1 Notre petit réseau de transport

Comme (bébé-)exemple, qui servira de fil conducteur dans ces notes, on
considere un réseau ferroviaire que l’on décompose en quatre trongons qu’on
numérotera T1,...,T4.

T4:7

T1:5

O__,06__D

T2:4 T3:6

Le troncon T1 va de la gare B a la gare A, tandis que T2 fait I'inverse. Le
trongon 3 va de B a B en desservant d’autres gares qu’on n’a pas fait figurer car
elles n’auront pas de role dans notre étude. Il en va de méme pour T4.

En revanche, par rapport a un simple graphe orienté, la représentation choisie
veut mettre en évidence le fait qu’il y a deux lignes de trains. Sur la premiere :
les trains circulent en empruntant successivement les trongons T1,T2,T3 et
s’arrétent entre chaque troncon. La seconde ligne est composée du seul trongon
T4.

La gare B sera alors vue comme une gare d’échange : les passagers doivent
pouvoir y passer de ligne 1 a la ligne 2 et inversement.

Sur la figure, le nombre qui suit chaque numéro de trongon donne la durée
(supposée fixe) du trajet sur ce trongon. Ainsi sur T1 la durée est de 5 unités de
temps, etc. Ensuite, on notera a; la durée du trajet sur le trongon Ti de sorte
que, ici, a; = 5, ags = 4 etc.

Le but de ce travail est d’expliquer une méthode pour obtenir les meilleures
(en un sens a préciser) tables d’horaires pour un certain nombre de trains roulant
sur de tels réseaux de trains, dont celui-ci n’est qu'un exemple trés simple !, puis
de donner les justifications théoriques de la méthode suivie.

2 Explicitation des contraintes

On fixe une origine des dates t = 0.

La table horaire doit donner pour chaque trongon i = 1,...,4 la date de
tous les départs sur ce trongon, dans ’ordre chronologique. On définit donc,
pour tout k € N*| z1(k) comme la date du k-iéme départ sur le trongon T1. De
méme, on définit xo(k),...,z4(k).

On s’intéresse donc a la fonction vectorielle :

ke N = a(k) = (z1(k),...,24(k)) € R%

1. Dans [O]], ce type de raisonnement est appliqué au réseau intercity néerlandais.




2.1 L’initialisation

Les dates des premiers départs i.e. la valeur du vecteur x(1) est soumise a
des contraintes différentes suivant le nombre de trains sur le réseau.

Si on dispose par exemple de trois trains sur la ligne 1 et d’au moins un sur
la ligne 2, on peut choisir d’un faire partir un sur chaque trongon au temps zéro,
et donc avoir : (1) = (0,0,0,0).

En revanche, si par exemple on n’a qu’un train sur la ligne 1, on peut toujours
fixer 21 (1) = 0, mais ensuite on doit choisir z2(1) > 5 et x3(1) > 5+4 = 9 parce
que pour partir sur le trongon 2 (resp. le trongon 3) le train parti au temps zéro
sur T1 doit déja étre arrivé en A (resp en B apres avoir parcouru T1 et T2).

Par exemple 2(0) = (0,5, 10,0) serait une initialisation correcte.

Noter que x2(0) = 5 signifie que le train repart sur T2 aussitdt apres son
arrivé de T1 (on parle de fonctionnement au plus tot).

2.2 La premiere contrainte :

Cette contrainte est la simple traduction du fait que pour partir d’un endroit,
un train doit déja y étre arrivé.

