D.S. 5 : partie I CCS MP 2012 partie II CCS MP 2021 solution

I. Produit de convolution.

LA.1) a) Si feL'(R) et geCy(R), et 7 €R est fixé, alors en notant ¢, (¢) = f(t)g(x - t) :
(i) t = @4 (t) est continue sur R comme produit de fonctions continues
(ii) VEeR, |pz ()] < |g]oolf(t)], majoration de ¢, par une fonction intégrable sur R.

Avec (i) et (ii) on a prouvé que ¢, est intégrable sur R, donc ’ (f * g)(x) est bien définie ‘
En outre pour tout x € R, on a :

(@< [17Ollg=ldt <ligllee [ 171=lgllell Il

Comme le majorant est indépendant de z, on conclut que ’ (f * g) est bornée sur R ‘ et

£ * gl < 1711 % ]l |

b) Si g € £L2(R) il en va de méme de t — g(x —t) et ||gz|, = | g]2 par le changement de variable
t — x —t admissible dans l'intégrale.

D’aprés le cours, le produit de deux éléments de L£2(R) est un élément de L£'(R) et plus
précisément on a 1’égalité de Cauchy-Schwarz dans £2

18t -0l < ([ 02 [ (oo = )20 = |17l il
Donc pour tout x € R, (f * g)(x) est bien définie et

|(f = g) (@) < | £]l2-[lgll2

et comme ce majorant est indépendant de z, on a la aussi (f * g) bornée et

[11f * glleo <1ll>-llgll

I.A.2) Par déf.
(f +9)(x) = fR F(O)g(z - t)dt.

Par le changement ¢ — u = z — t admissible car C!-bijectif de R sur lui-méme, on a :

(F+)@) = [ F@-wg()du=(g+ f)(x)

I.A.3) Supposons f et g & support compact inclus respectivement dans [-A, A] et [-B, B].
Alors f* g(z) = fi‘ F@)g(x -t)dt.

Or pour te[-A,A] si|z|>A+Bonal|x—t >x|-|t|>B donc g(z-t) =0.

Il en découle que

’ f * g est & support compact inclus dans [-(A + B), A + B]. ‘

I.B - Produit de convolution de deux éléments de £?(R).

I.B.1) h est par définition uniformément continue si et seulement si pour tout ¢ > 0 donné
quelconque il existe 8 > 0 tel que pour tout « tel que || < B, on ait Vz e R, |h(x) — h(x - )| <€
autrement dit pour tout a tel que |a| < B, on ait [|h — To(h)|le < €. En d’autres termes si et
seulement si limy g [h = Ta(h)], =0

I B.2) Comme noté en L.A.1.b), si f € £L2(R) il en va de méme de T, (f) et ainsi T,,(f) * g est
bien définie d’apres le résultat de cette question I. A 1 b). Pour tout z € R, on a d’un c6té :

Tu(f+9) (@)™ (Feg)(w=a) = [ F(Dg(a-a-t)dt M



De 'autre coté
(Ta() *)@) = [Tl Dgla )t = [ 72~ a)gle 1) )
Dans 'intégrale & droite de (2) on pose u =t — « et donc ¢ = u + « ce qui dans (2) donne
(Ta() *9)(@) = [ F()g(~u=a)du 3)
En comparant (1) et (3) on a montré que pour tout z € R

Vo eR, (To(f) * 0)(@) = Ta(f * 9) ()

I.B.3) Comme T, (f), f et g appartiennent & £2(R), on peut écrire

1Ta(f*9) = F*gle |Ta(f) * 9= f * gl par 1B2)
[(To(f) - f) * gll, par linéarité de I'intégrale

|Ta(f) = flly > llgl2 par IA 1) b)

N

I.B.4) a) C’est une conséquence facile du théoréme de Heine en se plagant sur un segment du
type [-A-1, A+1], o [-A, A] contient le support de f, mais il faut quand méme soigner ’argument
de <« recollement » : argument par débordement.

Soit f: R — R une fonction continue & support compact. Il existe donc deux réels a < b tels que

supp(f) c [a,b].

En particulier, f(z) =0 pour tout z ¢ [a,b].
Considérons le segment [a — 1,b+ 1]. La fonction f y est continue, et comme ce segment est
compact, le théoreme de Heine assure que f est uniformément continue sur [a — 1,b+ 1]. Ainsi,

Ve>0, 301 >0, Vo,ye[a-1,b+1], |[z—y|<d1 = |f(x) - f(y)| <e.
Par ailleurs, f est constante égale & 0 sur R\ [a, ], donc uniformément continue sur R\ [a,b] :
Ve>0, 302 >0, Va,y e R\ [a,b], |t —y| <= |f(x)- f(y)|=0<e.
Posons
d = min(dy, ds, 1).

