DM 9 : Mines PC 2022 solution |

Q 1) a) Avec d’Alembert, pour a, = 1/n, comme a,1/a, —> 1, on sait que le rayon de Cv de
n—+oo

> 2" [n est égal & 1.
b) Si z est un réel z €] — 1, 1[, on sait d’apres le cours que :

+o00
Vee]-1,1[, -In(1-2) =) a"/n=L(x).
n=1
Ce résultat de cours s’obtient par Intégration terme & terme & partir du D.S.E. de 1/(1 - x),
ITT possible par convergence uniforme sur tous les intervalles [0, ] (resp. [z, 0]) pour |z| < 1.

+oo n

Q 2) Pour tout ¢t € [-1,1], [tz] <|z| < 1 donc la série ) [tz|"/n est convergente et @ : ¢~ > g
n=1 1

est la fonction somme d’une série entiere de rayon de convergence 1/|z| donc par le cours elle

est C*° sur ] —1/|z|,1/]z|[ et en particulier sur [-1,1] et la dérivée se calcule par dérivation

terme a terme :

z
1-2t

+o00 +oo
Vie[-1,1], ®'(t) = Y z"t" =2 > (2)" ' =
n=1 n=1

Q 3) N.B Le programme de lére année dit que :

Propriété : si ® : I cR — C est dérivable, alors la fonction ¢ — e®®) est dérivable sur I,
de dérivée t — @' (t)e®®.

vous pouviez donc laffirmer directement.

Par contre vous ne devez pas invoquer théoréme de composition des fonctions dérivables avec

la fonction exp : C - C car le programme ne dit rien sur la dérivation par rapport a une

variable compleze , mais si on écrit ®(t) = a(t) +ib(t), alors e®® = (") (cos(b(t)) +isin(b(t))

et sous cette forme on peut appliquer les théorémes de compositions (c’est la preuve du

théoréme encadrée que vous avez faite en premiére année).

Une autre fagon, plus conceptuelle, en 2eme année de démontrer cette propriété est d’appli-

o(t)" e L, B(t)" T
dont la série dérivée > @ (t)m

converge normalement sur [0, 1] puisque les fonctions ® et &’ sont bornées sur [0, 1] et donc

quer le théoreme de dérivation terme a terme pour Z

ot M
D' (¢ <M T.G.S.C. O
| ()(n—l)!| 1(n—l)!
Ici donc Vte [0,1] d (M) = @' (1)e®®,

, —
dt
Par théoréme sur la dérivée d’un produit de deux fonctions & valeurs complexes :

)
VEe[0,1], W'(t) = —2e®® + (1 -t2)®'(¢)e®® : (—z +(1-t2) x %) e®® -
—tz

Ainsi U est de dérivée nulle sur I'intervalle [0,1], donc ¥ est une application constante. On
détermine la valeur de cette constante grace a une évaluation en t =0 :

W(0) = (1-0x z)ek02) = L0 © 0 _q
Ainsi :
vte[0,1], W(t)=1

En particulier, pour ¢t = 1, on a ¥(1) = 1, c’est-a-dire, en remplacant ¥(1) par son expression
explicite :
(1-2)exp(L(2)) = 1
et donc : )
exp(L(2)) = T
-z



Q4)

Q5)

Q 6)

Soit z € D, on a |z] € [0, 1],

+oo om +00 |Z|n (+)
L)l =2 =< X === ~In(1-|z]),
n=1 1 n=1 T

avec (*) vraie d’apres la question 1.
Ceci démontre I'inégalité qu’on demandait.
Or, si z € D, alors 2™ € D pour tout n € N*, donc :

VneN" O0<|L(z")|<-In(1-[z"])==In(1-]2") (*x)
Montrons que la série 3, —In (1 - |2|™) converge. On a : |z|" —— 0, car |z| < 1, et donc :
n—+oo
“lIn(1-2[") ~ |7*>0.
n—+oo

donc par théoréme sur les équivalent pour les séries & termes positfifs, —In (1 - |2|™) est terme
général de série convergente, et par la majoration (**) c’est aussi le cas de |L(z™)].
L’exponentielle ne s’annule pas sur C, donc : P(z) := exp [Z;f’l L(z")] #+ 0. De plus, pour
tout entier N >1 on a:

N N N 1
eXP[Z_;L(zn)]:ItIleXp(L(z")):lj[ll_Zn, (1)

la derniere égalité étant donnée par la Q3.