La discussion précédente se généralise pour dire que la date z;(k + 1) du
k + 1-itme départ sur un trongon T4 (pour i € [[1,3]]) est forcément au moins
égale & la date z;_1(k) du k-itme départ sur le trongon T'(i — 1) ol si i = 1,
i — 1 = 3 (ordre cyclique)) & laquelle on doit ajouter la durée a;_; du parcourt
sur T'(i — 1) Ainsi, pour tout k € N*

xg(k-l-].) 2 ai +l’1(k):5+$1(k),

(C ) SC3(]C—|—1) > a2+x2(k)=4+x2(k‘),
! r1(k+1) > az+x3(k)=6+z3(k)
za(k+1) > as+aza(k) =T+ za(k)

(Par exemple, méme si z1(1) = 22(1) = 0 i.e. il y a deux trains l'un qui part
sur T1 au temps zéro, Pautre sur T2, alors z2(2) > 5 nécessairement).

2.3 Contraintes de coordinations

Les voyageurs qui voyagent sur le réseau aimeraient qu’un train avant de
partir puisse attendre un autre en correspondance. On fixe par exemple que :
e le k + 1-éme train partant sur T1 attend le k-éme train arrivant de T4,
e le k + 1-éme train partant sur T4 attend le k-éme train arrivant de T3,
e le k + 1-éme train partant sur T4 attend le k-éme train arrivant de T2,
e le k + 1-éme train partant sur T3 attend le k-éme train arrivant de T4.
Ces contraintes donnent le systeme :

ri(k+1) > as+x4(k),

(C ) .Z'4(k+1) > a3+w3(k),
2 .234(]6 + 1) > ag+ l‘g(k}),
CC3(]€—|—1) Z a4+x4(k).



2.4 Conjonction des deux types de contraintes

En regroupant les systémes (Cy) et (Cy) précédents, on obtient :

z1(k+1) > max(asz + z3(k), aq + x4(k)),
(C) xg(k—Fl) > aq +$1(I€),
z3(k+1) > max(as + x2(k), as + x4(k)),
z4(k+1) > max(ag + x2(k), a3 + x3(k),aq + z4(k)).

On notera (C) le systeme qui se déduit de (C) en remplagant les > par
des =. Le systeme (C) correspond a un fonctionnement au plus tét (on verra
que ce n’est pas forcément la “meilleure” solution).

3 Passage a l’algebre max-plus

Heuristique : On va voir le systéme (C) du § 2.4, comme un systéme linéaire
pour (R, max, +) On pourra alors utiliser I’outil matriciel pour obtenir des résultats
sur ce systéme.

Ce qui précede demande quelques précisions :

Définition 3.1. On note ¢ = —oc et on note R. = RU {e}. On prolonge alors
sans surprise les opérations max et + de R & R, en posant :

Va € R., max(a,e) =a, et a+e=c¢c.

Avant de donner les propriétés des lois max et 4, donnons une définition
générale (notre référence sur le sujet est [Co])

Définition 3.2. Un ensemble D muni de deux lois de compositions internes
notées @ et ®, qu’on note (D, ®, ®) est appelé un dioide si, et seulement si :

1. la loi @ est associative, commutative, avec un élément neutre qu’on
note ¢,

2. la loi ® est associative, admet un neutre noté e,
3. la multiplication ® est distributive par rapport a ’addition &,
4. I'élément € est absorbant pour la multiplication i.e.
VaeD, aRe=eRa=c¢,
5. laddition est idempotente i.e. Va € A, a® a = a.

Cette définition est taillée sur mesure :

Proposition 3.3. Si, dans R., on note & = max et ® = +, alors (R., ®, ®) est
un dioide. Le neutre pour @ est € = —o0, et le neutre pour ® est e = 0.

Remarque 3.4. Pour citer [Co] : lidempotence de l'addition & est la ligne
de démarcation entre les structures algébriques qui nous sont familiéres et les
dioides. En fait cette idempotence est intimement liée a une structure d’ordre.



Avec ces notations le systeme (5) de § 2.4 devient :

ri(k+1) = (az®z3(k)) ® (as ® z4(k)),
(5) .’EQ(k-l-].) = aq ®£L’1(l€),
z3(k+1) = (as ®@x2(k)) ® (ag @ 24(k)),
za(k+1) = (a2 ®@x2(k)) ® (a3 ® x3(k) @ (as ® z4(k)).