Soient x,y € R tels que |x —y| < 4. Si = et y appartiennent tous deux & [a—1,b+ 1], alors I'uniforme
continuité sur ce segment donne le résultat.

Sinon, au moins I'un des deux points appartient & Rx[a—1, b+1]. Dans ce cas, on a nécessairement
x,y € R\ [a,b], car la distance entre R~ [a,b] et [a—1,b+1] est au moins 1. Ainsi, f(x) = f(y) =0,
et donc

[f(z) - f(y)l=0<e.

Dans tous les cas, |x — y| < ¢ implique |f(z) - f(y)| < €. Cela montre que f est uniformément
continue sur R.
I.B. 4b) D’apres le I.B.1), et le a) on a

i 1Ta(F) =l =0 (+)

On veut montrer que ||To(f * g) = (f * 9)|oo - 0 ce qui par I.B1) donnera la conclusion.
a—

Par la majoration du I B3), il suffit de montrer que :

ITalh) = fll: =0 (+0)



Or, avec les notations précédentes,

A+
fA |f(z-a) - f(z)]*dz car f et T,f sont nulles en dehors de [-A, A + ]

(2A+a) |Tu(f) - fI2

Avec cette majoration, (*) donne bien (**) ce qui démontre bien 1'uniforme continuité de (f * g).

[ - g7

IA

I.B.5) a) Soit f € £L2(IR) et pour n entier non nul soit un réel a,, > 0 qu’on va préciser plus tard.
Soit alors la fonction f, continue a support compact définie par

f () pour t € [-n,n],
fn(t) =50 pour [t| > n+ ay,
fn affine sur [-n — a,,, —n] et sur [n,n+ay,].

On a

2 9 2 9 n+an, 2
1= falla= | I R VAV A Y
R\[-n-an,n+am, ] -n—ag, n

Soit € > 0 donné quelconque. Comme f € £L2(R) il existe ng tel que fR\[ ] |f|? < . Donc

—no,no

Vn2no, |f - fuls<etdn+ K,

VK, < f f2+\// an:an+bn
\/ [n,n+ozn:|| | [n,n+o¢n]| |

par l'inégalité triangulaire pour la || ||
Or a, < /€ pour n > ng et comme f,, est affine entre n et n+ a,, égale & |f(n)| en n et nulle

En outre

en n+a, on al|f,(t)| <|f(n)| pour t € [n,n+ ay,]. Donc, en choisissant a, tel que /oy, =

nlf(n)l’

on a :

b < Vay|f(n) < = < Ve

pour n > Ny Ainsi K, <4¢ pour n > max (ng, N1).
De méme pour J,. Finalement | f — ang < 9e pour n > max (ng, N1) ce qui établit le résultat.

SEES

b) Soient désormais f et g deux éléments de L(R).
Pour montrer que f * g est uniformément continue sur R, il suffit, comme dans la question I B
4) précédente, d’établir que |To(f) - f| — 0.
a—

On utilise le a) soit € > 0 donné quelconque. Il existe alors ¢ continue & support compact telle
que |[f —®|2 <€ et on a alors

VaeR, |Ta(f) - fla < 1Ta(f) - Ta(@)ly + [Talp) —¢ly + I - fl2
= [Tale) =l +2[e - fl2
I Ta(p) = plla+2e (xxx)

Or puisque ¢ est continue & support compact, d’apres le résultat () de la démonstration de
la question précédente I 4 b) il existe 5 > 0 tel que | T4 (p) — @], <€ pour |a < 5 Ainsi avec (* * *)
on obtient : |To(f) — f|, < 3¢ pour | < 5 ce qui prouve que |To(f) - fl, — 0 et établit donc

oa—

le résultat.

I.C - Continuité, dérivabilité, séries de Fourier.

I.C.1) Supposons que f € L1(R) et g € Cp(R).

a) On vérifie les hypotheéses du théoréme de continuité des intégrales a parametre
(Hy) Vz eR, (t — f(t)g(x-1t)) e CM(R,C)

(Hy) VteR, (x— f(t)g(z-t)) e C(R,C)



(Hy) Va,t e R, |f(t)g(z —t)| < [glleo x |f(¢)|] majorant intégrable sur R indépendant de z, ce
qui établit que f * g est continue sur R.

b) Supposons désormais en outre g uniformément continue sur R et soit € > 0 donné quelconque.

