
D.S. 5 MP : convolution et analyse de Fourier

Introduction

Notations On note :

— C(R) le C-espace vectoriel des fonctions continues de R dans C.
— Cb(R) le sous-espace vectoriel de C(R) constitué des fonctions continues bornées.

— L1(R) le sous-espace vectoriel de C(R) constitué des fonctions continues intégrables sur R.
— L2(R) le sous-espace vectoriel de C(R) des fonctions continues de carré intégrable sur R.

D’autre part, on pose :

∀ f ∈ Cb(R), ∥f∥∞ = sup
t∈R
∣f(t)∣, ∀f ∈ L1(R), ∥f∥1 = ∫

R
∣f(t)∣dt, ∀ f ∈ L2(R), ∥f∥2 =

√

∫
R
∣f(t)∣2 dt.

On admet que ces expressions définissent des normes sur les espaces en question.

Définitions

Déf. 1 : Soit f une fonction complexe d’une variable réelle. Par définition, le support de f est
l’adhérence de l’ensemble Af = {x ∈ R ∣ f(x) ≠ 0}. On dit que f est à support compact si son
support est un fermé borné de R ; en d’autres termes, f est à support compact si et seulement s’il
existe un réel A ⩾ 0 tel que f soit nulle en dehors de [−A,A].

On note encore Cc(R) le sous-espace vectoriel de C(R) formé des fonctions continues à support
compact.

Déf. 2 : Par définition, une approximation de l’unité est une suite de fonctions (fn)n∈N, continues
par morceaux et intégrables sur R, vérifiant les conditions suivantes :

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∀n ∈ N, fn est positive sur R;
∀n ∈ N, ∫

R
fn = 1;

∀ε > 0, lim
n→+∞∫

−ε

−∞
fn = 0 et lim

n→+∞∫
+∞

ε
fn = 0.

Déf. 3 : Pour toute fonction h ∈ C(R), 2π-périodique, et tout n ∈ Z, on note :

cn(h) =
1

2π
∫

π

−π
h(t)e−intdt

appelé n-ième coefficient de Fourier complexe de h. Et pour tout N ∈ N, on note :

SN(h)(x) =
N

∑
k=−N

cn(h)e
inx

appelée somme partielle d’ordre N de la série de Fourier de h.

Théorème admis On admet le :

Théorème de convergence uniforme de Dirichlet : si h ∈ C(R) est 2π-périodique et
C1-par morceaux, alors la suite de fonction (SN(h)) de la déf.3 converge normalement sur
R vers h. En particulier la convergence simple dit que h est somme de sa série de Fourier,
ce qu’on écrira :

∀x ∈ R, h(x) =
+∞
∑

n=−∞
cn(h)e

inx

I Produit de convolution

Soit f, g ∈ C(R). Lorsque la fonction t↦ f(t)g(x − t) est intégrable sur R, on pose

(f ∗ g)(x) = ∫
R
f(t)g(x − t)dt

La fonction f ∗ g est appelée produit de convolution de f par g.
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I.A - Généralités

I.A.1) Dans chacun des deux cas suivants, montrer que f ∗ g est définie et bornée sur R et donner
une majoration de ∥f ∗ g∥∞ pouvant faire intervenir ∥ ⋅ ∥1,∥ ⋅ ∥2 ou ∥ ⋅ ∥∞.

a) f ∈ L1(R), g ∈ Cb(R) ;
b) f, g ∈ L2(R).

I.A.2) Soient f, g ∈ C(R) telles que f ∗ g(x) soit défini pour tout réel x. Montrer que f ∗ g = g ∗ f .

I.A.3) Montrer que si f et g sont à support compact, alors f ∗ g est à support compact.

I.B - Produit de convolution de deux éléments de L2(R)

Pour toute fonction h de C(R) et tout réel α, on définit la fonction Tα(h) en posant Tα(h)(x) =
h(x − α) pour tout x ∈ R.

Dans cette sous-partie I.B, on suppose que f et g appartiennent à L2(R).
I.B.1) Montrer qu’une fonction h est uniformément continue sur R si, et seulement si,

lim
α→0
∥Tα(h) − h∥∞ = 0.

I.B.2) Pour tout réel α, montrer que Tα(f ∗ g) = (Tα(f)) ∗ g.

I.B.3) Pour tout réel α, montrer que ∥Tα(f ∗ g) − f ∗ g∥∞ ⩽ ∥Tα(f) − f∥2 × ∥g∥2.