Il reste a passer, sans surprise, au langage matriciel :
Propriété-définition 3.5. Si (D,®, x) est un dioide, Alors :

(i) on peut munir l'ensemble My, ,(D) des matrices a coefficients dans D
d’une loi, encore notée @, en posant :

V(A’ B) € Mm,n(D)27 V(i,j) € Hlvm]] X [[1,71]], (AEB B)i,j = Aivj @Bi;ﬁ

(ii) pour tout couple (A, B) € My, n(D) X My, (D) on définit un leur produit
C=A®B par :

¥ (i,5) € [[L,m]] x [[1,n]], (A® B)ij; = ) Aix ® Bij.
k=1

(iii) Dans le cas particulier des matrices carrées : (M, (D),®,®) est encore
un dioide.

Propriété 3.6. En notant X (k) = *(z1(k), z2(k), z5(k), z4(k)) € My1(R) le

systéeme (C) précédent se réécrit sous la forme :

Xk+1)=AX(k) (),

ou :

g as € a4
3 a2 a3 Q4

4 Objectif : la régularité des horaires

Motivation : Comme on veut pouvoir écrire une table d’horaires finie, et
mieux encore que les horaires se répétent chaque jour ou mieux encore & chaque
heure par exemple, on cherche a fizer un vecteur initial X (1) ayant la propriété
qu’il existe un k € N tel que X (k + 1) se déduise de X (1) en ajoutant (au sens
usuel) a chaque entrée un nombre fize.



Définition 4.1 (La loi externe matricielle). Avec les notations de 3.5, on définit
encore la loi de composition externe par : VA € My, ,(D), VA €D, AQA€
M, (D) vérifie :

V(i 7) € [Lm]] x [[L,n]], A© A)ij =A© Ai;

Ainsi, la motivation de régularité ci-dessus se traduit par la recherche d’un
keNetdun 7 €R tels que X(k+1)=7® X(1).
Or, & partir de la relation (x) de 3.6, la relation X (k+1) = 7® X (1) équivaut

a:
APX (1) =70 X (1) (%)
oli on note A®* pour A®---® A.
—_——
k fois
La régularité maximale est obtenue si k = 1, cela conduit naturellement a
la :

Définition 4.2. Avec les notations de 3.5 et 4.1, A € R est dit valeur propre
pour la matrice A si, et seulement si, il existe un vecteur X différent du vecteur
dont toutes les entrées sont € tel que AR X = A ® X.

Un tel vecteur X sera appelé vecteur propre de A associé a la .

Il est donc naturel de se demander & quelle condition sur la matrice A une
telle valeur propre existe, ce que nous étudions au paragraphe suivant.

5 Etude de l'existence des valeurs propres

Graphe de précédence associé a une matrice

Définition 5.1. A toute matrice carrée A € M, (R.), on associe un graphe
pondéré orienté a n sommets qu’on numérote 1,...,n, avec la convention que
si a; ; # € alors il y a une fleche de j & 7 munie du poids a; ; et si a; j = ¢, iln’y
a pas de fleche de j a i. Ce graphe s’appelle graphe de précédence associé a A.
On le notera I'(A).

N.B. — Dans ce texte, au moins jusqu’au § 7, tous les poids a;; seront ici
des nombres positifs ou égauz a €.

On remarque facilement que la correspondance ainsi définie entre matrices
et graphes est bijective et on parlera inversement de la matrice de précédence
d’un graphe orienté.