Par déf. de I'uniforme continuité, il existe 5 > 0 tel que :

lof <[Bl = VueR, [g(u+a)-g(u)|<e

Mais alors pour tout x € R

I(f *g)(@+ ) = (f *g)(2)] IfRf(t)(g(fHa—t)—g(l‘—t)dtl

L@l =t+a)-g(e-1)

[ £l xe pourjal<f

IA

IN

f * g uniformément continue sur R.

1.C.2) On vérifie les hypotheses du théoréme sur le caractere CF des intégrales & parametre.
Pour tout ¢,z € R, notons ¢(x,t) = f(t)g(x - 1).
(H1) Pour tout t € R, (z+ f(t)g(x —t)dt) est de classe C¥ sur R
i ,
(H2) Pour tout ¢t € R et tout z € R, et tout ¢ € [0,k ], t — #(x, t) = f(t)g? (z—t) est continue
xl
0i ; ;
(‘;f (z,8)] < [F()][[gD]|eo avec t = |f(£)]]|g"]|c intégrable indépendant de .
x
Avec (H1) et (H2) on conclut bien que f * g est de classe C* et

(f+g)® = fxg®

et |

I.C.3) a) N.B. Ce lemme est la version complexe du lemme donné pour les coefficients de
Fourier réels au chapitre 12.

1 27 X
Soit n € Z. Par définition ¢, () = Py f @(t)e” ™ dt. Donc par définition de ¢ :
m Jo

1 2m X .
% ﬁ (Z akezkt)e—zntdt

keZ

1 27 (kn
= %/0 (Zakel(k Y di

keZ

1 2r
- = g / ez(k—n)tdt (*)
2r £, 0

1
= — > apliy

2T (7,
= .

C’n(@)

Or en notant uy, : t = age ™™ on a |ug(t)| = |ag| pour tout ¢, donc |[up|le = |ag et par hyp

> lok| < +00 donc la série de fonctions ) uy converge normalement sur le segment [0,27] en

keZ
particulier uniformément et on peut donc appliquer le théoreme d’intégration terme & terme sur

un segment.
b) Commengons par remarquer que comme g est continue et périodique, elle est borné. Autre-
ment dit g € C(R) et f e L'(R) et donc par I A 1) a) f * g existe bien.

Par définition pour tout z € R, (f * g)(x +27) = ./]R F(®)g(x + 2w —t)dt et par 2m-périodicité de
g, on a donc (f * g)(z +2m) = (f * g)(x).

Reste & montrer que (f * g) est somme de sa série de Fourier.
Comme rappelé par ’énoncé, le théoreme de Dirichlet donne que

VueR, g(u) = Y calg)e™

nez



et en outre ¥,z |cn(g)| converge. Soit = € R, on peut alors écrire (par commutativité de =)
[ f@-tgtrat
f flz-1) > en(g)e™dt
neZ
- Yalo) [fa-tema (1)
nez

frg(x)

= > calg) f f(w)e™® ™ dy  en posant u =z -t

nez

_ Ech(g)(ff(u i) e’

n

= Z O‘nelnm(i)

nez

avec a, = cn(g)(/ flu)e ™ du)
R
Justifions (f) avec le théoréme d’intégration terme a terme de Lebesgue.
En posant v, (t) = f(z - t)c,(g)e™, on remarque que :

[ len(®ldt =111  fea(9)

donc Y. [ [un (¢)| dt converge, ce qui permet d’appliquer le théoréeme d’LT.T et (7).

Avec (1),0 n a la un développement en série trigonométrique de f * g qui converge normalement
(car |ap| <||f]1 % |en(g)] ) donc par la question a), on sait pour tout n € Z, ay, = ¢ (f * g).

Ainsi f * g est égale & la somme de sa série de Fourier et

—

¥ne Z, cu(fx9) = calg) [ F( dt = cu(9)F(n)

en introduisant déja la transformée de Fourier qui apparait plus loin dans le probléme.

I.D - Approximation de 1’unité.

