
1 Notre petit réseau de transport

Comme (bébé-)exemple, qui servira de fil conducteur dans ces notes, on
considère un réseau ferroviaire que l’on décompose en quatre tronçons qu’on
numérotera T1,. . .,T4.

A B

T1: 5

T2 : 4 T3 : 6

T4: 7
 

Le tronçon T1 va de la gare B à la gare A, tandis que T2 fait l’inverse. Le
tronçon 3 va de B à B en desservant d’autres gares qu’on n’a pas fait figurer car
elles n’auront pas de rôle dans notre étude. Il en va de même pour T4.

En revanche, par rapport à un simple graphe orienté, la représentation choisie
veut mettre en évidence le fait qu’il y a deux lignes de trains. Sur la première :
les trains circulent en empruntant successivement les tronçons T1,T2,T3 et
s’arrêtent entre chaque tronçon. La seconde ligne est composée du seul tronçon
T4.

La gare B sera alors vue comme une gare d’échange : les passagers doivent
pouvoir y passer de ligne 1 à la ligne 2 et inversement.

Sur la figure, le nombre qui suit chaque numéro de tronçon donne la durée
(supposée fixe) du trajet sur ce tronçon. Ainsi sur T1 la durée est de 5 unités de
temps, etc. Ensuite, on notera ai la durée du trajet sur le tronçon Ti de sorte
que, ici, a1 = 5, a2 = 4 etc.

Le but de ce travail est d’expliquer une méthode pour obtenir les meilleures
(en un sens à préciser) tables d’horaires pour un certain nombre de trains roulant
sur de tels réseaux de trains, dont celui-ci n’est qu’un exemple très simple 1, puis
de donner les justifications théoriques de la méthode suivie.

2 Explicitation des contraintes

On fixe une origine des dates t = 0.
La table horaire doit donner pour chaque tronçon i = 1, . . . , 4 la date de

tous les départs sur ce tronçon, dans l’ordre chronologique. On définit donc,
pour tout k ∈ N∗, x1(k) comme la date du k-ième départ sur le tronçon T1. De
même, on définit x2(k), . . . , x4(k).

On s’intéresse donc à la fonction vectorielle :

x : k ∈ N∗ 7→ x(k) = (x1(k), . . . , x4(k)) ∈ R4.

1. Dans [Ol], ce type de raisonnement est appliqué au réseau intercity néerlandais.
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2.1 L’initialisation

Les dates des premiers départs i.e. la valeur du vecteur x(1) est soumise à
des contraintes différentes suivant le nombre de trains sur le réseau.

Si on dispose par exemple de trois trains sur la ligne 1 et d’au moins un sur
la ligne 2, on peut choisir d’un faire partir un sur chaque tronçon au temps zéro,
et donc avoir : x(1) = (0, 0, 0, 0).

En revanche, si par exemple on n’a qu’un train sur la ligne 1, on peut toujours
fixer x1(1) = 0, mais ensuite on doit choisir x2(1) ≥ 5 et x3(1) ≥ 5+4 = 9 parce
que pour partir sur le tronçon 2 (resp. le tronçon 3) le train parti au temps zéro
sur T1 doit déjà être arrivé en A (resp en B après avoir parcouru T1 et T2).

Par exemple x(0) = (0, 5, 10, 0) serait une initialisation correcte.
Noter que x2(0) = 5 signifie que le train repart sur T2 aussitôt après son

arrivé de T1 (on parle de fonctionnement au plus tôt).

2.2 La première contrainte :

Cette contrainte est la simple traduction du fait que pour partir d’un endroit,
un train doit déjà y être arrivé.

La discussion précédente se généralise pour dire que la date xi(k + 1) du
k + 1-ième départ sur un tronçon Ti (pour i ∈ [[1, 3]]) est forcément au moins
égale à la date xi−1(k) du k-ième départ sur le tronçon T (i − 1) où si i = 1,
i− 1 = 3 (ordre cyclique)) à laquelle on doit ajouter la durée ai−1 du parcourt
sur T (i− 1) Ainsi, pour tout k ∈ N∗,

(C1)


x2(k + 1) ≥ a1 + x1(k) = 5 + x1(k),
x3(k + 1) ≥ a2 + x2(k) = 4 + x2(k),
x1(k + 1) ≥ a3 + x3(k) = 6 + x3(k).
x4(k + 1) ≥ a4 + x4(k) = 7 + x4(k).

