
Planche d’exercices R4 2025-2026

Banque CCINP : Ex. 63,66, 78, (réviser : 80,81, 82 déjà vus pl. T3)

Premières manipulations sur les adjoints

Exercice 1 (Calcul d’adjoint d’un endomorphisme de rang 1).
Soit E un espace vectoriel euclidien et (a, b) ∈ E2 deux vecteurs linéairement indépendants. Soit

u ∈L (E) défini par ∀x ∈ E, u(x) = (a∣x)b.
Déterminer explicitement u∗.

Exercice 2. Soit E un espace euclidien de dimension n et (x1, . . . , xp) ∈ Ep.
On note S = {u ∈L (E), ∀ i ∈ ⟦1, p⟧, (u + u∗)(xi) = 0}. Déterminer dim(S).

Indication – On pourra travailler matriciellement dans une b.o.n. adaptée.

Automorphismes orthogonaux, matrices orthogonales

Exercice 3. Identifier les a, b ∈L (R3) de matrice en b.o.n. A = 1
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et B = −A.

Exercice 4 (Symétries orthogonales : notion d’hyperplan médiateur). Montrer que si x et y sont
deux vecteurs distincts et de même norme d’un espace euclidien E, il existe un unique hyperplan
H de E tel que y = sH(x) où sH désigne la symétrie orthogonale par rapport à H.

Exercice 5. Soient E un espace euclidien, f ∈ O(E) et F un s.e.v. de E.
Montrer que f(F ⊥) = f(F )⊥.

Exercice 6. Soit E euclidien.
On dit que f ∈L (E) est une similitude si, et seulement si, f = λg avec λ ∈ R∗ et g ∈ O(E).
On dit que f ∈L (E) préserve l’orthogonalité ssi ∀(x, y) ∈ E2, (x∣y) = 0⇒ (f(x)∣f(y)) = 0
Soit f ∈L (E) : montrer que f préserve l’orthogonalité ssi f est une similitude ou bien f = 0.

Endomorphismes autoadjoints, matrices symétriques réelles : théorème spectral

Exercice 7 (Une démonstration ≪ hermitienne ≫ (i.e. avec le p.s. complexe hors programme) du
fait que les matrices sym. réelles ont toutes leurs v.p. réelles).

a) Soit A ∈ Sn(R) une matrice réelle symétrique.

(i) Montrer que pour tout X ∈Mn,1(C), X
⊺
.A.X ∈ R.

(ii) En déduire que toutes les valeurs propres de A dans C sont en fait réelles.

b) En adaptant le raisonnement précédent, que dire des v.p. complexes des matrices anti-
symétriques réelles ?

Exercice 8. Donner un exemple d’une matrice A ∈M2(C) symétrique et non diagonalisable.

Exercice 9 (endomorphismes antisymétriques). Soit E un espace euclidien de dimension n et u
un endomorphisme de E vérifiant :

∀x ∈ E, ⟨u(x), x⟩ = 0

a) Montrer que la matrice de u dans une base orthonormale de E est antisymétrique.

b) Montrer que (Keru)⊥ est stable par u.

c) Montrer qu’il existe une b.o.n. de E dans laquelle la matrice de u est de la forme

( 0 0
0 N

)

avec N inversible et antisymétrique.

d) Montrer que le rang de u est pair.
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Exercice 10 (Incontournable : racine carrée symétrique positive d’une matrice symétrique positive ). a)
Révision : soit E unK-e.v. de dim finie et (u, v) ∈L (E) dz qui commutent entre eux. Montrer
qu’il existe une base B de E qui diagonalise simultanément u et v.

b) Soit E euclidien et u ∈ S+(E). Montrer qu’il existe un v ∈ S+(E) tel que v2 = u.
c) A l’aide du a) montrer l’unicité de la matrice v du b).

d) Montrer qu’en outre il existe un P ∈ R[X] tel que v = P (u).

Exercice 11 (Inégalité d’Hadamard pour les matrices symétriques). Soit A = (ai,j) une matrice
symétrie réelle positive.

Montrer que 0 ≤ det(A) ≤ ∏n
i=1 ai,i

Bonus : Si A est définie positive, on peut montrer aussi que l’égalité n’a lieu que si A est
diagonale.
Indication de méthode possible : on pourra écrire les ai,i comme combinaison convexe des valeurs
propres de A.

