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1)   Le référentiel géocentrique admet pour point fixe le centre de masse de la Terre et a ses axes dirigés 

vers trois étoiles lointaines. Le référentiel terrestre est lié à la surface de la Terre, son centre et ses axes 

sont immobiles par rapport à la Terre. Il est en rotation uniforme par rapport au référentiel géocentrique. 

 

2-3)   𝐹⃗𝑔(𝑀) = −
𝑮𝑴𝑻𝒎

𝑹𝑻
𝟐 𝒖⃗⃗⃗𝒛  𝐹⃗𝑖𝑒(𝑀) = 𝑚Ω2𝐻𝑀⃗⃗⃗⃗⃗⃗⃗⃗ = 𝒎𝛀𝟐𝑹𝑻 𝐜𝐨𝐬 𝝀 (𝐜𝐨𝐬 𝝀 𝒖⃗⃗⃗𝒛 − 𝐬𝐢𝐧 𝝀 𝒖⃗⃗⃗𝒚) 

‖𝐹⃗𝑔‖ = 𝟕, 𝟑. 𝟏𝟎𝟐 𝑵 ‖𝐹⃗𝑖𝑒‖ = 𝟏, 𝟕 𝑵 ≪ ‖𝐹⃗𝑔‖ On identifie souvent le poids à la force gravitationnelle. 

 

4)   On peut envisager de suspendre un ressort de masse négligeable et de mesurer son allongement  ∆𝑙  à 

l’équilibre après avoir accroché un objet à son extrémité basse. D’après la 2ème loi de Newton,  𝒎 =
𝒌∆𝒍

𝒈
 . 

 

 

5)   On applique la 2ème loi de Newton à 𝑆 dans le référentiel géocentrique :  𝑣 = √
𝐺𝑀𝑇

𝑅𝑇 + ℎ
 

→ 𝒗 = 𝟐𝟕, 𝟔. 𝟏𝟎𝟑 𝒌𝒎. 𝒉−𝟏 L’information est juste.  𝑇 =
2𝜋(𝑅𝑇 + ℎ)

𝑣
= 𝟏 𝒉 𝟑𝟑 𝒎𝒏 

 

6)   𝐹⃗𝑔(𝑀) = −
𝑮𝑴𝑻𝒎

𝒓𝟑 𝑶𝑴⃗⃗⃗⃗⃗⃗ ⃗⃗   𝐹⃗𝑖𝑒(𝑀) = 𝑚Ω2𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
4𝜋2𝑚

𝑇2 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
𝑚𝑣2

(𝑅𝑇 + ℎ)2 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
𝑮𝑴𝑻𝒎

(𝑹𝑻 + 𝒉)𝟑 𝑶𝑴⃗⃗⃗⃗⃗⃗ ⃗⃗  

Comme  𝑟 ~ 𝑅𝑇 + ℎ , la somme des forces est nulle, le spationaute immobile est en état d’apesanteur. 

Si le spationaute se déplace, il subit la force d’inertie de Coriolis, ce qui peut le gêner ou le désorienter. 

 

7)   L’absence de pesanteur ne permet pas la mesure statique proposée en Q4 car à l’équilibre, 

l’allongement du ressort est nul. Il faut envisager une méthode dynamique basée sur les oscillations. 

 

8)   Dans le cadre de la modélisation unidirectionnelle proposée, l’application de la 2ème loi de Newton à  

la masse 𝑚 hors équilibre donne  𝑧̈ +
𝑘

𝑚
𝑧 = 0 →  𝑻 = 𝟐𝝅√

𝒎

𝒌
 

La force d’inertie de Coriolis n’apparait pas car elle est perpendiculaire au déplacement et compensée par 

la technique d’accrochage du spationaute. 

𝑙0 
𝑙0 +

𝑚𝑔

𝑘
 



9)   𝑚1 + 𝑚2 =
𝑘𝑇2

4𝜋2    et   𝑚1 =
𝑘𝑇1

2

4𝜋2   →   𝒎𝟐 = 𝒎𝟏 (
𝑻𝟐

𝑻𝟏
𝟐 − 𝟏) = 𝟕𝟑 𝒌𝒈 

 

10)   La méthode de mesure exige que le spationaute soit assimilé à un solide en translation selon 𝑂𝑧. 