Quand N — +o0, le membre de gauche tend vers P(z), par définition de P et continuité de
I’exponentielle sur C. Par conséquent :

1
1-27

N
P(z)= lim []

N—+oo n=1

+00 too

Par la déf de P(z) = exp( Y. L(2™)), appliqué a z = e* €]0,1[, P(e™")) = exp( Y L(e™™))
n=1 n=1

avec une exp réelle, dont le In est la fonction réciproque, donc

V t>0, In(P(e™)) = f L(e™™).

et par le résultat rappelé au 1) sur la fonction L en variable réelle :
+ 00
V ¢t>0, In(P(e?)) ==Y In(1-e)
n=1

On sait que la fonction « partie entiére » est continue par morceaux. La fonction ¢ est somme
de fonctions continues par morceaux, donc elle est continue par morceaux sur R. De plus la
fonction partie entiere vérifie : Vo e R,|z+ 1] = |z| + 1, donc :

VreR, q(w+1):(ﬂc+1)—[x+1j—%:x+1—[xJ—1—%:x—[mj—%:q(x),

donc ¢ est 1 -périodique.

Remarque : lafonction 1-périodique x — x—|z| s’appelle aussi fonction « partie décimale » ou
« partie fractionnaire ».

Tl reste & montrer que la fonction |g| est paire. Comme g est 1 -périodique, il suffit de démontrer
que |g(z)| = |¢(—z)| pour tout = € [0,1[. Pour x = 0, il est évident que ’égalité est vraie, et
on ne considére donc que x €]0,1[. Or, pour un tel z, on a plus simplement : g(x) = z - %,
et:g(-a)=-2-(-1)-4=-x +% (car : -1 < -2 <0 ). Afin de simplifier |g(z)| et |¢(-z)|, on
traite deux cas :



— size [0 %], alors q(z) ==z —% 0et g(-2) = -z +% > 0, donc dans ce cas : |g(z)| =

—q(2) = —w+ 5 = q(-) = |¢(-2)|;

—size[d 1[, alors q(z) =x -3 2 0et g(-x) = -z + 5 <0, donc dans ce cas : |q(z)| =

q(z) =z -3 = —q(-z) = |q(-2)|.
Y Y
/ /yq 5 \/y‘Z(IN
\ \ T —
e - b

Dans tous les cas, on a |¢(x)| = |¢(-x)|, pour tout z €]0, 1[, et donc pour tout z € R d’apres la
réduction expliquée ci-dessus. Ainsi |g| est bien une fonction paire, ce qu’il fallait démontrer.

Q 7) Soit ¢ > 0. L’application u — %
quotient de fonctions continues dont le dénominateur ne s’annule pas (en fait |¢| est méme
continue comme on le voit sur le graphe ci-dessus).

Etudions I'intégrabilité au voisinage de +oo : Pécriture explicite donnée Q6 montre que |q(z)| <
% pour tout z € [0,1], et donc pour tout x € R par 1 -périodicité. Par conséquent, pour tout
u>1lona:

est continue par morceaux sur [ 1,+0o0 [ en tant que

2 q(u)
etu — 1| "

2
Ly

0<|u
h 2€tu—1u—>+oo

~ u?e”™ ——— 0 (théoréme des croissances comparées). On en déduit :

u—>+00 u—>+00
q(u) | _ i)
etu — 1| u—>O+oo(u2 ’
(u)

Par comparaison a ’exemple de Riemann, on conclut que u — eqtu_l est intégrable sur [0, +oo[
d’on le résultat, pour tout ¢ > 0.

