D.S. 5 MP : convolution et analyse de Fourier

Introduction

Notations On note :
— C(R) le C-espace vectoriel des fonctions continues de R dans C.
— Cp(R) le sous-espace vectoriel de C(R) constitué des fonctions continues bornées.
— L'(R) le sous-espace vectoriel de C(R) constitué des fonctions continues intégrables sur R.
— L?(R) le sous-espace vectoriel de C'(R) des fonctions continues de carré intégrable sur R.

D’autre part, on pose :

erCb(RLHflloo=Stlelﬂglf(t)l,VfEL1(R), Hf\|1:lef(t)ldterLQ(RL\|f|\2=\/fR|f(t)l2 dt.

On admet que ces expressions définissent des normes sur les espaces en question.

Définitions

Déf. 1 : Soit f une fonction complexe d’une variable réelle. Par définition, le support de f est
l'adhérence de l'ensemble Ay = {z € R | f(z) # 0}. On dit que f est & support compact si son
support est un fermé borné de R ; en d’autres termes, f est a support compact si et seulement s’il
existe un réel A >0 tel que f soit nulle en dehors de [-A, A].

On note encore C.(R) le sous-espace vectoriel de C(R) formé des fonctions continues & support
compact.

Déf. 2 : Par définition, une approzimation de l'unité est une suite de fonctions (f,) continues

par morceaux et intégrables sur R, vérifiant les conditions suivantes :
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VneN, f, est positive sur R;
VneN, f fn=1;
R

+
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Ve>0, lim fn=0et lim fn=0.
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Déf. 3 : Pour toute fonction h € C(R), 2w-périodique, et tout n € Z, on note :
1 T —int
en(h) = — f h(t)e ™ dt
2 T

appelé n-iéme coefficient de Fourier complexe de h. Et pour tout N € N, on note :

N .
Sn(h)(x) = Z cn(h)e™
k=—N
appelée somme partielle d’ordre N de la série de Fourier de h.

Théoréme admis On admet le :

Théoréme de convergence uniforme de Dirichlet : si h e C(R) est 2r-périodique et
C'-par morceaux, alors la suite de fonction (Sy(h)) de la déf.5 converge normalement sur
R vers h. En particulier la convergence simple dit que h est somme de sa série de Fourier,
ce qu’on écrira :

+o00 i
VzeR, h(z)= Y, cu(h)e™

n=—o0o

I Produit de convolution

Soit f,g e C(R). Lorsque la fonction t — f(t)g(x —t) est intégrable sur R, on pose

(F=)@) = [ St

La fonction f * g est appelée produit de convolution de f par g.



I.A - Généralités
I.A.1) Dans chacun des deux cas suivants, montrer que f * g est définie et bornée sur R et donner
une majoration de | f * g pouvant faire intervenir |- |1, ] -2 ou | |-
a) feL'(R),geCyp(R);
b) f,g¢€ L*(R).
I.A.2) Soient f,ge C(R) telles que f * g(x) soit défini pour tout réel . Montrer que f*g=g* f.

I.A.3) Montrer que si f et g sont & support compact, alors f * g est & support compact.

I.B - Produit de convolution de deux éléments de L*(R)

Pour toute fonction i de C(R) et tout réel o, on définit la fonction Ty, (h) en posant Ty, (h)(z) =
h(x - ) pour tout = € R.
Dans cette sous-partie I.B, on suppose que f et g appartiennent & L*(R).

I.B.1) Montrer qu'une fonction h est uniformément continue sur R si, et seulement si,

lim | 7o (h) = B, =0.

I.B.2) Pour tout réel o, montrer que To,(f * g) = (Tu(f)) * g.
I.B.3) Pour tout réel o, montrer que |To(f *g) = f * gl <|Ta(f) = fls % |9]2-
1.B.4) a) Montrer qu’'une fonction continue & support compact est uniformément continue sur R.

b) Déduire des questions précédentes que si f est & support compact alors f * g est uni-
formément continue sur R.