(Par exemple, même si x1(1) = x2(1) = 0 i.e. il y a deux trains l’un qui part
sur T1 au temps zéro, l’autre sur T2, alors x2(2) ≥ 5 nécessairement).

2.3 Contraintes de coordinations

Les voyageurs qui voyagent sur le réseau aimeraient qu’un train avant de
partir puisse attendre un autre en correspondance. On fixe par exemple que :

• le k + 1-ème train partant sur T1 attend le k-ème train arrivant de T4,
• le k + 1-ème train partant sur T4 attend le k-ème train arrivant de T3,
• le k + 1-ème train partant sur T4 attend le k-ème train arrivant de T2,
• le k + 1-ème train partant sur T3 attend le k-ème train arrivant de T4.

Ces contraintes donnent le système :

(C2)


x1(k + 1) ≥ a4 + x4(k),
x4(k + 1) ≥ a3 + x3(k),
x4(k + 1) ≥ a2 + x2(k),
x3(k + 1) ≥ a4 + x4(k).
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2.4 Conjonction des deux types de contraintes

En regroupant les systèmes (C1) et (C2) précédents, on obtient :

(C)


x1(k + 1) ≥ max(a3 + x3(k), a4 + x4(k)),
x2(k + 1) ≥ a1 + x1(k),
x3(k + 1) ≥ max(a2 + x2(k), a4 + x4(k)),
x4(k + 1) ≥ max(a2 + x2(k), a3 + x3(k), a4 + x4(k)).

On notera (C̃) le système qui se déduit de (C) en remplaçant les ≥ par

des =. Le système (C̃) correspond à un fonctionnement au plus tôt (on verra
que ce n’est pas forcément la “meilleure” solution).

3 Passage à l’algèbre max-plus

Heuristique : On va voir le système (C̃) du § 2.4, comme un système linéaire
pour (R,max,+) On pourra alors utiliser l’outil matriciel pour obtenir des résultats
sur ce système.

Ce qui précède demande quelques précisions :

Définition 3.1. On note ε = −∞ et on note Rε = R ∪ {ε}. On prolonge alors
sans surprise les opérations max et + de R à Rε en posant :

∀ a ∈ Rε, max(a, ε) = a, et a+ ε = ε.

Avant de donner les propriétés des lois max et +, donnons une définition
générale (notre référence sur le sujet est [Co])

Définition 3.2. Un ensemble D muni de deux lois de compositions internes
notées ⊕ et ⊗, qu’on note (D,⊕,⊗) est appelé un dioide si, et seulement si :

1. la loi ⊕ est associative, commutative, avec un élément neutre qu’on
note ε,

2. la loi ⊗ est associative, admet un neutre noté e,

3. la multiplication ⊗ est distributive par rapport à l’addition ⊕,

4. l’élément ε est absorbant pour la multiplication i.e.

∀ a ∈ D, a⊗ ε = ε⊗ a = ε,

5. l’addition est idempotente i.e. ∀ a ∈ A, a⊕ a = a.

Cette définition est taillée sur mesure :

Proposition 3.3. Si, dans Rε, on note ⊕ = max et ⊗ = +, alors (Rε,⊕,⊗) est
un diöıde. Le neutre pour ⊕ est ε = −∞, et le neutre pour ⊗ est e = 0.

Remarque 3.4. Pour citer [Co] : l’idempotence de l’addition ⊕ est la ligne
de démarcation entre les structures algébriques qui nous sont familières et les
diöıdes. En fait cette idempotence est intimement liée à une structure d’ordre.
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Avec ces notations le système (C̃) de § 2.4 devient :

(C̃)


x1(k + 1) = (a3 ⊗ x3(k))⊕ (a4 ⊗ x4(k)),
x2(k + 1) = a1 ⊗ x1(k),
x3(k + 1) = (a2 ⊗ x2(k))⊕ (a4 ⊗ x4(k)),
x4(k + 1) = (a2 ⊗ x2(k))⊕ (a3 ⊗ x3(k)⊕ (a4 ⊗ x4(k)).