. ey
puisque : g

Q 8) Avec la définition de ¢, on sait que :

f”ﬁdu-/ s
1 u 2

(n-1)- f (IR ln(n) 2)

En découpant I'intégrale restante

/j%du _ ’;/“kdu_yik(m(ku) In(k))

Z FIn(k+1) - i FIn(k) = Z(k—l)ln(k)—nz_:lkln(k)
k=1 k=2 k=2

n-1

(n-1)In(n) + Z ((k-1)-k)In(k) =nln(n) - Z In(k)
nln(n) - ln(n!) (3)

Avec (2) et (3) on a bien montré que :

f Q(U) (n—1) +In(n!) - ( %)ln(n)

ce qu'il fallait démontrer. La seconde égalité de I’énoncé s’obtient en écrivant : n = In(e™),

et: (n+3)n(n)=In (n”*é) =In(n"/n).



Q 9) Soit z au voisinage de +oo0. On a :

(u)

e 0 uéﬁj?iln(fij)

Orona:z-1<|z] < donc: 1-+ < [IJ 1. Par le théoréme des gendarmes : lim, 4 oo lmj =1.

Et donc, par continuité du logarithme : lim,_, ;0 In ([I—J) =1In(1) = 0. L’encadrement ci-dessus
donne donc, par le théoreme des gendarmes :

fq(“)d 0

n—+oo

Voyons comment en déduire, avec la Q8, que l'intégrale [1+°° % du converge. D’abord,
notons que la question précédente permet de démontrer que la suite ( fln % du) , converge,
nz

puisque par la formule de Stirling :

|Pd
n.e . \/—
W e

et donc, par continuité du logarithme :

Q(U) In(27)
f ‘1( \/‘) Lo 2 7t

Alors, pour tout réel x au voisinage de +oo, on se ramene au cas d’un parametre entier avec

la relation de Chasles :
[ q(u) du:/ q(u) du+f q(u) 4
1w 1 U lz]

9. Soit z au voisinage de +o0. On a :
ool f790 ¢ [l g, 3 e Ly ()
lz] u 2z w2 |z |

Orona::z:—1<[xjgx,donczl—l<[;c—J

l=]

< 1. Par le théoreme des gendarmes : limg 100 .~ = 1.

Et donc, par continuité du logarithme : limg,_, ;o In (L%J) =1In(1) = 0. L’encadrement ci-dessus
donne donc, par le théoreme des gendarmes :

tm " 1) 4=
lz] w

Tr—>+0o

Voyons comment en déduire que 'intégrale f1+°° % du converge. D’abord, notons que la

question précédente permet de démontrer que la suite ( fln @ du) , converge, puisque par
nz

la formule de Stirling :

|
lim nte” =V2r

n—+oo nn\/_

et donc, par continuité du logarithme :

n 1o,
[ q(u) du < ln( nle ) 4 In(2m) 1
1w n"\/n n—+oo 2

Alors, pour tout réel x au voisinage de +o0, on se ramene au cas d’un parametre entier avec

la relation de Chasles :
[0 g [P g, a0
1 u 1 u lz]




Q 10)

Q 11)

Comme |z € N tend vers I'infini quand x — +o0, ce qui précéde montre que, par composition
de limites : lim,_ ;00 flm % du = % — 1. La seconde intégrale a une limite nulle quand
r — +oo d’apres la résolution en début de question. Alors, en tant que somme de quantités

ayant une limite finie, on a :

lim fmw du=2Cm
1 U 2

T—+00

Ceci démontre que 'intégrale f1+°° ? du converge, et on a :

/1-+de”: lim /;zqgl—u)duzln(%-)—l

u T—>+00 2

Pour tout w >0 on a e ™ €]0,1 [, et donc, comme on I’a rappelé a la question 1 :

+006—/I'L'U,
-In(1-¢™)=
n(l-e™) 7; -

Nous allons en déduire 1’égalité de I’énoncé via une intégration terme a terme, que nous allons
justifier en vérifiant les hypotheses du théoréme d’intégration terme & terme de Lebesgue (ici
dans le cas des fonctions positives). Posons :

—nu

Vne N, Vu €]0, +oo,  fu(u) = <

—
Alors :

— pour tout n € N*, 'application f, est continue par morceaux et intégrable sur ]0,+oo[
(c’est une fonction intégrable de référence) a valeurs positives,

— la série de fonctions Y5, fn converge simplement sur ]0, +oo[ vers la fonction continue
par morceaux u + —In(1-e™)

D’apres le théoreme d’I.T.T. de Lebesgue dans le cas positif, on a I’égalité, dans [0, +oo].
400 +00 +0o 400
f Z fr(u)du = Z f Sfn(u)du
0 n=1 n=170

o 1 o
Or [ fu(u)du = — pour tout n € N*, Ainsi :
n

+0o0 ) pc | 7T2
“ln(l-e™)du=Y — =
[J n(l-e*)du nz:;nQ 5

d’ou le résultat demandé apres multiplication par -1 .