Aucune déformation ni rotation du corps n’est tolérées, alors que la force d’inertie de Coriolis le dévie 

latéralement. En s’accrochant fermement à la barre, le spationaute subit de la part du dispositif  

une réaction compensant 𝐹⃗𝑖𝑐 , lui permettant ainsi de se translater de façon rectiligne. 

 

11)   La distribution de courant est invariante par translation selon 𝒖⃗⃗⃗𝒛 donc ‖𝐵⃗⃗‖ ne dépend que de 𝑥 et 𝑦. 

Le plan (𝑀𝑥𝑦) est un plan de symétrie pour la distribution de courant donc un plan d’antisymétrie pour 𝐵⃗⃗. 

Le champ magnétique est perpendiculaire à ce plan :  𝐵⃗⃗ = 𝐵(𝑥, 𝑦)𝑢⃗⃗𝑧 

 

 

12-13)   Le flux de 𝑩⃗⃗⃗ à travers la spire augmente lorsque celle-ci pénètre dans la zone grisée. D’après la loi 

de Faraday, une force électromotrice 𝑒 négative apparait induisant un courant 𝑖 négatif dans la spire. 

𝑖 =
𝑒

𝑅
= −

1

𝑅

𝑑Φ𝐵⃗⃗

𝑑𝑡
= −

𝑩𝟎𝒗𝟎𝒂

𝑹
 →  𝐹⃗ = 𝑖𝐸𝐹⃗⃗⃗⃗⃗⃗ ∧ 𝐵⃗⃗0 = −

𝑩𝟎
𝟐𝒂𝟐

𝑹
𝒗𝟎𝒖⃗⃗⃗𝒙 

La portion 𝐸𝐹 subit une force de Laplace selon −𝑢⃗⃗𝑥 entrainant ainsi un freinage de la spire. On reconnait 

ainsi la loi de Lenz stipulant que l’induction par ses effets s’oppose aux causes qui lui ont donné naissance. 

 

14)   Lors de la sortie, le flux de 𝐵⃗⃗ à travers la spire diminue  →  𝑖 =
𝐵0𝑣0𝑎

𝑅
→  𝐹⃗ = 𝑖𝐶𝐷⃗⃗⃗⃗ ⃗⃗ ∧ 𝐵⃗⃗0 = −

𝑩𝟎
𝟐𝒂𝟐

𝑹
𝒗𝟎𝒖⃗⃗⃗𝒙 

 

15)   En choisissant une distance 𝑎 entre les spires, la force 𝐹⃗ exprimée précédemment s’applique à chaque 

instant au train de spires. La force de freinage ressentie par l’homme est constante. 

 

16-17)   La puissance dissipée par le freinage est  −
𝑩𝟎

𝟐𝒂𝟐𝒗𝟎
𝟐

𝑹
 . Elle augmente de façon quadratique en fonction 

de 𝑣0. Ce mode de freinage simule correctement les conditions réelles de progression à vélo sur route en 

présence de frottement fluide dû à l’air.  

𝒞 
On applique le théorème d’Ampère le long du 

contour fermé orienté 𝒞 représenté ci-contre : 

ර 𝐵⃗⃗. 𝑑𝑙 = 𝜇0𝐼𝑒𝑛𝑙𝑎𝑐é 𝑝𝑎𝑟 𝒞 

𝒞 

𝐵𝑖𝑛𝑡(𝑀)𝑏 = 𝜇0𝑛𝑏𝐼 →  𝑩𝟎 = 𝝁𝟎𝒏𝑰 

𝑏 



18-19)   𝜷 = 𝜸 = 𝟔 →  𝜶 = 𝟔 ∆𝒓𝑯𝟎 = 𝟔 (∆𝒇𝑯𝟎(𝑪𝑶𝟐) + ∆𝒇𝑯𝟎(𝑯𝟐𝑶)) − ∆𝒇𝑯𝟎(𝑪𝟔𝑯𝟏𝟐𝑶𝟔) 

∆𝒓𝑯𝟎 = −𝟐, 𝟕𝟗𝟓 𝑴𝑱. 𝒎𝒐𝒍−𝟏          La réaction est exothermique, c’est un apport énergétique pour le corps. 