Exercice 12 (Toute matrice dz représente un endo. autoadjoint pour un certain produit scalaire).
Soit S ∈ S++n (R). Soit E =Mn,1(R) et φ ∶ E2 → R, (X,Y ) ↦X⊺SY .

a) Vérifier que φ est un produit scalaire sur E.

b) Soit A ∈ Mn(R) et a ∶ E → E, X ↦ AX l’endomorphisme canoniquement associé à A.
Montrer que a est autoadjoint pour le produit scalaire φ si, et seulement si,

A⊺ = SAS−1

c) Soit A ∈Mn(R). Montrer que A est diagonalisable ssi il existe S ∈ S++n (R) tel que A⊺ = SAS−1.

Exercice 13. Soit (E, ( ∣ ) euclidien et u ∈L (E) un endomorphisme symétrique.
On note ∣∣u∣∣ = sup

∣∣x∣∣=1
∣∣u(x)∣∣ la norme d’opérateur de u (subordonnée au choix de la norme

euclidienne dans E) et ρ(u) = max
λ∈Sp(u)

∣λ∣ le rayon spectral de u.

Montrer que : ∣∣u∣∣ (1)= ρ(u) (2)= max
∣∣x∣∣=1

∣(u(x)∣x)∣.

Exercice 14. Soit S ∈ Sn(R) de valeurs propres λ1 ≤ ⋅ ⋅ ⋅ ≤ λn et E = {OSO−1,O ∈ On(R)} (“l’orbite
de S pour la conjugaison par On(R)).

a) Soit A ∈ E. Montrer que pour tout i ∈ ⟦1, n⟧, ai,i ∈ [λ1, λn].
b) Soit g ∶ [λ1, λn] → R convexe. Montrer que :

max{
n

∑
i=1

g(ai,i,), A ∈ E} =
n

∑
k=1

g(λk).

Réduction des automorphismes orthogonaux et matrices orthogonales

Exercice 15. Déterminer le commutant de SO(2,R) dans M2(R) i.e. C = {A ∈ M2(R),∀M ∈
SO(2,R), AM =MA}

Exercice 16 (Racines carrées de matrices orthogonales).

a) Montrer que pour tout A ∈ SOn(R) il existe B ∈ SOn(R) telle que B2 = A.

b) La matrice B du a) est-elle unique ?

c) Que dire si A ∈ On(R) ∖ SOn(R) ?
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Le coin Centrale 2

Exercice 17 ( Centrale 2 2024 ). On considère la fonction f ∶ A ∈ On(R),z→ ∑(i,j)∈⟦1,n⟧2 ∣ai,j ∣
a) Montrer que f est bornée et atteint ses bornes.

b) Si n = 2, déterminer le maximum et le minimum de f .

c) Après avoir écrit from random import random, la commande random() renvoie un nombre
aléatoire de [0,1[ suivant une loi uniforme. (Mieux avec numpy.random vous pouvez fabriquer
directement des vecteurs ou matrices aléatoires).

Après avoir écrit import numpy as np, la commande np.cross(u,v) renvoie le produit vec-
toriel de u et v. On veut dans cette question conjecturer le minimum de f pour n = 3.

i) Ecrire une fonction aleatoireR3() qui renvoie un vecteur aléatoire de R3 de norme 1.

ii) Ecrire une fonction orthogonalR3(u) qui prend en argument un vecteur u de R3 non
nul et qui renvoie un vecteur aléatoire de R3 orthogonal à u.

iii) Ecrire une fonction matriceorthogonale() qui renvoie une matrice aléatoire de O3(R).
iv) Conjecturer le minimum de f pour n = 3.

d) Trouver le minimum de f pour un n fixé quelconque.

e) (Suite possible de l’énoncé non transmis) :

Montrer que pour tout n ∈ N∗ et tout A ∈ On(R), f(A)≤n
√
n

f) Montrer que l’inégalité précédente est une égalité si, et seulement si,

∀(i, j) ∈ ⟦1, n⟧2, ∣ai,j ∣ =
1√
n
(∗).

g) La question qui se pose alors est de savoir pour quelles valeurs de n, il existe une matrice A ∈
On(R) vérifiant (∗). Montrer que c’est possible pour n = 2 et n = 4 (puis par récurrence par
bloc pour toutes les puissances de 2), impossible pour n impair. La conjecture de Hadamard
(non démontrée) suggère que ce serait possible pour tous les multiples de 4.