Il reste à passer, sans surprise, au langage matriciel :

Propriété-définition 3.5. Si (D,⊕,×) est un diöıde, Alors :

(i) on peut munir l’ensemble Mm,n(D) des matrices à coefficients dans D
d’une loi, encore notée ⊕, en posant :

∀ (A,B) ∈ Mm,n(D)2, ∀ (i, j) ∈ [[1,m]]× [[1, n]], (A⊕B)i,j = Ai,j ⊕Bi,j ,

(ii) pour tout couple (A,B) ∈ Mm,n(D)×Mn,p(D) on définit un leur produit
C = A⊗B par :

∀ (i, j) ∈ [[1,m]]× [[1, n]], (A⊗B)i,j =

n⊕
k=1

Ai,k ⊗Bk,j .

(iii) Dans le cas particulier des matrices carrées : (Mn(D),⊕,⊗) est encore
un diöıde.

Propriété 3.6. En notant X(k) = t(x1(k), x2(k), x3(k), x4(k)) ∈ M4,1(R) le

système (C̃) précédent se réécrit sous la forme :

X(k + 1) = A⊗X(k) (∗),

où :

A =


ε ε a3 a4
a1 ε ε ε
ε a2 ε a4
ε a2 a3 a4

 .

4 Objectif : la régularité des horaires

Motivation : Comme on veut pouvoir écrire une table d’horaires finie, et
mieux encore que les horaires se répètent chaque jour ou mieux encore à chaque
heure par exemple, on cherche à fixer un vecteur initial X(1) ayant la propriété
qu’il existe un k ∈ N tel que X(k + 1) se déduise de X(1) en ajoutant (au sens
usuel) à chaque entrée un nombre fixe.
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Définition 4.1 (La loi externe matricielle). Avec les notations de 3.5, on définit
encore la loi de composition externe par : ∀A ∈ Mm,n(D), ∀ λ ∈ D, λ ⊗ A ∈
Mm,n(D) vérifie :

∀ (i, j) ∈ [[1,m]]× [[1, n]], (λ⊗A)i,j = λ⊗Ai,j

Ainsi, la motivation de régularité ci-dessus se traduit par la recherche d’un
k ∈ N et d’un τ ∈ R tels que X(k + 1) = τ ⊗X(1).

Or, à partir de la relation (∗) de 3.6, la relation X(k+1) = τ⊗X(1) équivaut
à :

A⊗kX(1) = τ ⊗X(1) (∗∗)

où on note A⊗k pour A⊗ · · · ⊗A︸ ︷︷ ︸
k fois

.

La régularité maximale est obtenue si k = 1, cela conduit naturellement à
la :

Définition 4.2. Avec les notations de 3.5 et 4.1, λ ∈ R est dit valeur propre
pour la matrice A si, et seulement si, il existe un vecteur X différent du vecteur
dont toutes les entrées sont ε tel que A⊗X = λ⊗X.

Un tel vecteur X sera appelé vecteur propre de A associé à la λ.

Il est donc naturel de se demander à quelle condition sur la matrice A une
telle valeur propre existe, ce que nous étudions au paragraphe suivant.

5 Etude de l’existence des valeurs propres

Graphe de précédence associé à une matrice

Définition 5.1. A toute matrice carrée A ∈ Mn(Rε), on associe un graphe
pondéré orienté à n sommets qu’on numérote 1, . . . , n, avec la convention que
si ai,j ̸= ε alors il y a une flèche de j à i munie du poids ai,j et si ai,j = ε, il n’y
a pas de flèche de j à i. Ce graphe s’appelle graphe de précédence associé à A.
On le notera Γ(A).

N.B. – Dans ce texte, au moins jusqu’au § 7, tous les poids ai,j seront ici
des nombres positifs ou égaux à ε.

On remarque facilement que la correspondance ainsi définie entre matrices
et graphes est bijective et on parlera inversement de la matrice de précédence
d’un graphe orienté.

Exemple 5.2. Considérons la matrice A1 associée au système (C̃1) du § 2.2, où

l’on remplace les inégalités par les inégalités. Autrement dit (C̃1) ⇔ X(k+1) =
A1 ⊗X(k) avec :
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A1 =


ε ε a3 ε
a1 ε ε ε
ε a2 ε ε
ε ε ε a4

 .