Exemple 5.2. Considérons la matrice A; associée au systeme (C~'1) du § 2.2, ou

I'on remplace les inégalités par les inégalités. Autrement dit (C;) & X(k+1) =
Ay ® X (k) avec :



Alors le graphe de précédence de A; est le suivant :

1 a1

Exemple 5.3. Sion considére la matrice A du 3.6 représentant le méme réseau,
avec en plus des contraintes de correspondance, on obtient le graphe suivant
(sur lequel on a omis des poids pour la lisibilité : en fait, sur un arc partant du
sommet 4 le poids est toujours a;)

Le langage des graphes

Définition 5.4. Pour un graphe orienté I', disons grossierement qu’'un chemin
de I' d’origine un sommet s; et d’extrémité un sommet ss est un sous-graphe
de T composé de sommets qu’on rencontre en suivant les fleches de s; a so. Un
circuit est un chemin dont l'origine est égale a 'extrémité. Un circuit élémentaire
est un circuit sur lequel, a part 'origine et ’extrémité, on ne rencontre pas deux
fois le méme sommet.

On donne alors les définitions suivantes :

(i) Un graphe orienté est dit fortement conneze si, et seulement si, pour tout
couple de sommets (7, j) du graphe, il existe un chemin de ¢ a j.

(ii)Pour un chemin C' d’un graphe pondéré, on appelle poids du chemin C,
la somme des poids des arétes le composant. On notera w(C) ce poids.
(iii) Pour un chemin C on appellera poids moyen du chemin C et on notera
m(C) le quotient :
w(C)

ou [(C) est la longueur du chemin C i.e. le nombre d’arétes le composant.

Proposition 5.5 (Lien avec les opérations matricielles). (i) Si T est le graphe
de précédence d’'une matrice A, alors pour deux sommets i et j de I', et pour



tout k € N*, Pentrée (i,7) de la matrice A®F i elle est différente de ¢ est égale
exactement au maximum des poids de tous les chemins de longueur £ qui vont
du sommet j vers le sommet 1.

Si cette entrée est égale & € c’est qu’il n’existe pas de tel chemin.

(ii) Comme conséquence du (i), (A @ A2 @ - & A"); ; est égale exactement
au maximum des poids de tous les chemins de longueurs plus petite ou égale a
n qui vont du sommet j au sommet 7.

Prewve du (i) : Pour k = 2, (A®?),,; = , thax (@i + ar,;) ce qui est bien le

[RERE}

poids maximum de tous les chemins de longueur 2 entre j et i. Le cas général
s’en déduit, exercice. O

Dans ce qui suit, on s’intéresse au poids moyen maximal dans les circuits
d’un graphe I'(A). On commence par énoncer le :

Lemme 5.6. Si un circuit C' d’un graphe orienté pondéré a poids positifs se
décompose en deux circuits (ayant un sommet commun mais pas d’arcs com-
muns) qu’on note Cy et Cy alors le poids moyen m(C') vérifie :

m(C) < max(m(Ci), m(Cs))

Preuve — Notons aq, ..., a, les poids des arcs de C et by, ...,bs ceux de Cs, on
veut montrer que :

a1++ar+b1++bs a1+...+aT b1+.+b8
< max( , )

r—+s r S

Or, en notant A =a;+---+a, et B =0by+---+bs, on reconnait le membre
de droite de ’encadrement bien connu :

A B A+ B A B
min(—, —) < + < max(—, —),
r S r+s TS
valable pour tout quadruplet (A, B,r,s) € (R**)2. O

Proposition 5.7 (Formule du poids moyen maximal sur les circuits). Soit
A € M, (R,). Le poids moyen maximum de tous les circuits de I'(A) est égal &
Aol :

MaxTrace(A%?)
i=1,...,n 1

()

oll pour une matrice B € M, (R.), on note :

MaxTrace(B) = max B;;

i=1,...,n

Remarque — Dans la littérature (cf. [BCOQ)] p. 47) la formule (}) s’écrit :

A= @Tr(A@)i)l/i

i=1



ou il faut comprendre que les exposants comme la trace sont au sens “max-
plus”, ce qui permet de montrer I'analogie entre ce résultat et I’algebre linéaire
classique (cf. APPENDICE).