(M1) Suivant Uindication de ’énoncé, nous allons d’abord démontrer que 1’application g :
1-e™"
T —r

est décroissante sur R}. Elle est dérivable sur R} en tant que quotient de fonctions
dérivables dont le dénominateur ne s’annule pas, et on a :

er—(1-e®) (l+x)e -1

Ve eR], g'(x) = 72 2

Or, par convexité de I’exp. on sait que

VeeR, e“21+x (**)

et donc: Vo e RY, 1> (1+x)e ™ ce dont on déduit : Vz € R}, ¢'(z) < 0. Ainsi g est décroissante
sur R}.

Ainsi g est décroissante sur R}, donc Inog également (on a bien g > 0 sur R}, étant donné
que e”* < 1 pour tout = € R}, donc la composition avec le logarithme est bien définie).



On en déduit :
vt €]0,1],Vu€]0,1], In(g(t)) <In(g(tu)) < 1i5nln og.

La limite du membre de droite existe bien (et est finie), puisque pour tout z au voisinage de
0:

X
~ T
g(‘r) w_}()xa:)) )

donc : limglnog = In(1) = 0. Ceci démontre en passant que la fonction lnog se prolonge par
continuité sur le segment [0,1], et donc qu’elle est intégrable sur 0,1 |. Intégrons I'inégalité
cidessus sur ]0,1 ], pour obtenir :

vt €]0, 1], [Olln(g(t))dugfolln(g(tu))deOlO du

c’est-a-dire : )
vie]o,1], In(g(t)) < f In(g(tu))du <0
0

Comme on I'a vu ci-dessus, on a : limy;.gln(g(¢)) = 0. Par conséquent, par le théoreme
des gendarmes, cet encadrement démontre qu’on a : lim_,g+ fol In(g(tu))du = 0. On a donc

démontré :
1 1 _ e—tu
lim In ( ) du=0
0

t—>0+ tu

1 1- -tu 1 1- —tu 1
vt >0, f ln( c )du = f ln( c )du+ f In(u)du
0 t 0 tu 0

donc : limy_,g+ [01 In ( 1_‘3;” ) du = fol In(u)du = [uln(u) —u]} = -1. En conclusion :

1 _ —tu
lim In ( 1-e¢ ) du=-1
0 t

t—0+

(M2) (D’aprés une bonne idée d’Anais qui voulait utiliser un équivalent , avec un chan-
gement de variable et le théoreme d’intégration des relations de comparaison qui n’est pas
au programme de PC d’ou l'indication je pense. En fait on a besoin d’un peu plus qu’un
équivalent, d'un DL & deux termes.)

folm(l‘e_tu)du:follnu-e-t“)du-folln(t)du:f011n(1—e—f“)du-1n(t) (4)

t

1
L’existence de ces intégrales est assurée si on montre que f In(1 - e "™)du existe bien.
0

Or pour chaque t > 0, la fonction u = In(1-e™**) est continue sur ]0,1] et en 0,
In(1-e) = In(tu + o(u)) = In(u) + In(t + o(1)) o In(u) = o(1/+/u) donc la fonction est
intégrable par comparaison a I’exemple de Riemagn.

Par changement de variable v = tu, donc dt = dv/u, on a :

1 t
f (1 - e ") du = © f In(1 - e™*)dv (5)
0 t Jo

OrIn(1-e™) =In(v+0(v?)) =In(v) +In(1 + O(v)) = In(v) + Oo(v) et v e [0,t] est de signe
V>

constant donc par théoreme d’intégration des relations de comparaison, appliqué aux restes

d’intégrales convergentes, on a :

fo a1 - e )do - fo “n(v)d + 0,(#) =tn(t)~t+ O (&) (6)

Avec (6) dans (5) on a :

fo In(1 - e)du =In(t) =1+ O (1) (7)



Q 12) Soit k € N*. On note que uy, est une intégrale & parametre. Montrons donc sa continuité sur

Q 13)

R, en utilisant le théoreme de continuité des intégrales a parametres. Posons :

tq(u) ;

sit>0
xRy, wvp(u,t)=1 er=l
] o Ok ){“ sit=0

k k+1

V(ut) e [ .