I.D.1) Soit € > 0 donné quelconque et soit z fixé. Comme f est continue en particulier en
: il existe a = a(x) tel que supye(_q o1 lf(z —1) = f(2)| < € pour [t| < o Et il existe ng tel que
[ o <cet [T 6, <e pour n>ng. En remarquant que f(z) = [g f(2)6,(¢)dt et f* 5, =6, * f
il vient : A, (z) = Die I(f *6n) (2) = (@) €[22 on(@,t)dt + [ on(@,t) + [T on(a,t)dt avec

on(z, t) If(z-t)- f(a:)|(5 (t). Or [% on(z,t) <e [ 6n(t)dt <e [175,(t)dt = e. Donc : A, (7) <
e+ [ 2 gon(x t)dt+ [ (@, t)dt <e+2| flloox (/2 6n(t)dt + [T 6,(t)dt)  VYneN d'ot il résulte
que Ap(2) € (4] f]e + 1) € pour n > ng ce qui établit bien la convergence simple de la suite (f * d,,)
vers f sur R.

I.D.2) Si f est en outre & support compact, classiquement elle est uniformément continue sur
R de sorte que le a de la question précédente ne dépend pas de z. La démonstration de la question
précédente prouve alors que A, (z) < (4|fe +1)e Vn2ng VzeR En d’autres termes la suite
(f * 6,) converge uniformément sur R vers f. 1.D.3) a) h, est clairement continue, positive et
vérifie [p hy, = 1.

Remarquons que A, = 2 [, (1-#2)" dt > 2 [} (1-2)"t dt = (=)™ du = [} u" du = -
Soit désormais « > 0 donné quelconque. Il vient I, («) = f;w ho(t)dt = 0 si a > 1 et sinon

I.(a) = f hy (t)dt < (1 %) <(n+1)(1-a )n —— 0 De méme -2 hp = I,(a). Donc la suite

( hy ) est bien une approxunatlon de I'unité. b) Si f est continue & support inclus dans [—l l] il

résulte da la question 1.A.3) que f * h,, est & support inclus dans [—§ §]

272
Pour tout z on a (f * hy,) (2) = [ f(¢)hy(x—t)dt = [_11//22 f(t)hn(z—t)dt. Sien outre z € [-1, 1]

onaxz-te[-1,1] pourtoutte[—%,%] donc hy(z—t) = (1- (z-t)? ) de sorte que (f * hy) (z) =



/ 11//22 F (@) (1 - (x- t)z)n dt qui par développement est clairement une fonction polynomiale en x et

établit donc le résultat. ¢) Soit ¢ une fonction définie et continue sur [a, b] puis soit ¢ continue sur
R & support compact qui coincide avec ¢ sur [a,b], est nulle sur |-oo,a—1] et [b+1, +oo[ et est affine
sur [a-1,a] et [b,b+1]. Soit enfin f définie par f(z) =1 (a—1+ (b—a+2)(t+3)). Elle est continue

a support inclus dans [—l l]. D’apres 1.D.2) la suite (f * h,,) converge uniformément sur R donc a

212
fortiori sur [—%, %] vers f. Or d’apres la partie b) ci-dessus f * h,, est polynomiale sur [—%, %] Ainsi
il existe une suite de fonctions polynomiales (P,) qui converge uniformément vers f sur [—%, %]
Alors classiquemment (changement de variable affine) la suite de fonctions polynomiales ( @, )
définie par Q,(z) = P, (—% + 9;:2:21) converge uniformément vers ¢ sur [a—1,b+ 1] donc a fortiori
converge uniformément vers ¢ sur [a,b]. I.D.4) Supposons qu’il existe une telle fonction g. On a en
particulier h,, * g = hy, pour tout entier n. Or d’apres 1.D.1) la suite (h,, * g) converge simplement
sur R vers g puisque la suite (h,) est une approximation de I'unité. Ainsi la suite (h,) converge

simplement sur R vers g. Or h,(0) = )\i et A\, = 2]01 (1 - tz)n dt tend vers 0 par le théoreme de

la convergence dominée (la suite g, (t) = (1 - t2)n converge simplement sur ]0,1[ vers la fonction
nulle et y est dominée par la fonction constante égale a 1 bien intégrable sur ]0,1[ ). Ainsi la suite
( hn(0) ) ne converge pas dans R ce qui est contradictoire avec le fait que la suite ( h,, ) converge
simplement sur R. Donc une telle fonction g n’existe pas.

I1. Transformée de Fourier.