Preuve —Par la prop. ci-dessus, le maximum des poids des circuits de longueur k&

allant du sommet 7 & lui-méme est (A®k)i,i. Donc le maximum de poids de tous

les circuits de longueurs k de I'(A) est bien max A®F = MaxTrace(A®*). Pour
1=1,....n ’

avoir (1) il suffit de remarquer qu’il n’est besoin de considérer que les circuits
de longueurs 1 a n.

En effet, si on considere un circuit de longueur strictement plus grande que n,
ce n’est plus un circuit élémentaire, donc il se décompose en circuit élémentaires
et on peut appliquer le lemme. O

Théoreme d’existence de valeurs propres

Définition 5.8. Une matrice A est dite irréductible s’il n’existe pas de permu-
tation o telle qu’en la faisant agir simultanément sur les lignes et les colonnes
de A, on puisse transformer A en une matrice triangulaire par blocs et dont les
blocs diagonaux sont carrés.

Cette définition se comprend mieux avec la :

Proposition 5.9. Une matrice A est irréductible si, et seulement si, le graphe
de précédence associé est fortement connezxe.

Le théoreme qui nous intéresse pour répondre & la question soulevée en 4.2
est :

Théoréme 5.10. Si A € M, (R.) est une matrice irréductible alors A a exac-
tement une et une seule valeur propre au sens de 4.2. Cette valeur propre A
coincide avec le poids moyen maximum de tous les circuits de T'(A), et donc par
la prop. 5.7, elle s’obtient par la formule :

MaxTrace(A%?)

On dispose en outre d’'une méthode effective pour déterminer un vecteur
propre associé a .

6 Application au probleme des trains

6.1 Calcul de la valeur propre

On considere la matrice A correspondant au graphe de l’exemple 5.3. La
matrice A est irréductible car le graphe de 'exemple 5.3 est fortement connexe
(alors que celui de 'exemple 5.2 ne 1’était pas).

Pour le cas des trains, les poids sur le graphe étant des temps de parcours,
la valeur propre A du théoréme 5.10, calculée par la formule (1) de ce théoréme,
sera appelée plutot le temps moyen maximum parmi tous les circuits de T'(A).



Ici on obtient par un calcul manuel (graphe petit) le résultat :

A=T

Un circuit réalisant ce temps moyen maximum est le circuit a un arc entre 4
et 4. Un circuit réalisant le temps moyen maximum est appelé circuit critique.

Néanmoins pour une matrice plus grosse, on peut utiliser SCILAB qui gere
les calculs en maz-plus.

6.2 Calcul d’un vecteur propre

En SciLAB, on obtient aussi un vecteur propre X =¢ (0,—2,0,0), (en accep-
tant un temps négatif au départ, ce qui revient & décaler lorigine des temps).
(La formule donnant ce vecteur propre sera vue au § 7).

e Avec cette condition initiale X (1) =* (0,—2,0,0), pour quatre trains sur le
réseau, on aura donc une table d’horaire parfaitement réguliére, avec la relation
X@i+1)=Ax X)) :

X(1) | X(2) | X(3) | X(4) | X(5)
0 7| 14 | 21 | 28
—2 | 5 | 12 | 19 | 26
0 7 14 | 21 | 28
0 7 | 14 | 21 | 28

e Si on part de la condition initiale X (1) =t (0,5,10,0) avec quatre trains
sur le réseau comme en 2.1, alors on obtient le tableau suivant :

X [ XQ) [XB) [ XA)
0 | 16 | 23 | 30
5 5 21 28
10 9 23 30
0 | 16 | 23 | 30

Commentaires : Avec les conditions initiales données par le vecteur X (1),
comment comprendre X (2) : Le train au départ du T1 arrive au départ du T2
en 5 unité de temps. Il peut repartir tout de suite (pas de contrainte associée a
cette gare) d’out X (2)[2] = 5.

Le train au départ de T2 arrive au départ du T3 en 4 unité de temps donc
au temps 544 = 9. Le train au départ de T3 arrive au départ de T1 au temps
10 + 6 = 16. Le train au départ de T4 arrive en fin de la boucle au temps
0+7=T.

