
D.S. 5 : partie I CCS MP 2012 partie II CCS MP 2021 solution

I. Produit de convolution.

I.A.1) a) Si f ∈ L1(R) et g ∈ Cb(R), et x ∈ R est fixé, alors en notant φx(t) = f(t)g(x − t) :
(i) t↦ φx(t) est continue sur R comme produit de fonctions continues
(ii) ∀ t ∈ R, ∣φx(t)∣ ⩽ ∥g∥∞∣f(t)∣, majoration de φx par une fonction intégrable sur R.
Avec (i) et (ii) on a prouvé que φx est intégrable sur R, donc (f ∗ g)(x) est bien définie .

En outre pour tout x ∈ R, on a :

∣(f ∗ g)(x)∣ ≤ ∫
R
∣f(t)∣∣g(x − t)∣dt ≤ ∣∣g∣∣∞ ∫

R
∣f ∣ = ∣∣g∣∣∞∣∣f ∣∣1

Comme le majorant est indépendant de x, on conclut que (f ∗ g) est bornée sur R et

∥f ∗ g∥∞ ⩽ ∥f∥1 × ∥g∥∞

b) Si g ∈ L2(R) il en va de même de t↦ g(x − t) et ∥gx∥2 = ∥g∥2 par le changement de variable
tz→ x − t admissible dans l’intégrale.

D’après le cours, le produit de deux éléments de L2(R) est un élément de L1(R) et plus
précisément on a l’égalité de Cauchy-Schwarz dans L2

∫
R
∣f(t)∣.∣g(x − t)∣dt ≤ (∫

R
f(t)2)1/2(∫

R
(g(x − t))2dt)1/2 = ∣∣f ∣∣2.∣∣g∣∣2

Donc pour tout x ∈ R, (f ∗ g)(x) est bien définie et

∣(f ∗ g)(x)∣ ≤ ∣∣f ∣∣2.∣∣g∣∣2
et comme ce majorant est indépendant de x, on a là aussi (f ∗ g) bornée et

∣∣f ∗ g∣∣∞ ≤ ∣∣f ∣∣2.∣∣g∣∣2

I.A.2) Par déf.

(f ∗ g)(x) = ∫
R
f(t)g(x − t)dt.

Par le changement tz→ u = x − t admissible car C1-bijectif de R sur lui-même, on a :

(f ∗ g)(x) = ∫
R
f(x − u)g(u)du = (g ∗ f)(x)

I.A.3) Supposons f et g à support compact inclus respectivement dans [−A,A] et [−B,B].
Alors f ∗ g(x) = ∫

A
−A f(t)g(x − t)dt.

Or pour t ∈ [−A,A] si ∣x∣ > A +B on a ∣x − t∣ ≥ ∣x∣ − ∣t∣ > B donc g(x − t) = 0.
Il en découle que

f ∗ g est à support compact inclus dans [−(A +B),A +B].

I.B - Produit de convolution de deux éléments de L2(R).
I.B.1) h est par définition uniformément continue si et seulement si pour tout ε > 0 donné

quelconque il existe β > 0 tel que pour tout α tel que ∣α∣ ≤ β, on ait ∀x ∈ R, ∣h(x) − h(x − α)∣ ⩽ ε
autrement dit pour tout α tel que ∣α∣ ≤ β, on ait ∣∣h − Tα(h)∣∣∞ ≤ ε. En d’autres termes si et
seulement si limα→0 ∥h − Tα(h)∥∞ = 0

I B.2) Comme noté en I.A.1.b), si f ∈ L2(R) il en va de même de Tα(f) et ainsi Tα(f) ∗ g est
bien définie d’après le résultat de cette question I. A 1 b). Pour tout x ∈ R, on a d’un côté :

Tα(f ∗ g)(x)
def= (f ∗ g)(x − α) = ∫

R
f(t)g(x − α − t)dt (1)
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De l’autre côté

(Tα(f) ∗ g)(x) = ∫
R
Tα(f)(t)g(x − t)dt = ∫

R
f(t − α)g(x − t)dt (2)

Dans l’intégrale à droite de (2) on pose u = t − α et donc t = u + α ce qui dans (2) donne

(Tα(f) ∗ g)(x) = ∫
R
f(u)g(x − u − α)du (3)