N

I.B.5) a) Montrer que 'espace C.(R) des fonctions continues & support compact est un sous-
espace vectoriel dense dans (L*(R), || ||2). On en déduit que Cy(RR) est aussi dense dans
(L*(R), | [|2)-
b) Déduire des questions précédentes que pour toutes les fonctions f, g € L2(R) la fonction
f * g est uniformément continue.

I.C - Continuité, dérivabilité, séries de Fourier

I.C.1) On suppose que f € L1(R) et g € Cy(R).
a) Montrer que f * g est continue.
b) Montrer que si g est uniformément continue sur R, alors f % g est uniformément continue

sur R.

1.C.2) Soit k un entier naturel non nul. On suppose que g est de classe C* sur R et que toutes ses
fonctions dérivées, jusqu’a l'ordre k, sont bornées sur R. Montrer que f * g est de classe C*
sur R et préciser sa fonction dérivée d’ordre k.

I.C.3) Dans toute cette question I.C.3, on suppose que g est continue, 2r-périodique et
de classe C' par morceaux donc par le théoreme de convergence de Dirichlet donné dans
I'introduction, on peut écrire :

+oo

VaeRg(a)= Y ea(g)e™,

n=—oo
la série convergeant normalement sur R.

a) Montrer que si (a;,) € C” est telle Y |ay| < +00 alors en notant :
nez

VzeR, p(z)= ) ae™
neL

on a
VneZ,a,=cp(p).



b) Pour f e L'(R), montrer que f * g est bien définie, 27-périodique et que :

VaeR, (fxg)(@) =) cal(f*g)e™™.

nez

Expliciter les coefficients de Fourier de f % g a 1’aide des coefficients de Fourier de g et
d’intégrales faisant intervenir f.

1I.D - Approximation de I’unité

Soit f € Cp(R) et soit ( §, ) une suite de fonctions approximation de I'unité (cf. déf., de
I'introduction).

I.D.1) On va montrer dans cette question que la suite (f *d,,),y converge simplement vers f sur
R. Soit € R et soit € > 0. On note ¢, (x,t) = |f(x -t) = f(x)|0,(t).

a) Justifier qu’il existe un a > 0 (dépendant a priori du réel z) tel que [ o, (z,t)dt <e.
b) Conclure.

1.D.2) Montrer que si f est & support compact, le a de la question a) précédente ne dépend pas de
x et la suite (f * d,,),,qy converge uniformément vers f sur R.

1.D.3) Pour tout entier naturel n, on note h,, la fonction définie sur [ 1,1 | par

(-2

hn(t) = 3

et nulle en dehors de [-1,1], le réel A, étant donné par la formule

1

)\n:[ (1-2)" at

1

a) Montrer que la suite de fonctions (hy),,qy est une approximation de l'unité.

b) Montrer que si f est une fonction continue & support inclus dans [—%7 %]7 alors f * h,
1 3 3

3 -3,3]

Remarque : il est assez facile d’en déduire (non demandé ici) une démonstration du

théoreme de Weierstrass : toute fonction complexe continue sur un segment de R est

limite uniforme sur ce segment d’une suite de fonctions polynomiales.

est une fonction polynomiale sur [—%, ] et nulle en dehors de l'intervalle [

1.D.4) Montrer qu'il n’existe pas de fonction g € Cyp(R) telle que pour toute fonction f de L'(R),
on ait fxg=f.
On pourra raisonner par l'absurde et considérer pour une telle fonction g, la suite (hy, *g)(0).

IT Transformée de Fourier d’une fonction

Soit f € LY(R). On appelle transformée de Fourier de f et on note f la fonction de R dans C
telle que

veer, f(©)= [ f)e o

II.A - Premieéres propriétés
I1.A.1) Montrer que, pour toute fonction f e L!(R), f est définie et continue sur R.