Avec les contraintes de coordinations :

Le train arrivé au départ de T3 au temps 9 doit attendre les trains du
trongon T4, mais celui-ci est arrivé au temps 7, donc il repart tout de suite
donc X (2)[3] = 9.

Le train du trongon T4 doit attendre les trains des trongons T1 et T3, celui
de T3 arrive & 9 et 'autre & 16, d’ou le départ a 16.



6.3 Effet de ’'ajout d’un train

Expliquer comment baisser la V.P.

7 Preuve du théoreme des valeurs propres

Davantage de terminologie sur les graphes

Définition 7.1. Soit I' = (S, F) un graphe orienté ot S est ’ensemble des
sommets et F' ’ensemble des fleches. Pour un sommet i € S, on note (i)
I’ensemble des prédécesseurs immédiats de i i.e. 'ensemble des j € S tel qu’il
existe une fleche de j a 1.

Ainsi 7 : S — P(S) et on peut définir pour chaque i € 5,

JE™(3)

et par récurrence, pour tout n € N* I’ensemble 7™ ().
On définit encore :

7t (@) =7r@E) UriE)U. ..,
l’ascendance ou ensemble de tous les prédécesseurs de i
On pose aussi :
(i) = {i} Un™ (i),

De méme, on définit ’ensemble (i) de tous les successeurs immédiats de 1,
et le ensembles ot (4), o* (7).

Définition 7.2. Un sommet ¢ est une source (resp. un puit) si, et seulement si,

7(i) = 0 (resp. o(i) = 0).

Support d’un vecteur

La terminologie suivante sera particulierement pratique :

Définition 7.3. Soit A € M,,(R.) et I' = T'(A) le graphe de précédence associé.
Soit z € My, 1(R.) un vecteur. L’ensemble des sommets ¢ € [[1,n]] de T tels que
z; # € sera appelé le support du vecteur z.

Cas de la valeur propre nulle : noyau

Proposition 7.4. Soit A € M, (R.). Le noyau ker A = {z € M, 1(R.)} est
non trivial si, et seulement si, le graphe de précédence T'(A) contient au moins
un noeud puit.

Dans ce cas, pour chaque puit i de T'(A), tout vecteur de support exactement
{i} est un vecteur du noyau.
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Preuve — On note encore ¢ pour le vecteur dont toutes les entrées valent ¢ dans
M,1(R.).
Si Az = ¢ alors pour tout ¢ € [[1,n]],

n
@am ®zj=¢, Iie.
j=1

max (a;; + 2;) = —00
&y (90 + 79)
donc pour tout j € [[1,n]], a;; + 2z = —00  (%).

Donc si z € ker(A) et si z; # ¢ alors a; ; = € pour tout ¢ € [[1,n]], ce qui
signifie qu’il n’y a pas de fleche de j & ¢ dans I'(A4) ce qui signifie bien que le
sommet j est un puit.

La réciproque (obtenue en prenant des vecteurs comme dans 1’énoncé) est
analogue. O

Complémentaire du support d’un vecteur propre

Le lemme suivant dit que si un sommet du graphe I'(A) correspond & une
entrée £ d’un vecteur propre de A alors tous ses prédécesseurs aussi.

Lemme 7.5. Si 2 = (21,...,2,) est un vecteur propre de A € M, (R.), et si
z; = € alors pour tout j € 7T+(i), z; = €.

Preuve — Dans 1'égalité A ® z = A ® z, la ligne i s’écrit :

@ a¢7j®zj :)\®Zz
jell1n]]
& max (a;;+2) =A+z (%)
J€([1.n]]
Sidonc z; = €, A42; = € et donc, avec (x), pour tout j € [[1,n]], a; j+2; = €.
Donc pour tout les j € [[1,n]] tels que a; ; # € i.e. par déf. tous les j € 7 (i)
(les prédécesseurs de i sur I'(4), on a : z; = €.