II.A 1) Avec le théoréme de continuité des intégrales & parametres :

(HO) Vx e R t —> f(t)e™ est continue donc a fortiori continue par morceaux sur R

(H1) VteR, z+—> f(t)e'®! est continue sur R

(H2) Va,t e R, |f(t)e™!| <|f(t)| le majorant étant définie par une fonction intégrable sur R
indépendante de x.

Avec (Hy) et (Hy) sait que ¢ — f(x,t) est bien intégrable pour tout z € R et donc f est définie
sur R et avec (Hy), (Hy),(Hs), par le théoréme citée f est continue sur R

IT A.2) D’abord on montre que I’application arrive bien dans L*(R).

L’application f ~ f est linéaire (linéarité du passage & l'intégrale). Soit f € L*(R). On a

veeRIF©I< [ |F@)e = |/l

et donc f e L®(R) avec )
I f oo < If 2 (1)

L’application f ~ f est lindaire par linéarité de I'intégrale, et (1) montre alors qu’elle continue
et méme 1 lispchitzienne, pour les normes proposées.

f = f est continue de (L'(R), [ - 1) dans (L= (R), |- [«)

II A 2 f étant continue, g ’est aussi. De plus, le changement de variable linéaire u = Az donne

[z = [7las

et cette quantité admet une limite finie quand a — +oo et aussi quand a — —oo. Il y a donc
intégrabilité aux voisinage des infinis et

geL'(R)

On peut alors écrire §(&) et le méme changement de variable donne

0O =5 [ s

et ainsi

VEeR, g(¢) =

> =
Kﬁ)
—_—
>l
~—~—



II.B - Produit de convolution

Par définition

N + 00 . +oo +o00 .

T30 = [ Grp@etan= [ ([T e pwge- ) da
Avec le résultat admis,

T3 = [ ([ e gt -in) ar

On pose u =z -t dans l'intégrale intérieure :

T = [ ([ ety uyu) dr

et on peut ”faire sortir” de l'intégrale les termes indépendants de la variable u
T = [ (swe [T e tgdn)ar= [ pwe (e
La encore §(£) peut sortir de Uintégrale et on obtient f(£)§(¢).
Frg=1

II. C - Introduction d’une fonction plateau

[La construction de ce II C est un grand classique, a retravailler pour de nombreux sujetsj

II C1 ¢ est de classe C* sur R** par théoremes d’opération.
Montrons par récurrence que

VkeN,H(k) : 3P, e R[X],Vt > 0,0®)(¢) = P, (1/t)e M/t

Initialisation H(0) avec vraie avec Py = 1.
Hérédité : Supposons H (k) vraie pour un k € N On peut alors redériver et obtenir

w>o,<p<’f+1>(t):( P+ Pk(l/t)) -1/t

Alors en posant Py = X2 (=P} + P;), on a bien Py,1 € R[X] et la propriété H(k + 1) est vraie.

La récurrence est établie.

Par ailleurs ¢ est aussi de classe C*° sur R™" a dérivée identiquement nulle

Par le théoreme de limite de la dérivée, pour montrer que ¢ est de classe C* aussi en 0, il suffit
de montrer que toutes les dérivées ont une limite finie a droite et gauche en 0 et que ces limites
sont égales.

C’est le cas avec une limite nulle : évident a gauche et par croissances comparées a droite grace
a la propriété H (k) pour tout k.

@ est de classe C*° sur R

IT C2 Vérifions que
VteR,(t) = p(1-1%)

En effet, si [t > 1,12 <0 et ¢ (1-2) = 0=1(t) et si [t < 1,12 >0 et o (1 -¢2) = (1) =
»(t).

En conséquence, avec le II C1, par théoremes d’opération,
PeC™

N.B. Il est important d’avoir le graphe de g en téte <« bump function » en anglais, < fonction
cloche » en frangais. Cette fonction fait deux recollements C* en 1 et en —1 avec la fonction nulle.



II C3 0 € C* comme primitive d’une telle fonction. De plus 6’ est nulle sur chaque intervalle
] —o00,-1] et [1,+0o[ et donc O est constante sur chacun de ces intervalles.

6 est constante sur | — oo, —1] et sur [1,+o0[

Par théoreme fondamental,

0(x) = /Omw(t)dt

0 1 1 N
Az—/ et etB:f e dt
—1 0

Dans les deux cas, on integre une fonction continue positive non nulle et les intégrales sont > 0.
Ainsi

et les constantes sont

A<0<B

et les constantes sont en particulier différentes.
La encore, on peut tracer le graphe de 6 (fonction de raccord)

Tracé de la primitive 8

02

01

0.0

a(t)

-0.1

IT C4 Une premiere normalisation de h pour régler les deux < hauteurs ».

