphère. 

 

11)   Les conditions propices au changement d’état de la vapeur d’eau en goutte d’eau sont réunies 

(pression égale à la pression de vapeur saturante, présence de poussières permettant d’abaisser la tension 

superficielle de l’eau). Lors de la condensation, la chaleur libérée fait augmenter la température du 

système. Ainsi, 𝑻𝒇 > 𝑻(𝒛𝒊 + 𝒅𝒛) entrainant ainsi la parcelle vers le haut par instabilité convective. 

Apparaissent alors dans le ciel, les nuages.  

La réduction du volume du système au cours de la condensation (croissance de 𝜇𝑔) est dominée par 

l’augmentation de la température (décroissance de 𝜇𝑔 déterminante). 

 

12-13)   𝒅𝒙𝒗 =
𝒅𝒏𝒗

𝒏𝒂
  (1)  ⇔  𝑛𝑎𝐶𝑝 (

𝑑𝑇

𝑇
+ (

1

𝛾
− 1)

𝑑𝑃

𝑃
) = −𝑛𝑎𝑑𝑥𝑣  ∆𝑣𝑎𝑝𝐻    et    

𝑑𝑃

𝑃
= −

𝑀𝑔𝑑𝑧

𝑅𝑇
 

Ainsi, après simplification par 𝑇 et réemploi de 𝐶𝑝 =
𝛾𝑅

𝛾 − 1
 , on obtient en effet  𝑪𝒑

𝒅𝑻

𝒅𝒛
+ 𝑴𝒈 = −

𝒅𝒙𝒗

𝒅𝒛
∆𝒗𝒂𝒑𝑯 

 

14-15)   L’intégration de la relation (2) entre  𝑧 = 0  et  𝑧 = ℎ  donne 

−∆vapH(0 − 𝑥𝑣
𝑖 ) = 𝐶𝑝(𝑇(ℎ) − 𝑇(0)) + 𝑀𝑔ℎ →  𝚪𝒉 =

𝒙𝒗
𝒊 ∆vapH

𝒉𝑪𝒑
−

𝑴𝒈

𝑪𝒑
= −𝟒 𝑲. 𝒌𝒎−𝟏 

Le phénomène de condensation atténue le gradient de température. C’est à l’équateur que l’effet est 

maximal, ainsi  Γℎ > −7 𝐾.𝑚−1, le gradient moyen du modèle international standard. 

 

16)   Au voisinage de l’équateur, le Soleil n'est jamais très éloigné du zénith à midi tout au long de l'année. 

Le flux solaire y est en moyenne maximal donc la température de surface y est supérieure. 

A l’équateur, l’air s’élève en formant des nuages de précipitation. Quand les parcelles d'air chaud et 

humide atteignent la limite entre la troposphère et la stratosphère, elles ne peuvent monter plus haut ni 

ne peuvent rester à cet endroit à cause du flux constant ascendant. Par conséquent, elles sont repoussées 

vers le Nord ou le Sud. Afin de combler la dépression créée par l’ascension, elles se dirigent vers le sol puis 

se déplacent des tropiques vers l’équateur. 

 

 

https://fr.wikipedia.org/wiki/Z%C3%A9nith_(astronomie)
https://fr.wikipedia.org/wiki/Troposph%C3%A8re
https://fr.wikipedia.org/wiki/Stratosph%C3%A8re


17)   𝒅𝑮𝒍,𝒎 = −𝑺𝒍,𝒎𝒅𝑻 + 𝑽𝒍,𝒎𝒅𝑷          𝒅𝑮𝒗,𝒎 = −𝑺𝒗,𝒎𝒅𝑻 + 𝑽𝒗,𝒎𝒅𝑷          𝑮 = 𝒏𝒗𝑮𝒗,𝒎 + (𝒏 − 𝒏𝒗)𝑮𝒍,𝒎 

 

18)   Si 𝐺 est un potentiel thermodynamique, 𝑑𝐺 = 0  à l’équilibre. 