Le résultat pour 77 (i) se démontre alors par récurrence immédiate. O

Corollaire 7.6. Si A € M,(R.) est une matrice irréductible, et si z est un
vecteur propre de A, alors aucune coordonnées de z n’est égale a ¢, autrement
dit, le support de z est I'(A) tout entier.

Preuve — En effet si z avec une coordonnée z; = ¢, pour tout autre sommet j de

I'(A) comme j € 77 (i), on aurait aussi z; = ¢ et donc z = ¢, contradiction. O

Propagation des entrées non-¢ d’un vecteur propre

Lemme 7.7. Si z = *(21,...,2,) est un vecteur propre de A € M, (R.), et si
z; # € alors il existe un j € 7(7) tel que z; # €.
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Preuve — Si z est comme dans ’énoncé, en reprenant I’égalité (x) de la preuve
de 7.5, la condition z; # & équivaut a ce qu'il existe un j € [[1,n]] tel que
ai;j + z; # €. Cette derniére condition entraine que a;; # € et z; # ¢ ie.
jemn(i)et z; #e. O

Application aux valeurs propres différentes de e

Proposition 7.8. (i) Soit z = *(21,...,2,) un vecteur propre de A € M, (R.),
associé a une valeur propre \ # €.

Sii € [[1,n]] est tel que z; # € alors il existe un circuit dans 7*(i) le long
duquel les coordonnées de z sont toutes différentes de ¢, i.e. inclus dans le
support de z.

(ii) Toute valeur propre A # € de A est égale au poids moyen (cf. déf. 5.4) d’un
circuit de I'(A4).

(iii) Si A # € est une valeur propre de A et z est un vecteur propre associé, alors
pour tout circuit C inclus dans le support de z, le poids moyen m(C) vérifie :

m(C) > \.

Preuve — (i) En appliquant le lemme 7.7 en partant du sommet numéro i, on
construit par récurrence un chemin de I'(A) dont les sommets sont tous dans
7* (i), avec la propriété de ’énoncé. Comme ’ensemble des sommets de T'(A) est
fini, il existe un rang auquel on va rencontrer un sommet déja obtenu, donc le
chemin se ferme. (Noter bien que le circuit obtenu ne contient pas nécessairement
le sommet 7).

(ii) Dans la construction du chemin du (i), on peut toujours, pour chaque
sommet £ du chemin, choisir comme prédécesseur un sommet j tel que ay ; ®
zj = A ® z, (autrement dit choisir un indice j qui réalise le maximum de
maxje ((1,n))(ak,1 + 21))-

Pour simplifier les notations supposons que le circuit C' construit est : 1 —
2,2—=3,...,p— 1L

Alors :

21 ®21 =A@ 22, A32 Q22 =A@ 23,...,01,p D 2p = A® 2.

Autrement dit :

a1+ 21 :>\+22,a3,2+2’2:)\+Z3,®a17p+2p:>\+21.

En ajoutant ces p équations membre a membre, et en simplifiant le terme
z1 + -+ zp, on obtient :

az1+agz+--+ a1, =pA,
ce qui est exactement la définition du fait que A = m(C) (cf. 5.4).
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(iii) Soit C' un circuit inclus dans le support de z. Comme A® z = A® z, on
a, pour tout couple (k, j) de sommet successifs dans le chemin C, en considérant
la ligne j de cette égalité :

max aj;+ 2z = A+ 25,
le [[1,n]]

en particulier :

ajr+ 2 <A+ zj. (%)

En ajoutant toutes les inégalités (x) correspondant & toutes les fleches du
chemin C, on obtient :

Z aj,k S p)‘v

(4,k)eFc

ou F¢ est 'ensemble des fleches de C et p le nombre de ces fleches. D’ou la
conclusion. 0

Unicité de la valeur propre d’une matrice irréductible

Théoréme 7.9. Si A € M, (R.) est une matrice irréductible alors A a au plus
une valeur propre, qui est nécessairement le poids moyen maximum des chemins
fermés de I'(A).