 

20)  Une heure de sport nécessite 5,4 𝑚𝑜𝑙 de dioxygène, c’est-à-dire 𝟎, 𝟔𝟐 𝒎𝟑 d’air et 𝟎, 𝟏𝟔 𝒌𝒈 de glucose. 

 

21)   Le métabolisme anaérobie produit seulement 𝟕𝟑 𝒌𝑱 par mole de glucose (au lieu de 2,8 𝑀𝐽 pour 

l’aérobie) : L’effort intense entraine une forte consommation de glucose et l’apparition de douleur 

musculaire due à la production d’acide lactique. 

 

22)   [𝐻𝐶𝑂3
−] =

𝐾𝑎1𝐶𝑡

[𝐻+] + 𝐾𝑎1
= 𝟐, 𝟓. 𝟏𝟎−𝟐 𝒎𝒐𝒍. 𝑳−𝟏  [𝐻2𝐶𝑂3] = 𝟐, 𝟓. 𝟏𝟎 −𝟑 𝒎𝒐𝒍. 𝑳−𝟏 

 

23)   𝑯𝑳𝒂 + 𝑯𝑪𝑶𝟑
−  ⇄ 𝑳𝒂− + 𝑯𝟐𝑪𝑶𝟑            𝑲 =

𝑲𝒂𝟐

𝑲𝒂𝟏
= 𝟏𝟎𝟐,𝟓 Même si c’est un peu juste, on peut 

affirmer que la réaction est totale, l’hypothèse est en général peu contraignante. A vérifier à posteriori ! 

 

24)   A l’équilibre, [𝐻2𝐶𝑂3] = 4,5. 10−3 𝑚𝑜𝑙. 𝐿−1    [𝐻𝐶𝑂3
−] = 2,3. 10−2 𝑚𝑜𝑙. 𝐿−1  →  𝒑𝑯 = 𝟕, 𝟏 < 𝟕, 𝟑 

A l’équilibre, [𝐿𝑎−] = 2,0. 10−3 𝑚𝑜𝑙. 𝐿−1 → [𝐻𝐿𝑎] = 1,3. 10−6 𝑚𝑜𝑙. 𝐿−1 ≪ [𝐿𝑎−]   L’hypothèse est vérifiée.  

Sans un autre processus, l’élimination de l’acide lactique par cette réaction ne serait pas suffisante. En fait, 

par le biais de l’hyperventilation, le taux de 𝐶𝑂2 dans le sang diminue et cela favorise le retour à l’équilibre. 

 

25-26)   𝑯𝑳𝒂 + 𝑯𝑶−  ⇄ 𝑳𝒂− + 𝑯𝟐𝑶         𝑲 =
𝑲𝒂𝟐

𝑲𝒆
= 𝟏𝟎𝟏𝟎,𝟏     La réaction est totale, le dosage est possible. 

 

𝑪𝟎 = 𝟐, 𝟏𝟎. 𝟏𝟎−𝟑 𝒎𝒐𝒍. 𝑳−𝟏 , ce qui correspond à 𝟏𝟖𝟗 𝒎𝒈. 𝑳−𝟏 : Le patient n’est pas en acidose lactique. 

 

27)   On peut utiliser le rouge de Phénol car sa zone de virage est bien centrée autour du 𝑝𝐻 à  𝑣 = 𝑣é𝑞 . 

 

  

𝐻𝐿𝑎 𝐿𝑎− 
𝑝𝐻 

6,4 

𝐻𝐶𝑂3
− 𝐻2𝐶𝑂3 3,9 

Solution 𝑆 

Burette graduée 

Electrode double de verre 

Solution 𝑆1 

𝑝𝐻-mètre 𝐶 =
𝐶1𝑣é𝑞

𝑉
= 𝟐, 𝟏𝟎. 𝟏𝟎−𝟒 𝒎𝒐𝒍. 𝑳−𝟏 

En supposant que 𝑣é𝑞 = 10,5 𝑚𝐿 !  