En comparant (1) et (3) on a montré que pour tout x ∈ R

∀ x ∈ R, (Tα(f) ∗ g)(x) = Tα(f ∗ g)(x)

I.B.3) Comme Tα(f), f et g appartiennent à L2(R), on peut écrire

∥Tα(f ∗ g) − f ∗ g∥∞ = ∥Tα(f) ∗ g − f ∗ g∥∞ par IB2)

= ∥(Tα(f) − f) ∗ g∥∞ par linéarité de l’intégrale

⩽ ∥Tα(f) − f∥2 × ∥g∥2 par IA 1) b)

I.B.4) a) C’est une conséquence facile du théorème de Heine en se plaçant sur un segment du
type [−A−1,A+1], où [−A,A] contient le support de f , mais il faut quand même soigner l’argument
de ≪ recollement ≫ : argument par débordement.

Soit f ∶ R→ R une fonction continue à support compact. Il existe donc deux réels a < b tels que

supp(f) ⊂ [a, b].

En particulier, f(x) = 0 pour tout x ∉ [a, b].
Considérons le segment [a − 1, b + 1]. La fonction f y est continue, et comme ce segment est

compact, le théorème de Heine assure que f est uniformément continue sur [a − 1, b + 1]. Ainsi,

∀ε > 0, ∃δ1 > 0, ∀x, y ∈ [a − 1, b + 1], ∣x − y∣ < δ1 ⇒ ∣f(x) − f(y)∣ < ε.

Par ailleurs, f est constante égale à 0 sur R∖[a, b], donc uniformément continue sur R∖[a, b] :

∀ε > 0, ∃δ2 > 0, ∀x, y ∈ R ∖ [a, b], ∣x − y∣ < δ2 ⇒ ∣f(x) − f(y)∣ = 0 < ε.

Posons
δ =min(δ1, δ2,1).

Soient x, y ∈ R tels que ∣x− y∣ < δ. Si x et y appartiennent tous deux à [a− 1, b+ 1], alors l’uniforme
continuité sur ce segment donne le résultat.

Sinon, au moins l’un des deux points appartient à R∖[a−1, b+1]. Dans ce cas, on a nécessairement
x, y ∈ R∖[a, b], car la distance entre R∖[a, b] et [a−1, b+1] est au moins 1. Ainsi, f(x) = f(y) = 0,
et donc

∣f(x) − f(y)∣ = 0 < ε.
Dans tous les cas, ∣x − y∣ < δ implique ∣f(x) − f(y)∣ < ε. Cela montre que f est uniformément

continue sur R.
I.B. 4b) D’après le I.B.1), et le a) on a

lim
α→0
∥Tα(f) − f∥∞ = 0 (∗)

On veut montrer que ∣∣Tα(f ∗ g) − (f ∗ g)∣∣∞ Ð→
α→0

0 ce qui par I.B1) donnera la conclusion.

Par la majoration du I B3), il suffit de montrer que :

∣∣Tα(f) − f ∣∣2 Ð→
α→0

0 (∗∗)
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Or, avec les notations précédentes,

∫
R
∣Tα(f) − f ∣2 = ∫

A+α

−A
∣f(x − α) − f(x)∣2dx car f et Tαf sont nulles en dehors de [−A,A + α]

≤ (2A + α) ∥Tα(f) − f∥2∞

Avec cette majoration, (∗) donne bien (∗∗) ce qui démontre bien l’uniforme continuité de (f ∗ g).
I.B.5) a) Soit f ∈ L2(R) et pour n entier non nul soit un réel αn > 0 qu’on va préciser plus tard.
Soit alors la fonction fn continue à support compact définie par

fn(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(t) pour t ∈ [−n,n],
0 pour ∣t∣ ⩾ n + αn
fn affine sur [−n − αn,−n] et sur [n,n + αn] .