Exercice 18 ( Centrale 2 2024 ). Le jury fournissait une fonction fabriquant une matrice
orthogonale aléatoire, en voici une :

def ortho_alea(n):

A = rd.random((n, n)) #matrice alea de loi unif sur [0,1]

# Effectue la décomposition QR

Q, R = alg.qr(A)

return Q

a) Soit A ∈ S+n(R). Montrer qu’il existe A′ ∈ S+n(R) telle que A = (A′)2

b) Définition – Pour tout A,B ∈ Sn(R), on pose A ≤ B si et seulement si ∀X ∈ Mn,1(R),
X⊺AX ≤X⊺BX ce qui équivaut encore à B −A ∈ S+n(R).
Remarque : même si l’exercice ne demande pas de le vérifier, on peut rapidement se
convaincre qu’il s’agit bien d’une relation d’ordre dans Sn(R).
Ecrire une fonction Python f(A,B) qui renvoie True ssi A ≤ B.

c) Ecrire une fonction qui renvoie une matrice aléatoire dans Sn(R) dont les v.p. sont dans
[0,1[.

d) On note (X ∣Y ) le p.s. canonique de deux vecteurs X,Y dans Mn,1(R).
Montrer que si A ∈ S++n (R) alors (X,Y ) ↦ (AX ∣Y ) est un produit scalaire qu’on notera ( ∣ )A.

e) Soient A,B dans S++n (R) et M = A−1B. Montrer que f ∶ X ↦MX est un endomorphisme
autoadjoint de Mn,1(R) pour le p.s. ( ∣ )A.

f) En déduire que A ≥ B si, et seulement si, Sp(A−1B) ⊂]0,1].
(Fin de l’énoncé transmis par Raphaël)

g) Prolongement possible : pour tout A ∈ S+n(R), on note
√
A l’unique matrice dans S+n(R) dont

le carré vaut A (justifier cette unicité).

Montrer que cette fonction racine carrée est strictement croissante sur S+n(R) autrement dit
que si A −B > 0 alors

√
A −
√
B > 0.
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Décompositions matricielles

Les exercices suivants s’enchâınent en fait ici comme les questions d’un problème.

Exercice 19 (Décomposition Q.R. traduction matricielle de Gram-Schmidt). Soit A ∈ GLn(R).
Montrer qu’il existe un unique couple (Q,R) avec Q ∈ On(R) et R triangulaire supérieure à
diagonale strictement positive telle que

A = QR.

Indication – Pour l’existence, on pensera en terme de matrice de passage et de Gram-Schmidt.

Exercice 20 (Toute matrice Symétrique Positive est une matrice de Gram (et réciproquement)).
Soit A ∈Mn(R). Montrer que :

A ∈ S+n(R) ⇔ ∃M ∈Mn(R) A =M⊺.M.

Rappel : M⊺.M(i, j) = (Ci∣Cj) cette matrice de p.s. s’appelle matrice de Gram.

Exercice 21 (Décomposition de Choleski). Soit A ∈Mn(R) symétrique définie positive.
Montrer qu’il existe une unique matrice B triangulaire inférieure à éléments diagonaux stricte-

ment positifs telle que A = BB⊺ ou encore une unique matrice triangulaire supérieure T à éléments
diagonaux st. positifs telle que

A = T ⊺T.
Indication pour l’existence : on peut utiliser les deux exercices précédents.

Exercice 22 (Application de décomposition de Choleski). a) SoitA = (ai,j) une matrice symétrique
réelle positive. Montrer que

0 ≤ det(A) ≤
n

∏
i=1

ai,i

Si A est définie positive, montrer aussi que l’égalité n’a lieu que si A est diagonale.
b) Soit M ∈Mn(R), montrer l’inégalité de Hadamard suivante :

∣det(M)∣ ≤
n

∏
j=1
∣∣Cj ∣∣

où ∣∣Cj ∣∣ =
¿
ÁÁÀ

n

∑
i=1

m2
i,j .

Déterminer aussi la CNS d’égalité, et interprétation géométrique pour n = 2 ou n = 3 ?

Exercice 23 (Décomposition polaire de Cartan). Montrer que tout M ∈ GLn(R) se décompose
de manière unique sous la forme M = OS avec O orthogonale et S symétrique définie positive.

Exercice 24 (Jolie application de l’unicité dans Choleski pour un résultat sur l’action du groupe
orthogonal).

a) Soit M et M ′ deux matrices inversibles de Mn(C). Montrer que tMM =t M ′M ′ si, et
seulement si, il existe O ∈ On(R) telle que M ′ = OM .

b) Interprétation géométrique : soient (x1, . . . , xn) et (y1, . . . , yn) sont deux familles libres de
vecteurs d’un e.v. euclidien E ayant même matrice de Gram i.e.telle que pour tout (i, j), (xi∣xj) =
(yi∣yj).

Montrer qu’il existe f ∈ O(E) tel que pour tout i ∈ ⟦1, n⟧, f(xi) = yi.
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