Alors le graphe de précédence de A1 est le suivant :

1

2

3

a1

a2

a3
4

a4

Exemple 5.3. Si on considère la matrice A du 3.6 représentant le même réseau,
avec en plus des contraintes de correspondance, on obtient le graphe suivant
(sur lequel on a omis des poids pour la lisibilité : en fait, sur un arc partant du
sommet i le poids est toujours ai)

2

3

1

a2

3a

a1
4

a4

Le langage des graphes

Définition 5.4. Pour un graphe orienté Γ, disons grossièrement qu’un chemin
de Γ d’origine un sommet s1 et d’extrémité un sommet s2 est un sous-graphe
de Γ composé de sommets qu’on rencontre en suivant les flèches de s1 à s2. Un
circuit est un chemin dont l’origine est égale à l’extrémité. Un circuit élémentaire
est un circuit sur lequel, à part l’origine et l’extrémité, on ne rencontre pas deux
fois le même sommet.

On donne alors les définitions suivantes :

(i) Un graphe orienté est dit fortement connexe si, et seulement si, pour tout
couple de sommets (i, j) du graphe, il existe un chemin de i à j.

(ii)Pour un chemin C d’un graphe pondéré, on appelle poids du chemin C,
la somme des poids des arêtes le composant. On notera w(C) ce poids.

(iii) Pour un chemin C on appellera poids moyen du chemin C et on notera
m(C) le quotient :

m(C) =
w(C)

l(C)
,

où l(C) est la longueur du chemin C i.e. le nombre d’arêtes le composant.

Proposition 5.5 (Lien avec les opérations matricielles). (i) Si Γ est le graphe
de précédence d’une matrice A, alors pour deux sommets i et j de Γ, et pour
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tout k ∈ N∗, l’entrée (i, j) de la matrice A⊗k, si elle est différente de ε est égale
exactement au maximum des poids de tous les chemins de longueur k qui vont
du sommet j vers le sommet i.

Si cette entrée est égale à ε c’est qu’il n’existe pas de tel chemin.

(ii) Comme conséquence du (i), (A⊕A2 ⊕ · · · ⊕An)i,j est égale exactement
au maximum des poids de tous les chemins de longueurs plus petite ou égale à
n qui vont du sommet j au sommet i.

Preuve du (i) : Pour k = 2, (A⊗2)i,j = max
l=1,...,n

(ai,l + al,j) ce qui est bien le

poids maximum de tous les chemins de longueur 2 entre j et i. Le cas général
s’en déduit, exercice.

Dans ce qui suit, on s’intéresse au poids moyen maximal dans les circuits
d’un graphe Γ(A). On commence par énoncer le :

Lemme 5.6. Si un circuit C d’un graphe orienté pondéré à poids positifs se
décompose en deux circuits (ayant un sommet commun mais pas d’arcs com-
muns) qu’on note C1 et C2 alors le poids moyen m(C) vérifie :

m(C) ≤ max(m(C1),m(C2))

Preuve – Notons a1, . . . , ar les poids des arcs de C1 et b1, . . . , bs ceux de C2, on
veut montrer que :

a1 + · · ·+ ar + b1 + · · ·+ bs
r + s

≤ max(
a1 + · · ·+ ar

r
,
b1 + · · ·+ bs

s
)

Or, en notant A = a1+ · · ·+ar et B = b1+ · · ·+ bs, on reconnâıt le membre
de droite de l’encadrement bien connu :

min(
A

r
,
B

s
) ≤ A+B

r + s
≤ max(

A

r
,
B

s
),

valable pour tout quadruplet (A,B, r, s) ∈ (R+∗)2.

Proposition 5.7 (Formule du poids moyen maximal sur les circuits). Soit
A ∈ Mn(Rε). Le poids moyen maximum de tous les circuits de Γ(A) est égal à
λ où :

λ = max
i=1,...,n

MaxTrace(A⊗i)

i
(†)

où pour une matrice B ∈ Mn(Rε), on note :

MaxTrace(B) = max
i=1,...,n

Bi,i

Remarque – Dans la littérature (cf. [BCOQ] p. 47) la formule (†) s’écrit :

λ =

n⊕
i=1

Tr(A⊗i)1/i
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où il faut comprendre que les exposants comme la trace sont au sens “max-
plus”, ce qui permet de montrer l’analogie entre ce résultat et l’algèbre linéaire
classique (cf. APPENDICE).