On a

∥f − fn∥22 = ∫R/[−n−αn,n+αn]

f2 + ∫
−n

−n−αn

∣f − fn∣2 + ∫
n+αn

n
∣f − fn∣2 =∶ In + Jn +Kn

Soit ε > 0 donné quelconque. Comme f ∈ L2(R) il existe n0 tel que ∫R/[−n0,n0]
∣f ∣2 ⩽ ε. Donc

∀n ≥ n0, ∥f − fn∥22 ⩽ ε + Jn +Kn

En outre
√
Kn ⩽

√
∫
[n,n+αn]

∣f ∣2 +
√
∫
[n,n+αn]

∣fn∣2 = an + bn

par l’inégalité triangulaire pour la ∣∣ ∣∣2
Or an ⩽

√
ε pour n ⩾ n0 et comme fn est affine entre n et n + αn, égale à ∣f(n)∣ en n et nulle

en n +αn on a ∣fn(t)∣ ⩽ ∣f(n)∣ pour t ∈ [n,n + αn]. Donc, en choisissant αn tel que
√
αn =

1

n∣f(n)∣ ,
on a :

bn ⩽
√
αn∣f(n)∣ ⩽

1

n
⩽
√
ε

pour n ⩾ N1 Ainsi Kn ⩽ 4ε pour n ⩾max (n0,N1).
De même pour Jn. Finalement ∥f − fn∥22 ⩽ 9ε pour n ⩾max (n0,N1) ce qui établit le résultat.

b) Soient désormais f et g deux éléments de L2(R).
Pour montrer que f ∗ g est uniformément continue sur R, il suffit, comme dans la question I B

4) précédente, d’établir que ∥Tα(f) − f∥2 ÐÐ→α→0
0.

On utilise le a) soit ε > 0 donné quelconque. Il existe alors φ continue à support compact telle
que ∥f − φ∥2 ⩽ ε et on a alors

∀α ∈ R, ∥Tα(f) − f∥2 ⩽ ∥Tα(f) − Tα(φ)∥2 + ∥Tα(φ) − φ∥2 + ∥φ − f∥2
= ∥Tα(φ) − φ∥2 + 2∥φ − f∥2
⩽∣ Tα(φ) − φ∥2 + 2ε (∗ ∗ ∗)

Or puisque φ est continue à support compact, d’après le résultat (∗∗) de la démonstration de
la question précédente I 4 b) il existe β > 0 tel que ∥Tα(φ) − φ∥2 ⩽ ε pour ∣α∣ ⩽ β Ainsi avec (∗ ∗ ∗)
on obtient : ∥Tα(f) − f∥2 ⩽ 3ε pour ∣α∣ ⩽ β ce qui prouve que ∥Tα(f) − f∥2 ÐÐ→α→0

0 et établit donc

le résultat.

I.C - Continuité, dérivabilité, séries de Fourier.

I.C.1) Supposons que f ∈ L1(R) et g ∈ Cb(R).
a) On vérifie les hypothèses du théorème de continuité des intégrales à paramètre
(H0) ∀x ∈ R, (tz→ f(t)g(x − t)) ∈ CM(R,C)
(H1) ∀ t ∈ R, (xz→ f(t)g(x − t)) ∈ C(R,C)
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(H2) ∀x, t ∈ R, ∣f(t)g(x − t)∣ ⩽ ∥g∥∞ × ∣f(t)∣ majorant intégrable sur R indépendant de x, ce
qui établit que f ∗ g est continue sur R.

b) Supposons désormais en outre g uniformément continue sur R et soit ε > 0 donné quelconque.
Par déf. de l’uniforme continuité, il existe β > 0 tel que :

∣α∣ ≤ ∣β∣ ⇒ ∀u ∈ R, ∣g(u + α) − g(u)∣ ⩽ ε

Mais alors pour tout x ∈ R

∣(f ∗ g)(x + α) − (f ∗ g)(x)∣ = ∣ ∫
R
f(t)(g(x + α − t) − g(x − t)dt∣

≤ ∫
R
∣f(t)∣.∣g(x − t + α) − g(x − t)∣

≤ ∥f∥1 × ε pour ∣α∣ ⩽ β

f ∗ g uniformément continue sur R.

I.C.2) On vérifie les hypothèses du théorème sur le caractère Ck des intégrales à paramètre.
Pour tout t, x ∈ R, notons φ(x, t) = f(t)g(x − t).
(H1) Pour tout t ∈ R, (x↦ f(t)g(x − t)dt) est de classe Ck sur R

(H2) Pour tout t ∈ R et tout x ∈ R, et tout i ∈ ⟦0, k ⟧, t↦ ∂iφ

∂xi
(x, t) = f(t)g(i)(x−t) est continue

et ∣∂iφ
∂xi
(x, t)∣ ≤ ∣f(t)∣∣∣g(i)∣∣∞ avec t↦ ∣f(t)∣∣∣g(i∣∣∞ intégrable indépendant de x.