28)    
𝑑[𝐻𝐿𝑎]

𝑑𝑡
= −𝑘[𝐻𝐿𝑎](𝑡)  →  [𝑯𝑳𝒂](𝒕) = [𝑯𝑳𝒂](𝟎) 𝐞𝐱𝐩(−𝒌𝒕) Avec 𝑘, la constante de vitesse. 

[𝐻𝐿𝑎](16,0 𝑚𝑖𝑛)

[𝐻𝐿𝑎](0)
= (

[𝐻𝐿𝑎](8,0 𝑚𝑖𝑛)

[𝐻𝐿𝑎](0)
)

2

→  [𝐻𝐿𝑎](16,0 𝑚𝑖𝑛) = 𝟎, 𝟒𝟎 𝒎𝒎𝒐𝒍. 𝑳−𝟏  Ordre 1 confirmé.  

 

29)   Comme toujours avec le language Python, plusieurs propositions sont possibles. 

La première, la plus simple, utilise la fonction linspace :  

𝐋_𝐭 = 𝐧𝐩. 𝐥𝐢𝐧𝐬𝐩𝐚𝐜𝐞(𝟎, 𝐃𝐭, 𝐍 + 𝟏) 

𝐩 = 𝐋_𝐭[𝟏] − 𝐋_𝐭[𝟎] 

La seconde, basée sur une boucle, nécessite la définition préalable de 𝑝 :  

𝐩 = 𝐃𝐭/𝐍 

𝐋_𝐭 = [𝟎] 

𝐟𝐨𝐫 𝐢 𝐢𝐧 𝐫𝐚𝐧𝐠𝐞(𝐍) ∶ 

𝐋_𝐭. 𝐚𝐩𝐩𝐞𝐧𝐝((𝐢 + 𝟏) ∗ 𝐩) 

Dans les deux cas, la liste  L_t  est constituée de 𝑁 + 1 dates espacées de 𝑝. La concentration sera calculée 

aux 𝑁 dates non nulles. 

 

30-31)   𝑪𝒊+𝟏 = 𝑪𝒊 + 𝒑(−𝜶𝑪𝒊 − 𝜷𝑪𝒊
𝟐 + 𝜸) = 𝒇(𝑪𝒊) 

 

𝐋_𝐂 = [𝐂𝟎] 

𝐝𝐞𝐟 𝐟(𝐱) : 

𝐑𝐞𝐭𝐮𝐫𝐧  𝐱 + 𝐩 ∗ (−𝐚𝐥𝐩𝐡𝐚 ∗ 𝐱 − 𝐛𝐞𝐭𝐚 ∗ 𝐱 ∗∗ 𝟐 + 𝐠𝐚𝐦𝐦𝐚) 

𝐟𝐨𝐫 𝐢 𝐢𝐧 𝐫𝐚𝐧𝐠𝐞(𝐍) ∶ 

𝐲 = 𝐟(𝐋_𝐂[𝐢]) 

𝐋_𝐂. 𝐚𝐩𝐩𝐞𝐧𝐝(𝐲) 

 

  



32-33)   Maxwell-Gauss :  𝒅𝒊𝒗 𝑬⃗⃗⃗ = 𝟎  Maxwell-Ampère :   𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑩⃗⃗⃗ =
𝟏

𝒄𝟐

𝝏𝑬⃗⃗⃗

𝝏𝒕
 

Maxwell-Faraday :   𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑬⃗⃗⃗ = −
𝝏𝑩⃗⃗⃗

𝝏𝒕
   Maxwell-Thomson :   𝒅𝒊𝒗 𝑩⃗⃗⃗ = 𝟎 

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗⃗ (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗⃗ 𝐸⃗⃗) = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑑𝑖𝑣 𝐸⃗⃗) − ∆⃗⃗⃗ 𝐸⃗⃗  ⇔   ∆⃗⃗⃗ 𝑬⃗⃗⃗ −
𝟏

𝒄𝟐

𝝏𝟐𝑬⃗⃗⃗

𝝏𝒕𝟐
= 𝟎⃗⃗⃗  Equation de D’Alembert 

La relation de dispersion est  𝝎 = 𝒌𝒄 .  

L’onde est polarisée rectilignement selon 𝒖⃗⃗⃗𝒛 et se propage dans le sens des 𝒙 croissant. 