Preuve – Par la prop. ci-dessus, le maximum des poids des circuits de longueur k
allant du sommet i à lui-même est (A⊗k)i,i. Donc le maximum de poids de tous
les circuits de longueurs k de Γ(A) est bien max

i=1,...,n
A⊗k

i,i = MaxTrace(A⊗k). Pour

avoir (†) il suffit de remarquer qu’il n’est besoin de considérer que les circuits
de longueurs 1 à n.

En effet, si on considère un circuit de longueur strictement plus grande que n,
ce n’est plus un circuit élémentaire, donc il se décompose en circuit élémentaires
et on peut appliquer le lemme.

Théorème d’existence de valeurs propres

Définition 5.8. Une matrice A est dite irréductible s’il n’existe pas de permu-
tation σ telle qu’en la faisant agir simultanément sur les lignes et les colonnes
de A, on puisse transformer A en une matrice triangulaire par blocs et dont les
blocs diagonaux sont carrés.

Cette définition se comprend mieux avec la :

Proposition 5.9. Une matrice A est irréductible si, et seulement si, le graphe
de précédence associé est fortement connexe.

Le théorème qui nous intéresse pour répondre à la question soulevée en 4.2
est :

Théorème 5.10. Si A ∈ Mn(Rε) est une matrice irréductible alors A a exac-
tement une et une seule valeur propre au sens de 4.2. Cette valeur propre λ
cöıncide avec le poids moyen maximum de tous les circuits de Γ(A), et donc par
la prop. 5.7, elle s’obtient par la formule :

λ = max
i=1,...,n

MaxTrace(A⊗i)

i
(†)

On dispose en outre d’une méthode effective pour déterminer un vecteur
propre associé à λ.

6 Application au problème des trains

6.1 Calcul de la valeur propre

On considère la matrice A correspondant au graphe de l’exemple 5.3. La
matrice A est irréductible car le graphe de l’exemple 5.3 est fortement connexe
(alors que celui de l’exemple 5.2 ne l’était pas).

Pour le cas des trains, les poids sur le graphe étant des temps de parcours,
la valeur propre λ du théorème 5.10, calculée par la formule (†) de ce théorème,
sera appelée plutôt le temps moyen maximum parmi tous les circuits de Γ(A).
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Ici on obtient par un calcul manuel (graphe petit) le résultat :

λ = 7

Un circuit réalisant ce temps moyen maximum est le circuit à un arc entre 4
et 4. Un circuit réalisant le temps moyen maximum est appelé circuit critique.

Néanmoins pour une matrice plus grosse, on peut utiliser SciLab qui gère
les calculs en max-plus.

6.2 Calcul d’un vecteur propre

En SciLab, on obtient aussi un vecteur propre X =t (0,−2, 0, 0), (en accep-
tant un temps négatif au départ, ce qui revient à décaler l’origine des temps).
(La formule donnant ce vecteur propre sera vue au § 7).

• Avec cette condition initiale X(1) =t (0,−2, 0, 0), pour quatre trains sur le
réseau, on aura donc une table d’horaire parfaitement régulière, avec la relation
X(i+ 1) = A⊗X(i) :

X(1) X(2) X(3) X(4) X(5)
0 7 14 21 28
−2 5 12 19 26
0 7 14 21 28
0 7 14 21 28

• Si on part de la condition initiale X(1) =t (0, 5, 10, 0) avec quatre trains
sur le réseau comme en 2.1, alors on obtient le tableau suivant :

X(1) X(2) X(3) X(4)
0 16 23 30
5 5 21 28
10 9 23 30
0 16 23 30

Commentaires : Avec les conditions initiales données par le vecteur X(1),
comment comprendre X(2) : Le train au départ du T1 arrive au départ du T2
en 5 unité de temps. Il peut repartir tout de suite (pas de contrainte associée à
cette gare) d’où X(2)[2] = 5.

Le train au départ de T2 arrive au départ du T3 en 4 unité de temps donc
au temps 5+ 4 = 9. Le train au départ de T3 arrive au départ de T1 au temps
10 + 6 = 16. Le train au départ de T4 arrive en fin de la boucle au temps
0 + 7 = 7.

Avec les contraintes de coordinations :
Le train arrivé au départ de T3 au temps 9 doit attendre les trains du

tronçon T4, mais celui-ci est arrivé au temps 7, donc il repart tout de suite
donc X(2)[3] = 9.