Avec (H1) et (H2) on conclut bien que f ∗ g est de classe Ck et

(f ∗ g)(k) = f ∗ g(k)

I.C.3) a) N.B. Ce lemme est la version complexe du lemme donné pour les coefficients de
Fourier réels au chapitre I2.

Soit n ∈ Z. Par définition cn(φ) =
1

2π
∫

2π

0
φ(t)e−intdt. Donc par définition de φ :

cn(φ) =
1

2π
∫

2π

0
(∑
k∈Z

αke
ikt)e−intdt

= 1

2π
∫

2π

0
(∑
k∈Z

αke
i(k−n)t)dt

= 1

2π
∑
k∈Z

αk ∫
2π

0
ei(k−n)tdt (∗)

= 1

2π
∑
k∈Z

αkδk,n

= αn.

Or en notant uk ∶ t ↦ αke
i(k−n)t, on a ∣uk(t)∣ = ∣αk ∣ pour tout t, donc ∣∣uk ∣∣∞ = ∣αk et par hyp

∑
k∈Z
∣αk ∣ < +∞ donc la série de fonctions ∑uk converge normalement sur le segment [0,2π] en

particulier uniformément et on peut donc appliquer le théorème d’intégration terme à terme sur
un segment.

b) Commençons par remarquer que comme g est continue et périodique, elle est borné. Autre-
ment dit g ∈ Cb(R) et f ∈ L1(R) et donc par I A 1) a) f ∗ g existe bien.

Par définition pour tout x ∈ R, (f ∗ g)(x + 2π) = ∫
R
f(t)g(x + 2π − t)dt et par 2π-périodicité de

g, on a donc (f ∗ g)(x + 2π) = (f ∗ g)(x).
Reste à montrer que (f ∗ g) est somme de sa série de Fourier.
Comme rappelé par l’énoncé, le théorème de Dirichlet donne que

∀u ∈ R, g(u) = ∑
n∈Z

cn(g)einu
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et en outre ∑n∈Z ∣cn(g)∣ converge. Soit x ∈ R, on peut alors écrire (par commutativité de ∗)

f ∗ g(x) = ∫
R
f(x − t)g(t)dt

= ∫
R
f(x − t) ∑

n∈Z
cn(g)eintdt

= ∑
n∈Z

cn(g)∫
R
f(x − t)eint dt (†)

= ∑
n∈Z

cn(g)∫
R
f(u)ein(x−u) du en posant u = x − t

= ∑
n∈Z

cn(g)(∫
R
f(u)e−inudu)einx

= ∑
n∈Z

αne
inx(‡)

avec αn = cn(g)(∫
R
f(u)e−inudu)

Justifions (†) avec le théorème d’intégration terme à terme de Lebesgue.
En posant vn(t) = f(x − t)cn(g)eint, on remarque que :

∫
R
∣vn(t)∣dt = ∥f∥1 × ∣cn(g)∣

donc ∑∫R ∣un(t)∣dt converge, ce qui permet d’appliquer le théorème d’I.T.T et (†).
Avec (‡),o n a là un développement en série trigonométrique de f ∗g qui converge normalement

(car ∣αn∣ ⩽ ∥f∥1 × ∣cn(g)∣ ) donc par la question a), on sait pour tout n ∈ Z, αn = cn(f ∗ g).
Ainsi f ∗ g est égale à la somme de sa série de Fourier et

∀n ∈ Z, cn(f ∗ g) = cn(g)∫
R
f(t)e−int dt = cn(g)f̂(n)

en introduisant déjà la transformée de Fourier qui apparâıt plus loin dans le problème.

I.D - Approximation de l’unité.