II.A.2) Montrer que l'application f — f est une application linéaire continue de ’espace vectoriel
normé ( L(R), | -|l; ) dans I'espace vectoriel normé ( L= (R), | - [oo )-

I1.A.3) Soit f € L'(R), X € R* et soit g la fonction de R dans C telle que g(x) = f(A\x) pour tout réel
x. Montrer que g € L*(R) et, pour tout réel £, exprimer §(¢) & 'aide de f, de € et de .



I1.B - Transformée de Fourier d’un produit de convolution

Soient f et g sont deux fonctions continues de R dans C telles que, en outre, f € L'(R) et
g € L (R) de sorte que le produit de convolution f * g est bien définie et continu sur R comme
prouvé au LA et 1.C.

II. B On suppose de plus que g € L'(R) et f * g e L'(R). En admettant que, pour tout & réel,

[:o ([:o e_imgf(t)g(x—t)dt) dz et /_:o ([:o e_iwgf(t)g(x—t)dx) dt

existent et sont égales montrer que f * g = fg.

II. C - Introduction d’une fonction plateau

On cherche dans cette sous-partie a construire une fonction réelle positive p, définie et de classe
C* sur R, telle que p(t) = 1 pour tout ¢ € [-1,1] et p(¢) = 0 pour tout ¢t € R\[-2,2]. Soit ¢ la
fonction définie sur R par

0 sit<0
VteR, @(t):{ oy )
e sinon
IT C1 Montrer que ¢ est de classe C* sur R.
On pourra montrer que : Vk € N3P, e R[X ], Vt > 0, (t) = Pp(1/t)e™ /2.

Soit ¢ la fonction définie sur R par

0 it¢]-1,1
Vt e R, w(t):{el/(t2_1) sit¢] [

sinon.

IT C2 Montrer, en U'exprimant a l’aide de ¢, que 1 est de classe C*.

IT C3 Soit 6 I'unique primitive de ¥ s’annulant en 0 . Montrer que 6 est de classe C*, constante sur
] —o0,—1] (on note A cette constante) et constante sur [ 1,+co [ (on note B cette constante).
Vérifier que A # B.

IT C4 Construire alors une fonction p € C*°(R), constante égale & 1 sur [-1,1] et constante égale &
0 sur R\[-2,2]. La fonction ¢ est donc C* et & support compact.

I1.D - Inégalité de Bernstein

On admet les formules suivantes, dites formules d’inversion de Fourier :
— si fe L*(R) et si f e L'(R), alors, pour tout z € R, f(z) = 5= [ e f(£)d¢;
— siaeLY(R),sia: x> & [T7e™a(€)dE, et si ae LY(R), alors a = a.
On remarque que ces résultats permettent d’affirmer que, si f et g sont deux fonctions continues
telles que f, g, f et g sont intégrables et si f = g, alors f = g.
On considere toujours la fonction p définie a la question IT C4. Soit r la fonction de R dans C
telle que, pour tout réel x,

@) =5 [ dpe)ae

IT D1 Montrer que r est dérivable sur R et donner une expression de sa fonction dérivée (faisant
éventuellement intervenir une intégrale).
IT D2 Montrer que x — x?r(2) est bornée sur R et en déduire que 7 est intégrable et bornée sur R.
On admet qu’en utilisant la méme méthode, on montre que 7’ est intégrable et bornée sur R.
Soit A > 0 et soit f e L'(R) nC*(R) telle que f € L'(R) et telle que f soit nulle en dehors du
segment [-\, A] (on dit que < f est limitée en fréquences »).
On note ry la fonction de R dans C telle que 7y (x) = r(Az) pour tout réel x.
II D3 On admet que f * r) est intégrable. Montrer que f = Af * 7).
IT D4 En déduire que, si f € L=(R), il existe une constante C € R?, indépendante de A et de f,
telle que
[£l. €CA|fle (inégalité de Bernstein).