Le train du tronçon T4 doit attendre les trains des tronçons T1 et T3, celui
de T3 arrive à 9 et l’autre à 16, d’où le départ à 16.
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6.3 Effet de l’ajout d’un train

Expliquer comment baisser la V.P.

7 Preuve du théorème des valeurs propres

Davantage de terminologie sur les graphes

Définition 7.1. Soit Γ = (S, F ) un graphe orienté où S est l’ensemble des
sommets et F l’ensemble des flèches. Pour un sommet i ∈ S, on note π(i)
l’ensemble des prédécesseurs immédiats de i i.e. l’ensemble des j ∈ S tel qu’il
existe une flèche de j à i.

Ainsi π : S → P(S) et on peut définir pour chaque i ∈ S,

π2(i) =
⋃

j∈π(i)

π(j),

et par récurrence, pour tout n ∈ N∗, l’ensemble πn(i).
On définit encore :

π+(i) = π(i) ∪ π2(i) ∪ . . . ,

l’ascendance ou ensemble de tous les prédécesseurs de i
On pose aussi :

π∗(i) = {i} ∪ π+(i),

De même, on définit l’ensemble σ(i) de tous les successeurs immédiats de i,
et le ensembles σ+(i), σ∗(i).

Définition 7.2. Un sommet i est une source (resp. un puit) si, et seulement si,
π(i) = ∅ (resp. σ(i) = ∅).

Support d’un vecteur

La terminologie suivante sera particulièrement pratique :

Définition 7.3. Soit A ∈ Mn(Rε) et Γ = Γ(A) le graphe de précédence associé.
Soit z ∈ Mn,1(Rε) un vecteur. L’ensemble des sommets i ∈ [[1, n]] de Γ tels que
zi ̸= ε sera appelé le support du vecteur z.

Cas de la valeur propre nulle : noyau

Proposition 7.4. Soit A ∈ Mn(Rε). Le noyau kerA = {z ∈ Mn,1(Rε)} est
non trivial si, et seulement si, le graphe de précédence Γ(A) contient au moins
un noeud puit.

Dans ce cas, pour chaque puit i de Γ(A), tout vecteur de support exactement
{i} est un vecteur du noyau.
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Preuve – On note encore ε pour le vecteur dont toutes les entrées valent ε dans
Mn,1(Rε).

Si Az = ε alors pour tout i ∈ [[1, n]],

n⊕
j=1

ai,j ⊗ zj = ε, i.e.

max
j∈[[1,n]]

(ai,j + zj) = −∞

donc pour tout j ∈ [[1, n]], ai,j + zj = −∞ (∗).
Donc si z ∈ ker(A) et si zj ̸= ε alors ai,j = ε pour tout i ∈ [[1, n]], ce qui

signifie qu’il n’y a pas de flèche de j à i dans Γ(A) ce qui signifie bien que le
sommet j est un puit.

La réciproque (obtenue en prenant des vecteurs comme dans l’énoncé) est
analogue.

Complémentaire du support d’un vecteur propre

Le lemme suivant dit que si un sommet du graphe Γ(A) correspond à une
entrée ε d’un vecteur propre de A alors tous ses prédécesseurs aussi.

Lemme 7.5. Si z = t(z1, . . . , zn) est un vecteur propre de A ∈ Mn(Rε), et si
zi = ε alors pour tout j ∈ π+(i), zj = ε.

Preuve – Dans l’égalité A⊗ z = λ⊗ z, la ligne i s’écrit :

⊕
j∈[[1,n]]

ai,j ⊗ zj = λ⊗ zi

⇔ max
j∈[[1,n]]

(ai,j + zj) = λ+ zi (∗)

Si donc zi = ε, λ+zi = ε et donc, avec (∗), pour tout j ∈ [[1, n]], ai,j+zj = ε.
Donc pour tout les j ∈ [[1, n]] tels que ai,j ̸= ε i.e. par déf. tous les j ∈ π(i)

(les prédécesseurs de i sur Γ(A), on a : zj = ε.
Le résultat pour π+(i) se démontre alors par récurrence immédiate.

Corollaire 7.6. Si A ∈ Mn(Rε) est une matrice irréductible, et si z est un
vecteur propre de A, alors aucune coordonnées de z n’est égale à ε, autrement
dit, le support de z est Γ(A) tout entier.