I.B.4) a) Montrer qu’une fonction continue à support compact est uniformément continue sur R.
b) Déduire des questions précédentes que si f est à support compact alors f ∗ g est uni-

formément continue sur R.
I.B.5) a) Montrer que l’espace Cc(R) des fonctions continues à support compact est un sous-

espace vectoriel dense dans (L2(R), ∣∣ ∣∣2). On en déduit que Cb(R) est aussi dense dans
(L2(R), ∣∣ ∣∣2).

b) Déduire des questions précédentes que pour toutes les fonctions f, g ∈ L2(R) la fonction
f ∗ g est uniformément continue.

I.C - Continuité, dérivabilité, séries de Fourier

I.C.1) On suppose que f ∈ L1(R) et g ∈ Cb(R).
a) Montrer que f ∗ g est continue.

b) Montrer que si g est uniformément continue sur R, alors f ∗g est uniformément continue
sur R.

I.C.2) Soit k un entier naturel non nul. On suppose que g est de classe Ck sur R et que toutes ses
fonctions dérivées, jusqu’à l’ordre k, sont bornées sur R. Montrer que f ∗ g est de classe Ck

sur R et préciser sa fonction dérivée d’ordre k.

I.C.3) Dans toute cette question I.C.3, on suppose que g est continue, 2π-périodique et
de classe C1 par morceaux donc par le théorème de convergence de Dirichlet donné dans
l’introduction, on peut écrire :

∀ x ∈ R, g(x) =
+∞
∑

n=−∞
cn(g)e

inx,

la série convergeant normalement sur R.

a) Montrer que si (αn) ∈ CZ est telle ∑
n∈Z
∣αn∣ < +∞ alors en notant :

∀x ∈ R, φ(x) ∶= ∑
n∈Z

αne
inx

on a
∀n ∈ Z, αn = cn(φ).
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b) Pour f ∈ L1(R), montrer que f ∗ g est bien définie, 2π-périodique et que :

∀x ∈ R, (f ∗ g)(x) = ∑
n∈Z

cn(f ∗ g)e
inx.

Expliciter les coefficients de Fourier de f ∗ g à l’aide des coefficients de Fourier de g et
d’intégrales faisant intervenir f .

I.D - Approximation de l’unité

Soit f ∈ Cb(R) et soit ( δn ) une suite de fonctions approximation de l’unité (cf. déf.2 de
l’introduction).

I.D.1) On va montrer dans cette question que la suite (f ∗ δn)n∈N converge simplement vers f sur
R. Soit x ∈ R et soit ε > 0. On note φn(x, t) = ∣f(x − t) − f(x)∣δn(t).

a) Justifier qu’il existe un α > 0 (dépendant a priori du réel x) tel que ∫
α
−α φn(x, t)dt ⩽ ε.

b) Conclure.

I.D.2) Montrer que si f est à support compact, le α de la question a) précédente ne dépend pas de
x et la suite (f ∗ δn)n∈N converge uniformément vers f sur R.

I.D.3) Pour tout entier naturel n, on note hn la fonction définie sur [ −1,1 ] par

hn(t) =
(1 − t2)

n

λn

et nulle en dehors de [−1,1], le réel λn étant donné par la formule

λn = ∫
1

−1
(1 − t2)

n
dt

a) Montrer que la suite de fonctions (hn)n∈N est une approximation de l’unité.

b) Montrer que si f est une fonction continue à support inclus dans [− 1
2
, 1
2
], alors f ∗ hn

est une fonction polynomiale sur [− 1
2
, 1
2
] et nulle en dehors de l’intervalle [− 3

2
, 3
2
].

Remarque : il est assez facile d’en déduire (non demandé ici) une démonstration du
théorème de Weierstrass : toute fonction complexe continue sur un segment de R est
limite uniforme sur ce segment d’une suite de fonctions polynomiales.

I.D.4) Montrer qu’il n’existe pas de fonction g ∈ Cb(R) telle que pour toute fonction f de L1(R),
on ait f ∗ g = f .

On pourra raisonner par l’absurde et considérer pour une telle fonction g, la suite (hn∗g)(0).

II Transformée de Fourier d’une fonction

Soit f ∈ L1(R). On appelle transformée de Fourier de f et on note f̂ la fonction de R dans C
telle que

∀ξ ∈ R, f̂(ξ) = ∫
+∞

−∞
f(x)e−ixξ dx

II.A - Premières propriétés

II.A.1) Montrer que, pour toute fonction f ∈ L1(R), f̂ est définie et continue sur R.
II.A.2) Montrer que l’application f ↦ f̂ est une application linéaire continue de l’espace vectoriel

normé ( L1(R), ∥ ⋅ ∥1 ) dans l’espace vectoriel normé ( L∞(R), ∥ ⋅ ∥∞ ).