De plus, à 𝑇 et 𝑃 constantes, 𝑑𝐺𝑙,𝑚 = 𝑑𝐺𝑣,𝑚 = 0, donc  𝑑𝐺 = 0 ⇔ (𝐺𝑣,𝑚 − 𝐺𝑙,𝑚)𝑑𝑛𝑣 = 0 ⇔ 𝑮𝒗,𝒎 = 𝑮𝒍,𝒎 

Egalité des potentiels chimiques à l’équilibre liquide-vapeur. 

 

19)   𝐺𝑣,𝑚(𝑇, 𝑃𝑠𝑎𝑡(𝑇)) = 𝐺𝑙,𝑚(𝑇, 𝑃𝑠𝑎𝑡(𝑇))          𝐺𝑣,𝑚(𝑇 + 𝑑𝑇, 𝑃𝑠𝑎𝑡(𝑇 + 𝑑𝑇)) = 𝐺𝑙,𝑚(𝑇 + 𝑑𝑇, 𝑃𝑠𝑎𝑡(𝑇 + 𝑑𝑇)) 

Ainsi,  𝑑𝐺𝑣,𝑚 = 𝑑𝐺𝑙,𝑚 ⇔ −𝑆𝑣,𝑚𝑑𝑇 + 𝑉𝑣,𝑚𝑑𝑃𝑠𝑎𝑡 = −𝑆𝑙,𝑚𝑑𝑇 + 𝑉𝑙,𝑚𝑑𝑃𝑠𝑎𝑡 

⇔ (𝑉𝑣,𝑚 − 𝑉𝑙,𝑚)𝑑𝑃𝑠𝑎𝑡 = (𝑆𝑣,𝑚 − 𝑆𝑙,𝑚)𝑑𝑇    Un raisonnement sur une transition réversible à 𝑇 et 𝑃 

constantes permet de relier l’entropie de vaporisation à l’enthalpie de vaporisation :  𝑆𝑣,𝑚 − 𝑆𝑙,𝑚 =
∆vapH

𝑇
  

En définitive,   
𝒅𝑷𝒔𝒂𝒕

𝒅𝑻
=

∆𝒗𝒂𝒑𝑯

𝑻(𝑽𝒗,𝒎 − 𝑽𝒍,𝒎)
 

 

20)   𝑉𝑣,𝑚 =
𝑅𝑇

𝑃𝑠𝑎𝑡
  On intègre donc l’expression  

𝑑𝑃𝑠𝑎𝑡

𝑃𝑠𝑎𝑡
=

∆𝑣𝑎𝑝𝐻 𝑑𝑇

𝑅𝑇2  ⇔  𝐥𝐧 (
𝑷𝒔𝒂𝒕(𝑻)

𝑷𝒔𝒂𝒕(𝑻𝟎)
) =

∆𝒗𝒂𝒑𝑯

𝑹
(

𝟏

𝑻𝟎
−

𝟏

𝑻
) 

 

21)   Les carottages glaciaires permettent de mesurer la fraction de 𝐻2𝑂
18 selon la profondeur donc en 

fonction de la date des précipitations. Or cette fraction est sensible à la température via le rapport  
𝑃𝑠𝑎𝑡

18 (𝑇)

𝑃𝑠𝑎𝑡
16 (𝑇)

 . 

(Lorsque la température augmente, l'évaporation est plus intense et le déséquilibre en faveur de l'oxygène 

16 joue moins. Ainsi, une augmentation de la fraction de 𝐻2𝑂
18 témoigne d’un réchauffement climatique.) 

 

22)   𝝃 = −
𝑾

𝑸𝒄
  Avec  −𝑊 = 𝑄𝑐 + 𝑄𝑓  (1

er principe)  et   
𝑄𝑐

𝑇𝑐
+

𝑄𝑓

𝑇𝑓
≤ 0  (2nd principe). 