I.D.1) Soit ε > 0 donné quelconque et soit x fixé. Comme f est continue en particulier en
x : il existe α = α(x) tel que supt∈[−α,α] ∣f(x − t) − f(x)∣ ⩽ ε pour ∣t∣ ⩽ α Et il existe n0 tel que

∫
−α
−∞

δn ⩽ ε et ∫
+∞

α δn ⩽ ε pour n ⩾ n0. En remarquant que f(x) = ∫R f(x)δn(t)dt et f ∗ δn = δn ∗ f
il vient : ∆n(x) = =

DEF
∣(f ∗ δn) (x) − f(x)∣ ⩽ ∫

−α
−∞

φn(x, t)dt + ∫
α
−α φn(x, t) + ∫

+∞

α φn(x, t)dt avec
φn(x, t) = ∣f(x− t)−f(x)∣δn(t). Or ∫

α
−α φn(x, t) ⩽ ε ∫

α
−α δn(t)dt ⩽ ε ∫

+∞

−∞
δn(t)dt = ε. Donc : ∆n(x) ⩽

ε+∫
−α
−∞

φn(x, t)dt+∫
+∞

α φn(x, t)dt ⩽ ε+2∥f∥∞×(∫
−α
−∞

δn(t)dt + ∫
+∞

α δn(t)dt) ∀n ∈ N d’où il résulte
que ∆n(x) ⩽ (4∥f∥∞ + 1) ε pour n ⩾ n0 ce qui établit bien la convergence simple de la suite (f ∗ δn)
vers f sur R.

I.D.2) Si f est en outre à support compact, classiquement elle est uniformément continue sur
R de sorte que le α de la question précédente ne dépend pas de x. La démonstration de la question
précédente prouve alors que ∆n(x) ⩽ (4∥f∥∞ + 1) ε ∀n ⩾ n0 ∀x ∈ R En d’autres termes la suite
(f ∗ δn) converge uniformément sur R vers f . I.D.3) a) hn est clairement continue, positive et
vérifie ∫R hn = 1.

Remarquons que λn = 2 ∫
1
0 (1 − t2)

n
dt ⩾ 2 ∫

1
0 (1 − t2)

n
t dt = ∫

1
0 (1 − u)n du = ∫

1
0 u

n du = 1
n+1

Soit désormais α > 0 donné quelconque. Il vient In(α) =
DEF

∫
+∞

α hn(t)dt = 0 si α ⩾ 1 et sinon

In(α) = ∫
1
α hn(t)dt ⩽

(1−α2
)
n

λn
⩽ (n + 1) (1 − α2)n ÐÐÐ→

n→+∞
0 De même ∫

−α
−∞

hn = In(α). Donc la suite

( hn ) est bien une approximation de l’unité. b) Si f est continue à support inclus dans [− 1
2
, 1
2
] il

résulte da la question I.A.3) que f ∗ hn est à support inclus dans [− 3
2
, 3
2
].

Pour tout x on a (f ∗ hn) (x) = ∫R f(t)hn(x−t)dt = ∫
1/2

−1/2 f(t)hn(x−t)dt. Si en outre x ∈ [− 1
2
, 1
2
]

on a x− t ∈ [−1,1] pour tout t ∈ [− 1
2
, 1
2
] donc hn(x− t) = (1 − (x − t)2)

n
de sorte que (f ∗ hn) (x) =
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∫
1/2

−1/2 f(t) (1 − (x − t)2)
n

dt qui par développement est clairement une fonction polynomiale en x et

établit donc le résultat. c) Soit φ une fonction définie et continue sur [a, b] puis soit ψ continue sur
R à support compact qui coincide avec φ sur [a, b], est nulle sur ]−∞, a−1] et [b+1,+∞[ et est affine
sur [a−1, a] et [b, b+1]. Soit enfin f définie par f(x) = ψ (a − 1 + (b − a + 2) (t + 1

2
)). Elle est continue

à support inclus dans [− 1
2
, 1
2
]. D’après I.D.2) la suite (f ∗ hn) converge uniformément sur R donc a

fortiori sur [− 1
2
, 1
2
] vers f . Or d’après la partie b) ci-dessus f ∗hn est polynomiale sur [− 1

2
, 1
2
]. Ainsi

il existe une suite de fonctions polynomiales (Pn) qui converge uniformément vers f sur [− 1
2
, 1
2
].