II.A.3) Soit f ∈ L1(R), λ ∈ R∗+ et soit g la fonction de R dans C telle que g(x) = f(λx) pour tout réel

x. Montrer que g ∈ L1(R) et, pour tout réel ξ, exprimer ĝ(ξ) à l’aide de f̂ , de ξ et de λ.
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II.B - Transformée de Fourier d’un produit de convolution

Soient f et g sont deux fonctions continues de R dans C telles que, en outre, f ∈ L1(R) et
g ∈ L∞(R) de sorte que le produit de convolution f ∗ g est bien définie et continu sur R comme
prouvé au I.A et I.C.

II. B On suppose de plus que g ∈ L1(R) et f ∗ g ∈ L1(R). En admettant que, pour tout ξ réel,

∫

+∞

−∞
(∫

+∞

−∞
e−ixξf(t)g(x − t)dt)dx et ∫

+∞

−∞
(∫

+∞

−∞
e−ixξf(t)g(x − t)dx)dt

existent et sont égales montrer que f̂ ∗ g = f̂ ĝ.

II. C - Introduction d’une fonction plateau

On cherche dans cette sous-partie à construire une fonction réelle positive ρ, définie et de classe
C∞ sur R, telle que ρ(t) = 1 pour tout t ∈ [−1,1] et ρ(t) = 0 pour tout t ∈ R/[−2,2]. Soit φ la
fonction définie sur R par

∀t ∈ R, φ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0 si t ⩽ 0

e−1/t sinon

II C1 Montrer que φ est de classe C∞ sur R.
On pourra montrer que : ∀k ∈ N,∃Pk ∈ R[X],∀t > 0, φ(k)(t) = Pk(1/t)e

−1/t.
Soit ψ la fonction définie sur R par

∀t ∈ R, ψ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0 si t ∉] − 1,1[

e1/(t
2−1) sinon.

II C2 Montrer, en l’exprimant à l’aide de φ, que ψ est de classe C∞.
II C3 Soit θ l’unique primitive de ψ s’annulant en 0 . Montrer que θ est de classe C∞, constante sur

] −∞,−1 ] (on note A cette constante) et constante sur [ 1,+∞ [ (on note B cette constante).
Vérifier que A ≠ B.

II C4 Construire alors une fonction ρ ∈ C∞(R), constante égale à 1 sur [−1,1] et constante égale à
0 sur R/[−2,2]. La fonction φ est donc C∞ et à support compact.

II.D - Inégalité de Bernstein

On admet les formules suivantes, dites formules d’inversion de Fourier :

— si f ∈ L1(R) et si f̂ ∈ L1(R), alors, pour tout x ∈ R, f(x) = 1
2π ∫

+∞
−∞ eixξ f̂(ξ)dξ ;

— si α ∈ L1(R), si a : x↦ 1
2π ∫

+∞
−∞ eixξα(ξ)dξ, et si a ∈ L1(R), alors α = â.

On remarque que ces résultats permettent d’affirmer que, si f et g sont deux fonctions continues
telles que f, g, f̂ et ĝ sont intégrables et si f̂ = ĝ, alors f = g.

On considère toujours la fonction ρ définie à la question II C4. Soit r la fonction de R dans C
telle que, pour tout réel x,

r(x) =
1

2π
∫

+∞

−∞
eixξρ(ξ)dξ

II D1 Montrer que r est dérivable sur R et donner une expression de sa fonction dérivée (faisant
éventuellement intervenir une intégrale).

II D2 Montrer que x↦ x2r(x) est bornée sur R et en déduire que r est intégrable et bornée sur R.
On admet qu’en utilisant la même méthode, on montre que r′ est intégrable et bornée sur R.

Soit λ > 0 et soit f ∈ L1(R) ∩ C1(R) telle que f̂ ∈ L1(R) et telle que f̂ soit nulle en dehors du
segment [−λ,λ] (on dit que ≪ f est limitée en fréquences ≫).

On note rλ la fonction de R dans C telle que rλ(x) = r(λx) pour tout réel x.

II D3 On admet que f ∗ rλ est intégrable. Montrer que f = λf ∗ rλ.

II D4 En déduire que, si f ∈ L∞(R), il existe une constante C ∈ R⋆+, indépendante de λ et de f ,
telle que

∥f ′∥∞ ⩽ Cλ∥f∥∞ (inégalité de Bernstein).
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