Preuve – En effet si z avec une coordonnée zi = ε, pour tout autre sommet j de
Γ(A) comme j ∈ π+(i), on aurait aussi zj = ε et donc z = ε, contradiction.

Propagation des entrées non-ε d’un vecteur propre

Lemme 7.7. Si z = t(z1, . . . , zn) est un vecteur propre de A ∈ Mn(Rε), et si
zi ̸= ε alors il existe un j ∈ π(i) tel que zj ̸= ε.
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Preuve – Si z est comme dans l’énoncé, en reprenant l’égalité (∗) de la preuve
de 7.5, la condition zi ̸= ε équivaut à ce qu’il existe un j ∈ [[1, n]] tel que
ai,j + zj ̸= ε. Cette dernière condition entrâıne que ai,j ̸= ε et zj ̸= ε i.e.
j ∈ π(i) et zj ̸= ε.

Application aux valeurs propres différentes de ε

Proposition 7.8. (i) Soit z = t(z1, . . . , zn) un vecteur propre de A ∈ Mn(Rε),
associé à une valeur propre λ ̸= ε.

Si i ∈ [[1, n]] est tel que zi ̸= ε alors il existe un circuit dans π∗(i) le long
duquel les coordonnées de z sont toutes différentes de ε, i.e. inclus dans le
support de z.

(ii) Toute valeur propre λ ̸= ε de A est égale au poids moyen (cf. déf. 5.4) d’un
circuit de Γ(A).

(iii) Si λ ̸= ε est une valeur propre de A et z est un vecteur propre associé, alors
pour tout circuit C inclus dans le support de z, le poids moyen m(C) vérifie :

m(C) ≥ λ.

Preuve – (i) En appliquant le lemme 7.7 en partant du sommet numéro i, on
construit par récurrence un chemin de Γ(A) dont les sommets sont tous dans
π∗(i), avec la propriété de l’énoncé. Comme l’ensemble des sommets de Γ(A) est
fini, il existe un rang auquel on va rencontrer un sommet déjà obtenu, donc le
chemin se ferme. (Noter bien que le circuit obtenu ne contient pas nécessairement
le sommet i).

(ii) Dans la construction du chemin du (i), on peut toujours, pour chaque
sommet k du chemin, choisir comme prédécesseur un sommet j tel que ak,j ⊗
zj = λ ⊗ zk (autrement dit choisir un indice j qui réalise le maximum de
maxl∈ [[1,n]](ak,l + zl)).

Pour simplifier les notations supposons que le circuit C construit est : 1 →
2, 2 → 3, . . . , p → 1.

Alors :

a2,1 ⊗ z1 = λ⊗ z2, a3,2 ⊗ z2 = λ⊗ z3, . . . , a1,p ⊗ zp = λ⊗ z1.

Autrement dit :

a2,1 + z1 = λ+ z2, a3,2 + z2 = λ+ z3,⊗a1,p + zp = λ+ z1.

En ajoutant ces p équations membre à membre, et en simplifiant le terme
z1 + · · ·+ zp, on obtient :

a2,1 + a3,2 + · · ·+ a1,p = pλ,

ce qui est exactement la définition du fait que λ = m(C) (cf. 5.4).
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(iii) Soit C un circuit inclus dans le support de z. Comme A⊗ z = λ⊗ z, on
a, pour tout couple (k, j) de sommet successifs dans le chemin C, en considérant
la ligne j de cette égalité :

max
l∈ [[1,n]]

aj,l + zl = λ+ zj ,

en particulier :

aj,k + zk ≤ λ+ zj . (∗)

En ajoutant toutes les inégalités (∗) correspondant à toutes les flèches du
chemin C, on obtient : ∑

(j,k)∈FC

aj,k ≤ pλ,

où FC est l’ensemble des flèches de C et p le nombre de ces flèches. D’où la
conclusion.

Unicité de la valeur propre d’une matrice irréductible

Théorème 7.9. Si A ∈ Mn(Rε) est une matrice irréductible alors A a au plus
une valeur propre, qui est nécessairement le poids moyen maximum des chemins
fermés de Γ(A).

Preuve – Comme Γ(A) est fortement connexe, il n’y a pas de puits, donc ε n’est
pas valeur propre (cf. REF).