 

34)   Les photons composant ces rayons X ont une énergie de  𝟔, 𝟒. 𝟏𝟎−𝟏𝟓 𝑱. D’après la relation de Planck-

Einstein ℰ = ℎ𝑓, cela correspond à une onde de fréquence 𝟗, 𝟕. 𝟏𝟎𝟏𝟖 𝑯𝒛  et de longueur d’onde 𝟑𝟏 𝒑𝒎.  

 

35-36)   𝒅𝒊𝒗 𝑬⃗⃗⃗ = 𝟎 𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑩⃗⃗⃗ = 𝝁𝟎𝒋 +
𝟏

𝒄𝟐

𝝏𝑬⃗⃗⃗

𝝏𝒕
 ~ 𝝁𝟎𝒋 (A.R.Q.S.) 𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑬⃗⃗⃗ = −

𝝏𝑩⃗⃗⃗

𝝏𝒕
  𝒅𝒊𝒗 𝑩⃗⃗⃗ = 𝟎 

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗⃗ (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗⃗ 𝐸⃗⃗) = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑑𝑖𝑣 𝐸⃗⃗) − ∆⃗⃗⃗ 𝐸⃗⃗  ⇔   ∆⃗⃗⃗ 𝑬⃗⃗⃗ − 𝝁𝟎𝝈
𝝏𝑬⃗⃗⃗

𝝏𝒕
= 𝟎⃗⃗⃗  Equation de la diffusion 

 

37)   On injecte la solution envisagée dans l’équation de la diffusion. On obtient  𝒌𝟐 = −𝒊𝝁𝟎𝝈𝝎 . 

On en déduit que  𝒌𝟏 = √
𝝁𝟎𝝈𝝎

𝟐
=

1

𝛿
 →  𝜹 = √

𝟐

𝝁𝟎𝝈𝝎
   et  𝒌𝟐 = −√

𝝁𝟎𝝈𝝎

𝟐
= −

1

𝛿
 

 

38)   𝑹⃗⃗⃗ =
𝑬⃗⃗⃗ ∧ 𝑩⃗⃗⃗

𝝁𝟎
  Sa moyenne est la densité surfacique de puissance moyenne rayonnée. 

[ Pour le plaisir des yeux : 𝐸⃗⃗ = 𝐸0 exp (−
𝑥

𝛿
) exp (𝑖 (𝜔𝑡 −

𝑥

𝛿
)) 𝑢⃗⃗𝑧  →  𝐸⃗⃗ = 𝐸0 exp (−

𝑥

𝛿
) cos (𝜔𝑡 −

𝑥

𝛿
) 𝑢⃗⃗𝑧 

𝐵⃗⃗ =
𝑘⃗⃗ ∧ 𝐸⃗⃗

𝜔
= −

𝐸0

𝛿𝜔
exp (−

𝑥

𝛿
) (exp (𝑖 (𝜔𝑡 −

𝑥

𝛿
)) − 𝑖 exp (𝑖 (𝜔𝑡 −

𝑥

𝛿
))) 𝑢⃗⃗𝑦  

→  𝐵⃗⃗ = −
𝐸0

𝛿𝜔
exp (−

𝑥

𝛿
) (cos (𝜔𝑡 −

𝑥

𝛿
) + sin (𝜔𝑡 −

𝑥

𝛿
)) 𝑢⃗⃗𝑦  

Ainsi,  𝑅⃗⃗ =
𝐸0

2

𝜇0𝛿𝜔
exp (−

2𝑥

𝛿
) (cos2 (𝜔𝑡 −

𝑥

𝛿
) + cos (𝜔𝑡 −

𝑥

𝛿
) sin (𝜔𝑡 −

𝑥

𝛿
)) 𝑢⃗⃗𝑥 → 𝑅⃗⃗𝑚 =

𝐸0
2

2𝜇0𝛿𝜔
exp (−

2𝑥

𝛿
) 𝑢⃗⃗𝑥 

Ou plus directement, 𝑅⃗⃗𝑚 =
1

2
ℛ𝑒 (

𝐸⃗⃗ ∧ 𝐵⃗⃗∗

𝜇0
) =

𝐸0
2

2𝜇0𝛿𝜔
exp (−

2𝑥

𝛿
) 𝑢⃗⃗𝑥  ] 