Alors classiquemment (changement de variable affine) la suite de fonctions polynomiales ( Qn )
définie par Qn(x) = Pn (− 1

2
+ x−a+1
b−a+2

) converge uniformément vers ψ sur [a− 1, b+ 1] donc a fortiori
converge uniformément vers φ sur [a, b]. I.D.4) Supposons qu’il existe une telle fonction g. On a en
particulier hn ∗ g = hn pour tout entier n. Or d’après I.D.1) la suite (hn ∗ g) converge simplement
sur R vers g puisque la suite (hn) est une approximation de l’unité. Ainsi la suite (hn) converge
simplement sur R vers g. Or hn(0) = 1

λn
et λn = 2 ∫

1
0 (1 − t2)

n
dt tend vers 0 par le théorème de

la convergence dominée (la suite gn(t) = (1 − t2)
n
converge simplement sur ]0,1[ vers la fonction

nulle et y est dominée par la fonction constante égale à 1 bien intégrable sur ]0,1[ ). Ainsi la suite
( hn(0) ) ne converge pas dans R ce qui est contradictoire avec le fait que la suite ( hn ) converge
simplement sur R. Donc une telle fonction g n’existe pas.

II. Transformée de Fourier.

II.A 1) Avec le théorème de continuité des intégrales à paramètres :
(H0) ∀x ∈ R tz→ f(t)eixt est continue donc a fortiori continue par morceaux sur R
(H1) ∀ t ∈ R, xz→ f(t)eixt est continue sur R
(H2) ∀x, t ∈ R, ∣f(t)eixt∣ ⩽ ∣f(t)∣ le majorant étant définie par une fonction intégrable sur R

indépendante de x.
Avec (H0) et (H2) sait que t↦ f(x, t) est bien intégrable pour tout x ∈ R et donc f̂ est définie

sur R et avec (H0), (H1), (H2), par le théorème citée f̂ est continue sur R
II A.2) D’abord on montre que l’application arrive bien dans L∞(R).
L’application f ↦ f̂ est linéaire (linéarité du passage à l’intégrale). Soit f ∈ L1(R). On a

∀ξ ∈ R, ∣f̂(ξ)∣ ≤ ∫
R
∣f(x)e−ixξ ∣dx = ∥f∥1

et donc f̂ ∈ L∞(R) avec
∥f̂∥∞ ≤ ∥f∥1 (†)

L’application f ↦ f̂ est linéaire par linéarité de l’intégrale, et (†) montre alors qu’elle continue
et même 1 lispchitzienne, pour les normes proposées.

f ↦ f̂ est continue de (L1(R), ∥ ⋅ ∥1) dans (L∞(R), ∥ ⋅ ∥∞)

II A 2 f étant continue, g l’est aussi. De plus, le changement de variable linéaire u = λx donne

∫
a

0
∣g(x)∣dx = 1

λ
∫

λa

0
∣f(u)∣du

et cette quantité admet une limite finie quand a → +∞ et aussi quand a → −∞. Il y a donc
intégrabilité aux voisinage des infinis et

g ∈ L1(R)

On peut alors écrire ĝ(ξ) et le même changement de variable donne

ĝ(ξ) = 1

λ
∫
+∞

−∞

f(u)e−iξu/λdu

et ainsi

∀ ξ ∈ R, ĝ(ξ) = 1

λ
f̂ ( ξ

λ
)
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II.B - Produit de convolution

Par définition

f̂ ∗ g(ξ) = ∫
+∞

−∞

(f ∗ g)(x)e−ixξdx = ∫
+∞

−∞

(∫
+∞

−∞

e−ixξf(t)g(x − t)dt)dx

Avec le résultat admis,

f̂ ∗ g(ξ) = ∫
+∞

−∞

(∫
+∞

−∞

e−ixξf(t)g(x − t)dx)dt

On pose u = x − t dans l’intégrale intérieure :

f̂ ∗ g(ξ) = ∫
+∞

−∞

(∫
+∞

−∞

e−i(u+t)ξf(t)g(u)du)dt

et on peut ”faire sortir” de l’intégrale les termes indépendants de la variable u

f̂ ∗ g(ξ) = ∫
+∞

−∞

(f(t)e−itξ ∫
+∞

−∞

e−iuξg(u)du)dt = ∫
+∞

−∞

f(t)e−itξ ĝ(ξ)dt

Là encore ĝ(ξ) peut sortir de l’intégrale et on obtient f̂(ξ)ĝ(ξ).