Alors si λ est une valeur propre de A et z est un vecteur propre associé, alors
par 7.6, le support de z est Γ(A) entier, et par 7.8 (iii) λ est donc supérieur ou
égale au poids moyen de tous les chemins fermés de Γ(A) et par le (ii) λ est
égal au poids moyen d’un tel circuit, c’est donc bien le maximum de ces poids
moyens.

Transformation utile pour l’étude de l’existence d’un vec-
teur propre

Si on considère l’équation définissant valeur propre et vecteurs propres, à
savoir :

A⊗ z = λ⊗ z (∗)

cette équation s’écrit pour chaque ligne i :

max
j∈[[1,n]]

ai,j + zj = λ+ zi,

ce qui est équivalent à :

max
j∈[[1,n]]

(ai,j − λ+ zj) = zi,
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ou encore à :
B ⊗ z = z (∗∗)

en posant B = (−λ) ⊗ A, la matrice obtenue à partir de A en retranchant λ à
chaque entrée.

On étudie donc le problème (∗) sous la forme (∗∗).
Comme le graphe Γ(B) a les mêmes sommets et les mêmes flèches que Γ(A),

avec comme seule modification que chacun des poids des flèches est diminué de
λ, la proposition 7.8 (ii) et (iii) donne immédiatement.

Remarque 7.10. (i) Contrairement aux graphes considérés jusqu’à présent, le
graphe Γ(B) a des poids négatifs et mieux :

(ii) Tout circuit de Γ(B) a un poids moyen inférieur ou égal à e = 0, et
(iii) il existe (au moins) un circuit de Γ(B) de poids moyen exactement égal

à e = 0.

On peut alors formuler la :

Proposition 7.11. Soit B ∈ Mn(Rε) vérifie les propriété de la remarque ci-
dessus alors la matrice B∗ suivante est bien définie :

B+ =

+∞⊕
k=1

B⊗k (†)

Preuve – Ce qui signifie (†) est bien sûr qu’il existe un rang N0 à partir duquel

pour tout N ≥ N0,
⊕N

k=1 B
⊗k =

⊕N0

k=1 B
⊗k.

Cette propriété est claire si on se souvient cf REF que (B⊗k)i,j est le maxi-
mum des poids des chemins sur Γ(B) de longueur k. Or si tous les cycles sont
à poids négatifs, pour k ≥ n, tout tel chemin contient un cycle et est donc de
poids inférieur au chemin obtenu en enlevant ce cycle.

Théorème 7.12. Pour une matrice irréductible B ∈ Mn(Rε) qui vérifie les
propriété de la remarque ci-dessus, si un sommet i du graphe Γ(B) appartient
à un circuit de poids maximal e de B alors la i-ème colonne de la matrice B+

définie ci-dessus est un vecteur propre de B.
A cause de l’équivalence des équations (∗) et (∗∗) ci-dessus, on en déduit

l’existence d’un vecteur propre pour toute matrice irréductible A.

Preuve – On note e ∈ Mn(Rε) l’élément neutre pour ⊗ i.e. la matrice dont les
entrées diagonales valent e et les entrées non diagonales valent ε.

On note B∗ = e⊕B+. Les colonnes de B+ et B∗ ne peuvent différer comme
par leur entré diagonale.

Mais si i vérifie la propriété de l’énoncé, on a (B+)i,i = e, et donc B∗
i,i =

max(e, e) = e.
Donc en notant Ci(M) la i-ième colonne d’une matrice M , on a l’égalité des

deux colonnes :

Ci(B
+) = Ci(B

∗) (1)
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Or par déf. de B+ = B⊕B2 ⊕ · · · et B∗ = I ⊕B⊕B2 ⊕ · · · , on a l’égalité :

B ⊗B∗ = B+,

ce qui se traduit, par définition du produit de matrice, à la colonne i, par :

B ⊗ Ci(B
∗) = Ci(B

+) (2)

En comparant (1) et (2), on a la conclusion : B ⊗ Ci(B
+) = Ci(B

+).
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Ecole des mines de Paris et INRIA, 1995.

http://www-rocq.inria.fr/metalau/cohen/enseign-f.html

[Ol] G.J. Olsder, Max algebra approach to discrete event systems, Notas de
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