Notons h; = % : ¢’est une fonction de classe C* sur R, nulle sur | —oo0, -1 ] et valant 1 sur
[1,+00[. h1(2x +3) vaut 0 si z < -2 et vaut 1 si z > -1.

Donc le graphe est sensiblement le méme que h mais les deux phases « plateaux » sont aux
valeurs 0 et 1.

Notons hg = % : c’est une fonction de classe C* sur R, nulle sur [ 1,+00 [ et qui vaut 1 sur
]—o00,-11]. ha(22-3) vaut 0 si > 2 et vaut 1 si z > 1.

Cette fois pour hy les plateaux sont < inversés »

Voici un schéma avec hy et he (pas trés bon, les raccords sont bien C* alors que le dessin semble

faire des points anguleux).



Fonctions h; et h,

—_m
hy

La fonction p = hihs est nulle hors de |-2,2 [ et vaut 1 sur [ 1,1 ]. Son graphe est assez proche
se lit directement sur le graphique précédent car lorsque hy =1, p = ho et inversement !
Il existe p e C*(R), constante égale & 1 sur [ -1,1 | et constante égale & 0 sur R\[-2, 2]

I1.D -Inégalités de Bernstein
I1.D1 Par définition, comme p est nulle en dehors de [-2,2]

r@)= o [ e pede (1)

On utilise le théoreme sur le caractere C' des intégrales & parametres.

(HO) Pour tout z, & — ¢ p(€) est continue sur le segment et donc intégrable sur ce segment.

(H1) Pour tout £ € [-2,2],x + e¢p(&) est de classe O sur R de dérivée x + ie™ep(€). -
Pour tout z, & ~ i£e™p(&) est continue.

(H2) Pour tout z € R et £ € [-2,2],

lice' ™ p(&)] < 2] plloo 221

et la fonction constante égale & 2[p o [-2,2] est intégrable sur le segment [-2,2], indépendante de
x.
Donc par théoreme :

reC*(R) et Ve eR, 7'(z) = i [:o £e'™p(&)de

IT. D2 Utilisons a nouveau expression (1) ci-dessus de r. Par deux intégrations par parties (sur
un segment) et comme p et toutes ses dérivées sont nulles en 2 et -2 | on trouve

+2 . +2
2mar(a) =i [ e (©)dg =~ [ T (€

et ainsi .
2 "

|22 (2)| < 54 10" L ([=2,2))

x> x°r(z) est bornée sur R

r est continue sur R et les seuls problemes d’intégrabilité sont au voisinage des infinis. En notant
M un majorant de z%r(z), on a |r(z)| < M/z?* qui prouve cette intégrabilité par comparaison aux
fonctions de Riemann.

r est intégrable sur R

Enfin, on a |r(z)| < %HpHLW([_ZQD et
r est bornée sur R

IT D3 Commencons par le cas A = 1. Les fonctions f et r vérifient les hypotheses de la question II B
et on a donc

far=fr



Par ailleurs, le second résultat d’inversion de Fourier fourni par I’énoncé donne

p=r
et 7 est donc égale & 1 sur [-1 ] Ainsi, f7 est égale & f sur [-1,1] mais cela est aussi vrai ailleurs
(o1 il y a nullité). On a donc f * = fr = f et donc on a montré que
frr=f

par la formule d’inversion de Fourier donnée par 1’énoncé.
Pour un A > 0 quelconque, on remarque que (changement de variable u = At )

Fers@= [ -nronde= 5 [ (0= 3)rdu= 5 (fyner) On)

Or, ]717\(:5) = Af(Az) est nulle en dehors du segment [-1,1], intégrable sur R et fi e LY(R)n
C(R). On peut donc, avec le premier cas, affirmer que Jix * 1= fiyx. Ainsi

fer@) = $hn0w) = $@)
[=Af*ra

IT D4 En dérivant le résultat de la question précédente et en appliquant la question 1C2) (avec r
et ' bornées) :
fr= ) = Af* ()
Et en appliquant le TA 1)
!/
[ oo < AFlo [ Cra)']l

Il suffit alors de remarquer que

[: |(rx)" (z)|da = [: [Ar'(Az)| dz = [:o I ()| du

pour conclure que

1 Mo < Al oo 7]y

ce qui donne bien I'inégalité de Bernstein avec C' = ||7’|; indépendant de f.
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