f̂ ∗ g = f̂ ĝ

II. C - Introduction d’une fonction plateau�� ��La construction de ce II C est un grand classique, à retravailler pour de nombreux sujets

II C1 φ est de classe C∞ sur R+∗ par théorèmes d’opération.
Montrons par récurrence que

∀k ∈ N,H(k) ∶ ∃Pk ∈ R[X],∀t > 0, φ(k)(t) = Pk(1/t)e−1/t

Initialisation H(0) avec vraie avec P0 = 1.
Hérédité : Supposons H(k) vraie pour un k ∈ N On peut alors redériver et obtenir

∀t > 0, φ(k+1)(t) = (− 1

t2
P ′k(1/t) +

1

t2
Pk(1/t)) e−1/t

Alors en posant Pk+1 =X2 (−P ′k + Pk), on a bien Pk+1 ∈ R[X] et la propriété H(k + 1) est vraie.
La récurrence est établie.
Par ailleurs φ est aussi de classe C∞ sur R−∗ à dérivée identiquement nulle
Par le théorème de limite de la dérivée, pour montrer que φ est de classe C∞ aussi en 0, il suffit

de montrer que toutes les dérivées ont une limite finie à droite et gauche en 0 et que ces limites
sont égales.

C’est le cas avec une limite nulle : évident à gauche et par croissances comparées à droite grâce
à la propriété H(k) pour tout k.

φ est de classe C∞ sur R

II C2 Vérifions que
∀t ∈ R, ψ(t) = φ (1 − t2)

En effet, si ∣t∣ ≥ 1,1− t2 ≤ 0 et φ (1 − t2) = 0 = ψ(t) et si ∣t∣ < 1,1− t2 > 0 et φ (1 − t2) = e1/(t2−1) =
ψ(t).

En conséquence, avec le II C1, par théorèmes d’opération,

ψ ∈ C∞

N.B. Il est important d’avoir le graphe de g en tête ≪ bump function ≫ en anglais, ≪ fonction
cloche ≫ en français. Cette fonction fait deux recollements C∞ en 1 et en −1 avec la fonction nulle.
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II C3 θ ∈ C∞ comme primitive d’une telle fonction. De plus θ′ est nulle sur chaque intervalle
] −∞,−1 ] et [1,+∞[ et donc θ est constante sur chacun de ces intervalles.

θ est constante sur ] −∞,−1] et sur [1,+∞[

Par théorème fondamental,

θ(x) = ∫
x

0
ψ(t)dt

et les constantes sont

A = −∫
0

−1
e

1
t2−1 dt et B = ∫

1

0
e

1
t2−1 dt

Dans les deux cas, on intègre une fonction continue positive non nulle et les intégrales sont > 0.
Ainsi

A < 0 < B
et les constantes sont en particulier différentes.

Là encore, on peut tracer le graphe de θ (fonction de raccord)

II C4 Une première normalisation de h pour régler les deux ≪ hauteurs ≫.
Notons h1 = ψ−A

B−A
: c’est une fonction de classe C∞ sur R, nulle sur ] −∞,−1 ] et valant 1 sur

[1,+∞[. h1(2x + 3) vaut 0 si x ≤ −2 et vaut 1 si x ≥ −1.
Donc le graphe est sensiblement le même que h mais les deux phases ≪ plateaux ≫ sont aux

valeurs 0 et 1.
Notons h2 = ψ−B

A−B
: c’est une fonction de classe C∞ sur R, nulle sur [ 1,+∞ [ et qui vaut 1 sur

] −∞,−1 ]. h2(2x − 3) vaut 0 si x ≥ 2 et vaut 1 si x ≥ 1.
Cette fois pour h2 les plateaux sont ≪ inversés ≫

Voici un schéma avec h1 et h2 (pas très bon, les raccords sont bien C∞ alors que le dessin semble
faire des points anguleux).
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La fonction ρ = h1h2 est nulle hors de ]−2,2 [ et vaut 1 sur [ −1,1 ]. Son graphe est assez proche
se lit directement sur le graphique précédent car lorsque h1 = 1, ρ = h2 et inversement !