Dans le cadre du moteur de Carnot,  
𝑄𝑐

𝑇𝑐
+

𝑄𝑓

𝑇𝑓
= 0  →  𝝃 = 𝝃𝒄 = 𝟏 −

𝑻𝒇

𝑻𝒄
 

 

23)   𝑾 < 𝟎      𝑸𝟏 > 𝟎      𝑸𝟐 < 𝟎             D’après le comportement récepteur des résistances thermiques, 

la chaleur s’écoule dans le sens des températures décroissantes :  𝑻𝒄 > 𝑻𝟏 > 𝑻𝟐 > 𝑻𝒇 

 

24-25)   𝑸𝟏 =
𝝉(𝑻𝒄 − 𝑻𝟏)

𝑹𝒕𝒉
  𝑸𝟐 =

𝝉(𝑻𝒇 − 𝑻𝟐)

𝑹𝒕𝒉
  𝑷 = −

𝑾

𝟐𝝉
=

𝑻𝒄 − 𝑻𝟏 + 𝑻𝒇 − 𝑻𝟐

𝟐𝑹𝒕𝒉
 

 

26-27)   
𝑄1

𝑇1
+

𝑄2

𝑇2
≤ 0 ⇔   

𝑻𝒄

𝑻𝟏
+

𝑻𝒇

𝑻𝟐
≤ 𝟐 Ainsi,  𝑃 =

𝑇𝑐 − 𝑇1 + 𝑇𝑓(𝑋 − 1) (2𝑋 −1)⁄

2𝑅𝑡ℎ
=

𝑻𝒄

𝟐𝑹𝒕𝒉

(𝑿 − 𝟏)(𝜼 − 𝟐𝑿 + 𝟏)

𝟐𝑿 − 𝟏
 

 

28)   D’après l’inégalité obtenue en Q26,  
1

𝑋
≤ 2 −

𝑇𝑓

𝑇2
  . Or  

𝑇𝑓

𝑇2
< 1, donc  1 <

1

𝑋
< 2 ⇔ 

𝟏

𝟐
< 𝑿 < 𝟏 

 



29)   
𝑑𝑓

𝑑𝑋
= 0 ⇔  (𝜂 − 2𝑋 + 1 − 2(𝑋 −  1))(2𝑋 −  1) − 2(𝑋 −  1)(𝜂 − 2𝑋 + 1) = 0 

⇔ (2𝑋 −  1)2 = 𝜂 ⇔  𝑋 = 𝑿+ =
𝟏 + √𝜼

𝟐
 car   

1

2
< 𝑋 .  𝑷𝒎𝒂𝒙 =

𝑻𝒄

𝟒𝑹𝒕𝒉
(𝟏 − √𝜼)

𝟐
 

 

30)   𝜉 = −
𝑊

𝑄1
= 𝑇𝑐

(𝑋 − 1)(𝜂 − 2𝑋 + 1)

(2𝑋 − 1)(𝑇𝑐 − 𝑇1)
=

𝜂 − 2𝑋 + 1

1 − 2𝑋
= 𝟏 −

𝜼

𝟐𝑿 − 𝟏
 Et en effet,  𝝃(𝑿+) = 𝟏 − √𝜼 

Comme  𝜂 < 1 ⇔  𝜂2 < 𝜂  ⇔  𝜂 < √𝜂  , il est rassurant de trouver que  𝝃(𝑿+) < 𝟏 − 𝜼 = 𝝃𝒄 

 

31)   La diffusion thermique à travers les résistances est la principale source d’irréversibilité.  

On applique le second principe aux résistances en régime permanent stationnaire. Leur entropie étant 