Preuve — Comme I'(A) est fortement connezxe, il n’y a pas de puits, donc € n’est
pas valeur propre (cf. REF).

Alors si A est une valeur propre de A et z est un vecteur propre associé, alors
par 7.6, le support de z est I'(A) entier, et par 7.8 (iii) A est donc supérieur ou
égale au poids moyen de tous les chemins fermés de T'(A) et par le (ii) A est
égal au poids moyen d’un tel circuit, c¢’est donc bien le maximum de ces poids
moyens. O

Transformation utile pour I’étude de ’existence d’un vec-
teur propre

Si on considere ’équation définissant valeur propre et vecteurs propres, &
savoir :

ARz=A®z (%)

cette équation s’écrit pour chaque ligne 7 :

max a;; + zj = A+ zi,
JE[[1,n]]

ce qui est équivalent a :
max (a;; — A+ zj) = 2,

JEl[1,n]]
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ou encore a :
B®z=2z (xx)

en posant B = (—\) ® A, la matrice obtenue a partir de A en retranchant A a
chaque entrée.

On étudie donc le probleme (x) sous la forme (xx).

Comme le graphe I'(B) a les mémes sommets et les mémes fleches que T'(A4),
avec comme seule modification que chacun des poids des fleches est diminué de
A, la proposition 7.8 (ii) et (iii) donne immédiatement.

Remarque 7.10. (i) Contrairement aux graphes considérés jusqu’a présent, le
graphe I'(B) a des poids négatifs et mieux :

(i) Tout circuit de I'(B) a un poids moyen inférieur ou égal a e = 0, et

(iii) il existe (au moins) un circuit de I'(B) de poids moyen exactement égal
ae=0.

On peut alors formuler la :

Proposition 7.11. Soit B € M, (R.) vérifie les propriété de la remarque ci-
dessus alors la matrice B* suivante est bien définie :

+oo

B =@ B ()

k=1

Preuve — Ce qui signifie (1) est bien str qu'il existe un rang Ny & partir duquel
pour tout N > Ny, @r_, Bk = @,°, B¥*.

Cette propriété est claire si on se souvient cf REF que (B®*); ; est le maxi-
mum des poids des chemins sur I'(B) de longueur k. Or si tous les cycles sont
a poids négatifs, pour k£ > n, tout tel chemin contient un cycle et est donc de
poids inférieur au chemin obtenu en enlevant ce cycle. O

Théoréeme 7.12. Pour une matrice irréductible B € M, (R.) qui vérifie les
propriété de la remarque ci-dessus, si un sommet ¢ du graphe I'(B) appartient
& un circuit de poids maximal e de B alors la i-éme colonne de la matrice BT
définie ci-dessus est un vecteur propre de B.

A cause de I'équivalence des équations (x) et (*) ci-dessus, on en déduit
I’existence d’un vecteur propre pour toute matrice irréductible A.

Preuve — On note e € M,,(R,) I’élément neutre pour ® i.e. la matrice dont les
entrées diagonales valent e et les entrées non diagonales valent e.

On note B* = e¢® B™T. Les colonnes de BT et B* ne peuvent différer comme
par leur entré diagonale.

Mais si i vérifie la propriété de I'énoncé, on a (B*1);; = e, et donc B}, =
max(e, e) = e.

Donc en notant C;(M) la i-iéme colonne d’une matrice M, on a 1’égalité des
deux colonnes :

Ci(BT) =Ci(B7) (1)
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Orpar déf. de Bt =B®B?’@--- et B*=1®B®B>®---, on a I'égalité :

B® B* = BY,

ce qui se traduit, par définition du produit de matrice, a la colonne %, par :

B® Ci(B*) = Ci(B") (2)
En comparant (1) et (2), on a la conclusion : B® C;(B*) = C;(B™). O
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