Il existe ρ ∈ C∞(R), constante égale à 1 sur [ −1,1 ] et constante égale à 0 sur R/[−2,2]

II.D -Inégalités de Bernstein

II.D1 Par définition, comme ρ est nulle en dehors de [−2,2]

r(x) = 1

2π
∫
+2

−2
eixξρ(ξ)dξ (†)

On utilise le théorème sur le caractère C1 des intégrales à paramètres.
(H0) Pour tout x, ξ ↦ eixξρ(ξ) est continue sur le segment et donc intégrable sur ce segment.
(H1) Pour tout ξ ∈ [−2,2], x ↦ eixξρ(ξ) est de classe C1 sur R de dérivée x ↦ iξeixξρ(ξ). -

Pour tout x, ξ ↦ iξeixξρ(ξ) est continue.
(H2) Pour tout x ∈ R et ξ ∈ [−2,2],

∣iξeixξρ(ξ)∣ ≤ 2∥ρ∥∞,[−2,2]

et la fonction constante égale à 2∥ρ∥∞,[−2,2] est intégrable sur le segment [−2,2], indépendante de
x.

Donc par théorème :

r ∈ C1(R) et ∀x ∈ R, r′(x) = i

2π
∫
+∞

−∞

ξeixξρ(ξ)dξ

II. D2 Utilisons à nouveau l’expression (†) ci-dessus de r. Par deux intégrations par parties (sur
un segment) et comme ρ et toutes ses dérivées sont nulles en 2 et -2 , on trouve

2πx2r(x) = i∫
+2

−2
xeixξρ′(ξ)dξ = −∫

+2

−2
eixξρ′′(ξ)dξ

et ainsi

∣x2r(x)∣ ≤ 1

2π
4 ∥ρ′′∥L∞([−2,2])

x↦ x2r(x) est bornée sur R

r est continue sur R et les seuls problèmes d’intégrabilité sont au voisinage des infinis. En notant
M un majorant de x2r(x), on a ∣r(x)∣ ≤M/x2 qui prouve cette intégrabilité par comparaison aux
fonctions de Riemann.

r est intégrable sur R

Enfin, on a ∣r(x)∣ ≤ 2
π
∥ρ∥L∞([−2,2]) et

r est bornée sur R

II D3 Commençons par le cas λ = 1. Les fonctions f et r vérifient les hypothèses de la question II B
et on a donc

f̂ ∗ r = f̂ r̂
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Par ailleurs, le second résultat d’inversion de Fourier fourni par l’énoncé donne

ρ = r̂

et r̂ est donc égale à 1 sur [−1,1]. Ainsi, f̂ r̂ est égale à f̂ sur [−1,1] mais cela est aussi vrai ailleurs

(où il y a nullité). On a donc f̂ ∗ r = f̂ r̂ = f̂ et donc on a montré que

f ∗ r = f

par la formule d’inversion de Fourier donnée par l’énoncé.
Pour un λ > 0 quelconque, on remarque que (changement de variable u = λt )

f ∗ rλ(x) = ∫
+∞

−∞

f(x − t)r(λt)dt = 1

λ
∫
+∞

−∞

f (x − u
λ
) r(u)du = 1

λ
(f1/λ ∗ r) (λx)

Or, f̂1/λ(x) = λf̂(λx) est nulle en dehors du segment [−1,1], intégrable sur R et f1/λ ∈ L1(R) ∩
C1(R). On peut donc, avec le premier cas, affirmer que f1/λ ∗ r = f1/λ. Ainsi

f ∗ rλ(x) =
1

λ
f1/λ(λx) =

1

λ
f(x)

f = λf ∗ rλ

II D4 En dérivant le résultat de la question précédente et en appliquant la question IC2) (avec r
et r′ bornées) :

f ′ = (λf ∗ rλ)′ = λf ∗ (rλ)′

Et en appliquant le IA 1)
∥f ′∥

∞
≤ λ∥f∥∞ ∥(rλ)′∥1

Il suffit alors de remarquer que

∫
∞

−∞

∣(rλ)′ (x)∣dx = ∫
∞

−∞

∣λr′(λx)∣dx = ∫
+∞

−∞

∣r′(u)∣du

pour conclure que
∥f ′∥

∞
≤ λ∥f∥∞ ∥r′∥1

ce qui donne bien l’inégalité de Bernstein avec C = ∥r′∥1 indépendant de f .
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