constante,  ∆𝑆1 =
𝑄1

𝑇𝑐
−

𝑄1

𝑇1
+ 𝑆1

𝑐 = 0   et   ∆𝑆2 =
𝑄2

𝑇𝑓
−

𝑄2

𝑇2
+ 𝑆2

𝑐 = 0. Ainsi,  𝑆̇ =
𝑆1
𝑐 + 𝑆2

𝑐

2𝜏
=

(𝑇𝑐 − 𝑇1)
2

2𝑅𝑡ℎ 𝑇𝑐 𝑇1
+

(𝑇𝑓 − 𝑇2)
2

2𝑅𝑡ℎ 𝑇𝑓 𝑇2
 

⇔ 𝑆̇ =
(1 − 𝑋)2

2𝑅𝑡ℎ 𝑋
+

(1 − 𝑇2 𝑇𝑓⁄ )
2

2𝑅𝑡ℎ 𝑇2 𝑇𝑓⁄
=

(1 − 𝑋)2

2𝑅𝑡ℎ 𝑋
+

(1 − 𝑇2 𝑇𝑓⁄ )
2

2𝑅𝑡ℎ 𝑇2 𝑇𝑓⁄
=

(𝟏 − 𝑿)𝟐

𝑹𝒕𝒉(𝟐𝑿−𝟏)
  

On remarque avec satisfaction qu’il n’y a pas d’entropie créée si 𝑋 = 1 (𝑇𝑐 = 𝑇1  et  𝑇𝑓 = 𝑇2) et qu’au 

contraire, l’entropie créée ‘explose’ si 𝑋 →
1

2
 (𝑇𝑓 ≪ 𝑇2). A la puissance maximale,  𝑺̇ =

(𝟏 − √𝜼)
𝟐

𝟒𝑹𝒕𝒉√𝜼
=

𝑷𝒎𝒂𝒙

√𝑻𝒇𝑻𝒄
 . 

 

32-33)   𝑃 = 4𝜋𝑟𝑇
2 𝐼 (1 − √𝜂) = 𝟏. 𝟏𝟎𝟏𝟔 𝑾 

ℳ = 4𝜋𝑟𝑇
2ℎ 𝜌 →  𝑈 = √

𝑃

0,05∗4𝜋𝑟𝑇
2 𝜌

3
= √

 𝐼(1 − √𝜂)

0,05 𝜌

3

= 𝟖 𝒎. 𝒔−𝟏 ~ 𝟑𝟎 𝒌𝒎.𝒉−𝟏 C’est réaliste. 

 

34)   A l’équilibre,  𝝁𝒍(𝑻) = 𝝁𝒗(𝑻, 𝑷𝒔𝒂𝒕(𝑻)) = 𝝁𝒗
𝟎(𝑻) + 𝑹𝑻 𝐥𝐧 (

𝑷𝒔𝒂𝒕(𝑻)

𝑷𝟎 ) . 

 

35)   𝑑𝐺 = 𝜎𝑑𝐴 + 𝜇𝑙𝑑𝑛𝑙 + 𝜇𝑣𝑑𝑛𝑣 = 𝝈𝒅𝑨 + (𝝁𝒍(𝑻) − 𝝁𝒗(𝑻, 𝑷))𝒅𝒏𝒍 

 

36)   𝐴 = 4𝜋𝑟2  et  𝑛𝑙 =
4𝜋𝑟3𝜌0

3𝑀𝐻2𝑂
  →  𝒅𝑮 = 𝟒𝝅𝒓(𝟐𝝈 + (𝝁𝒍(𝑻) − 𝝁𝒗(𝑻,𝑷))

𝝆𝟎 𝒓

𝑴𝑯𝟐𝑶
)𝒅𝒓 

 

37-38)   𝑮(𝒓) = 𝟒𝝅𝝈𝒓𝟐 +
𝟒𝝅𝝆𝟎(𝝁𝒍(𝑻) − 𝝁𝒗(𝑻,𝑷))𝒓𝟑

𝟑𝑴𝑯𝟐𝑶
       𝒓𝒄 =

𝟐𝝈𝑴𝑯𝟐𝑶

(𝝁𝒗(𝑻,𝑷) − 𝝁𝒍(𝑻))𝝆𝟎
        𝓔𝒂 =

𝟒𝝅𝝈

𝟑
(

𝟐𝝈𝑴𝑯𝟐𝑶

(𝝁𝒗(𝑻,𝑷) − 𝝁𝒍(𝑻))𝝆𝟎
)
𝟐

 

 
Spontanément 𝐺 diminue pour essayer d’atteindre sa valeur minimale à l’équilibre. La condensation n’est 

possible que si la décroissance en " − 𝑟3 " est plus forte que la croissance de l’énergie de surface en " 𝑟2 ". 