Alors :

(HO) pour tout ¢ € R, Papplication u — vg(u,t) est continue par morceaux sur [%, %] (car

on a vu que ¢ est continue par morceaux sur R).

(H1) pour tout u € []2“, ]”1] la continuité de 'application ¢ — vy (u,t) est évidente sur R} en
tant que quotient de fonctions continues dont le dénominateur ne s’annule pas, et on
vérifie qu’elle est continue en 0 également par un calcul de limite :

ta(w)  ta(w) _ a(u)

etv —1 t-0 tu t—0

= v (u,0)

donc t — vg(u,t) est continue sur Ry ;

(H2) pour tout (u,t) e[, E2] xRy, ona:

la(u)l.

|Uk(u7t)| <

en effet, pour ¢t = 0 c’est évident, et pour ¢ > 0 on utilise ( ** ) (question précédente)
pour obtenir :
kE k+1

et —1

tu

1

Vv

V(u,t) € [ ]xRi,

et donc :

O L P SR COI TR (L}

L’application ¢ : u — |q(5)| est continue par morceaux sur le SEGMENT [k kgl] si

k>0, donc elle y est intégrable. L’hypotheése de domination est donc bien vérifiée.

On en déduit, par le théoreme de continuité pour les intégrales a parametre que 'application

ug te f(k+1)/2 v (u, t)du est continue sur R, : d’on le résultat.

Soit k € N*. Comme e,f—_l > 0 pour tout u € [g, ﬂ] le signe de l'intégrande de ux(t) ne

dépend que du signe de ¢. Or I'expression de la fonction ¢ montre que :
<0 izel0, 1
vrefor, (U0 <0 srelds]
q(z) >0 size[l 1]
Par 1-périodicité de ¢, on a donc :

k k+1[’ q(m):{—lq(fc)

| <0 sik est pair,
Vo 6]73 . . .
|g(x)] > 0 si k est impair.

27 2

J’exclus les bornes pour éviter les distinctions de cas fastidieuses, et inutiles (car lintégrale
ignore les valeurs en les points isolés : il ne cotite donc rien d’étudier son signe en excluant
les extrémités de l'intervalle d’intégration). On en déduit d’une part :

k k+1

Vo e]-,

Sl @)= (0 )

et d’autre part que, par croissance de l'intégrale : ug(t) <0 si k est pair, et ug(¢) > 0 si k est
impair (on a en effet établi plus haut que le signe de 'intégrande est dicté par le signe de ¢
). On a donc aussi, pour tenir compte de cette distinction de cas selon la parité de k :

ur(t) = (=1)"* ug (1))



(On note une erreur d’énoncé concernant ’exposant de -1 ). La premieére égalité demandée
est alors immédiate :

+1)/2 k+1 U +1)/2 w
(9] = (D ) = [ R D) o, OO ] g,

etv — 1 /2 etv — 1

Tout ce qui précede démontre que la série ;51 ug(t) est alternée : montrons qu'il s’agit d’une
série alternée spéciale autrement dit que (|ug|)gen tend vers zéro en décroissant.

— pour tout entier k> 1, on a :

e (8)] = s (£)] = f“mmM du— f‘k”)/g tla( | 4,

k/2 etv —1 (k+1)/2  etv -1

(k+1)/2 t|q(u)| (k+1)/2 t|q(k‘ +1- U)|
[/2 v—1 du- fk/Q de (v=k+l-u)
(k+1)/2 tlQ(U)l (k172 tlq(v)] . .
= /;/2 o du - /];/2 s e — dv  (|g|1-pér. et paire )
~ (k+1)/2 . 1 1 4

20
20

>0,

le signe du terme en facteur de ¢|q(u)| découlant du fait que Papplication u e,u—l_l soit
clairement décroissante (on a u < k+ 1 —u pour tout u € [g, %] ) ; ceci montre que la
suite (Jux(t)|);5; est décroissante