 

39)   On prend le logarithme du rapport des puissances qui traversent l’os :  ln (
𝑃𝐿1

𝑃𝐿2
) = 2𝐿√𝑑 (

1

𝛼2
−

1

𝛼1
) 

→  𝒅 = (
𝜶𝟏𝜶𝟐 𝐥𝐧 (

𝑷𝑳𝟏

𝑷𝑳𝟐
)

𝟐𝑳(𝜶𝟏 − 𝜶𝟐)
)

𝟐

 

 



40)   La distribution de charge est invariante par translation selon 𝒖⃗⃗⃗𝒛 et par rotation selon 𝒖⃗⃗⃗𝜽 donc ‖𝐵⃗⃗‖ ne 

dépend que de 𝑟. Les plans (𝑀, 𝑢⃗⃗𝑟 , 𝑢⃗⃗𝑧) et (𝑀, 𝑢⃗⃗𝑟 , 𝑢⃗⃗𝜃)  sont des plans de symétrie pour la distribution donc 

des plans de symétrie pour 𝐸⃗⃗. Le champ électrique appartient à leur intersection :  𝑬⃗⃗⃗(𝑴) = 𝑬(𝒓) 𝒖⃗⃗⃗𝒓 

 

On applique le théorème de Gauss à travers un cylindre de rayon 𝑟 contenu dans la membrane. 

2𝜋𝑟𝐸(𝑟) =
2𝜋𝑎𝜎

𝜀0𝜀𝑟
→  𝑬⃗⃗⃗(𝑴) =

𝒂𝝈

𝜺𝟎𝜺𝒓𝒓
 𝒖⃗⃗⃗𝒓 

 

41)   𝑬⃗⃗⃗(𝑴) = −𝒈𝒓𝒂𝒅 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑽(𝑴)  →  𝑽(𝒓) = −
𝒂𝝈

𝜺𝟎𝜺𝒓
𝐥𝐧 (

𝒓

𝒂
) + 𝑽𝑨          Ainsi, 𝑉𝐸 = −

𝑎𝜎

𝜀0𝜀𝑟
ln (

𝑎 + 𝑏

𝑎
) + 𝑉𝐴 → 𝜎 = ⋯ 

 

42-43)   𝝈 =
𝜺𝟎𝜺𝒓(𝑽𝑨 − 𝑽𝑬)

𝒃
 Si 𝑎 ≫ 𝑏, cela signifie que  𝑟 ~ 𝑎 →  ‖𝑬⃗⃗⃗‖ ~ |

𝑽𝑨 − 𝑽𝑬

𝒃
|    Le champ est uniforme. 

Le condensateur cylindrique s’est mué en condensateur plan !  

𝑸 = 𝟐𝝅𝒂𝑳𝝈 =
2𝜋𝑎𝐿𝜀0𝜀𝑟(𝑉𝐴 − 𝑉𝐸)

𝑏
  →  𝑪 =

𝟐𝝅𝒂𝑳𝜺𝟎𝜺𝒓

𝒃
  →  𝒄𝒎 =

𝜺𝟎𝜺𝒓

𝒃
= 𝟏, 𝟎. 𝟏𝟎−𝟐 𝑭. 𝒎−𝟐  Valeur compatible 

𝝈 = 𝟔, 𝟏. 𝟏𝟎−𝟒 𝑪. 𝒎−𝟐  ‖𝑬⃗⃗⃗‖ = 𝟖, 𝟔. 𝟏𝟎𝟔 𝑽. 𝒎−𝟏 Le champ est dirigé selon −𝒖⃗⃗⃗𝒓 . 

 

44-45)   𝑈1 =
𝑝⃗.𝐷𝐺⃗⃗⃗⃗⃗⃗⃗

4𝜋𝜀0𝑑3 =
𝑫𝑮

𝟒𝝅𝜺𝟎𝒅𝟑 𝒑𝒙   On remarque que  𝑝𝑥 est quasiment toujours positif ou 

nul, sauf à l’instant 𝑡5 précédant la phase pendant laquelle 𝑝𝑥 est maximal :  

L’enregistrement correspond au graphe d. 