𝑟 

𝐺(𝑟) 𝜇𝑙(𝑇) > 𝜇𝑣(𝑇, 𝑃) 

Evaporation 

    𝑟 

𝐺(𝑟) 𝜇𝑙(𝑇) < 𝜇𝑣(𝑇, 𝑃) 

Condensation si  𝑟 > 𝑟𝑐 

𝑟𝑐 

ℰ𝑎 



39)   𝜇𝑣(𝑇, 𝑃) = 𝜇𝑣
0(𝑇) + 𝑅𝑇 ln (

𝑃𝑣

𝑃0)  A la saturation, il y a égalité des potentiels chimiques : 

𝜇𝑣
0(𝑇) + 𝑅𝑇 ln (

𝑃𝑠𝑎𝑡(𝑇)

𝑃0 ) = 𝜇𝑙(𝑇)  Ainsi,  𝒓𝒄 =
𝟐𝝈𝑴𝑯𝟐𝑶

𝑹𝑻𝝆𝟎 𝐥𝐧𝝌 
 

 

40)   Plus l’énergie d’activation est faible plus la vitesse d’apparition des gouttelettes est grande.  

Or  ℰ𝑎 =
4𝜋𝜎

3
𝑟𝑐

2 =
16𝜋𝜎3𝑀𝐻2𝑂

2

3(𝑅𝑇𝜌0 ln 𝜒)2
 A 𝑇 fixée, plus la sursaturation est grande, plus la vitesse sera grande. 

[Il semble que l’énoncé nous pousse à écrire que la vitesse est proportionnelle à exp (−
ℰ𝑎

𝑅𝑇
).  

Pourtant cette écriture nécessiterait l’hypothèse "ℰ𝑎 constante" … J’avoue que je suis un peu perdu !] 

 

41)   𝐴 = 𝜋𝑟2  et  𝑛𝑙 =
𝜋𝑟3𝜌0

3𝑀𝐻2𝑂 tan𝜃
  →  𝒅𝑮 = 𝝅𝒓(𝟐𝝈 + (𝝁𝒍(𝑻) − 𝝁𝒗(𝑻, 𝑷))

𝝆𝟎 𝒓

𝑴𝑯𝟐𝑶 𝐭𝐚𝐧𝜽
)𝒅𝒓 

 

42)   Le nouveau rayon critique et la nouvelle énergie d’activation sont 

𝑟𝑐
′ =

𝟐𝝈𝑴𝑯𝟐𝑶 𝐭𝐚𝐧𝜽

(𝝁𝒗(𝑻,𝑷) − 𝝁𝒍(𝑻))𝝆𝟎
     et     ℰ𝑎

′ =
𝜋𝜎

3
𝑟𝑐

′2 =
𝝅𝝈

𝟑
(

𝟐𝝈𝑴𝑯𝟐𝑶 𝐭𝐚𝐧𝜽

(𝝁𝒗(𝑻,𝑷) − 𝝁𝒍(𝑻))𝝆𝟎
)
𝟐

=
(𝐭𝐚𝐧𝜽)𝟐

𝟒
𝓔𝒂 

 

43)   Dans les mêmes conditions de pression et température,  𝓔𝒂
′ < 𝓔𝒂   si   𝜽 < 𝐚𝐫𝐜𝐭𝐚𝐧(𝟐). 

La présence de particules comportant des cavités étroites permet à la vapeur d’eau de se condenser plus 

rapidement. Ces noyaux de condensation peuvent être des poussières, du pollen voire même  

des composés non naturels comme l’iodure d’argent, utilisés pour l’ensemencement des nuages afin de 

provoquer la pluie. Dans ces cavités, le rapport « interface liquide-gaz / volume de liquide » est plus faible 

et donc plus favorable à la condensation car alors, la croissance de l’énergie de surface est contenue. 