— pour tout entier k> 1, on a :

=0

(k+1)/2 t du G 1 pEED/2 dy 1. (k+1 In(1)
<< [, <3 <L-Sh —
2 k/2 u 2 k k—too 2
donc par le théoreme des gendarmes : limg_, ;oo [ug ()] =0
Ainsi par le théoreme des séries alternées spéciales, la série Y .; uk(t) converge (ce qu’en
fait, on pouvait déja déduire de la question 7), et son reste est majoré en valeur absolue par

son premier terme :
1 +1 1 1
§|un(t)|<fln(n ):fln(1+f).
2 n 2 n

+o00

> ui(t)

k=n

Vn e N*,

Or, on sait que pour tout entier n > 1 :

donc :
* oy 1
VneN ];Luk( SS90
d’on le résultat.
Q 14) De la question précédente, il résulte que :
+00
Vn e N*, k:Z;zUk ws%n:;o

ce qui démontre que le reste de la série de fonctions Y., uj converge uniformément sur R, vers
la fonction nulle, et donc la série de fonctions ;.5 u; converge uniformément sur R,. En
tant que limite uniforme de fonctions continues sur R (question 12), la somme 3% uy est
continue sur R, . La continuité sur R,implique en particulier que, quand ¢ - 0%, on a :

+o00 +o00

Jim 3 i (1) = 3 i (0)

k=2 k=2



Q 15)

Q 16)

Or, par la relation de Chasles :

) oo~ (k+1)/2 q(u) e tq(u)
Vie R}, Zukt)—Zf otu _ 1 d“‘fl mdu
k=2

k=2

et, par le méme argument :
q(u
Z uy(0) = f (

Le calcul de limite ci-dessus se réécrit donc ainsi :

v tq(u) o f+°° q(u) , 1a9) (27m)
1 U 2

lim
t—0+ J1 etv — 1

d’ou le résultat.

Soit ¢ > 0. Sur chaque intervalle [k, k + 1[, sachant que pour w € [k, k+1[ q(u) = u+k-1/2,
k+1
on fait une I.P.P. dans f tq(u)
k

etu —

{v'(u) = etut_ 1< v(u) =In(1-e7™)

du en posant

w('u) =q(u) = w'(u) =1

ce qui donne sachant q(u) (T> 1/2 et q(u) —1/2 que :
u—>

k+1 t 1 k+1
fk q(u) du = E(ln(l —e DYy (1 - e7F)) - [k In(1 - e ™)du

etv -1

En sommant ces intégrales, par relation de Chasles, on obtient :

+oo ¢ ]_ +oo 1 +oo +o00
[ a(w) du = Z In(1 - e~ kDt 4 5 > In(1- ekt - f In(1-e™)du
1 = 1

etv -1
+oo 400
= —Eln(l—e_t)+Zln(l—e‘kt)—f In(1-e")du
k=1 1

en regroupant les deux sommes.

+0o
Or par la Q5, ). In(1 - e™*) = —In(P(e7") donc on obtient bien
k=1

+00 tq(u) 1 B _ +o0 tu
fl etu_ldu:—gln(l—et)—ln(P(e t))—fl 1n(1—et)du
Ainsi pour ¢ > 0
()= [T g et - [T e du

On regarde chaque terme :
e In(1-e) o In(t+0(t?)) =In(t) +In(1+ O(t)) = In(t) + O(t) = In(t) + o(1).

e Avec la question 14 : [~ Z%“i w = % ~1+0(1).
oo 1 oo
e Aveclaquestion 10: [/" In(1-e™)du = ;f; In(l-e?)du= _ﬁ_,fo In(1-e?)dv
v=tu

On a établi : In(1-e7") = In(v) + O(v), donc avec ce majorant v > 0 par intégration
v—>0*

des O() appliquée aux restes d’intégrales convergentes, on a :

fotln(l—e_”)dv = fotln(v)dv+0(/0tvdv)

tln(t) —t+O0(t%)

In(27) 1n(t)
2

On regroupe tout : In (P (e_t)) =1- + Ty ln(t) —1+0(1) et finalement :
In(27) ln(t)

ln(P(e_t)):—72 + 9 +§+ o(1).




C. Développement de P en série entiere

Q17)

Q 18)

Soit N € N*. (i) Tout d’abord, P, n est non vide, puisque (n,0,...,0) € P, n.
(ii) Justifions que P, n est inclus dans [0,n]" : soit (a1,...,an) € P, n. Alors pour tout
Le[1,N], ar>0et

n
n= Zkakzﬁag>ag.
k=1

d’ou l'inclusion demandée.

(iii) Montrons que la suite (pn,n) y5, est croissante; pour cela, il suffit de montrer qu'il existe
une injection de P, x dans P, n.1 pour tout N € N*. Il suffit de considérer ’application :

Pn,N - Pn,N+1

q)n,N:
{(al,...,aN) — (a1,...,an,0),

Ceci vaut pour tout N > 1, donc la suite (pp,n) N1 €st croissante.

(iv) Il reste a justifier qu’elle est constante & partir du rang ng = max(n, 1) :

e si n =0, alors on a clairement pg xy = 1 pour tout N > 1 = max(n,1), vu que I’égalité
0=3Xn, kay, impose : Vk € [1,N],az = 0 (somme de réels positifs).

e Supposons a présent n > 1. Montrons :

VN 2max(n,1), pn.nN =DPnN+1

Pour cela, il suffit de démontrer que I'application ®,, x ci-dessus, en plus d’étre injective, est

surjective. Soit, donc, (b1,...,bn,bns1) € Pp w41, on va montrer que le dernier coefficient
bn+1 est nul. On a en effet, comme (by,...,bn,bn+1) € Py N1 ¢
N+1 N
n= Z k‘bk = (N+ 1)bN+1 + Z k‘bk
k=1 k=1

Or N +1 >max(n,1) +1>n+1>n. Par conséquent, si par {’absurde b1 # 0, alors by, > 1
(c’est un entier naturel), et donc on aurait :

N
TL=(N+1)bN+1+Zkbk2(N+1)bN+12N+1>n.

Contradiction. Ainsi by 41 =0 et ®,, v est bijective d’ou I’égalité des cardinaux demandée.

Pour z€ D on a |zN| <1 donc : ﬁ =212 2NF. On a donc le résultat voulu avec :
an,N = 0sin n’est pas un multiple de N et a, y =1 sinon.

Soit z € D. Appelons H(N) la propriété : [la série Y, pp, nv2" est absolument convergente et
H;c\il ﬁ = Z:L:E)pn,Nzn]v
e Pour N=1:o0na P,; ={(n)} donc p,1

=1 et la série Y 51 Pn,12" est absolument
convergente de somme 7% p,, 12" = $5%0 2" = L

7, donc H(1) est vraie.
e Supposons H(N) vraie pour un N > 1. On a alors :

N+1 1 +oo +oo
i (S (B
-z n=0 n=0

k=1

Les deux séries sont absolument convergentes : celle de gauche par hypothese de récurrence et
celle de droite car c’est la série géométrique de raison |zN | < 1. Donc par produit de Cauchy :

N+1 1 too [
H 1_Zk: = Z (Zpk,Nan—k,N+1)Zn

k=1 n=0 \ k=0

10



Q 19)

Or on a la réunion disjointe :

N+1
1
PN = {(ahm,az\ru) eN™1 5" kay, = n}
k=1

N
= U{(al,...,aN,i)7(a1,...,aN)ENN et Zkak:n—(N+1)i}
ieN k=1

Or pour i e N :

O0sin—-(N+1)i<0

N
card{(a1,...,an,i),(a1,...,an) e NV et kap=n-(N+1)i; = .
{( 1 N ) ( 1 N) Z k ( )} {pn—(N+1)i S1non

k=1

Ainsi :
n
Pn,N+1 = Z Pn—(N+1)i,N = ij,Nan—j,N+1
0<i<n/(N+1) Jj=0

ouonaposé j=n—-(N+1)i:je[0,n] et le terme p; y est neutralisé par a,—; y+1 lorsque
n — j n’est pas un multiple de N + 1 . Finalement on a bien H,Icv;ll ﬁ = Y PnN+12" et
H(N +1) est vraie.

La récurrence est établie.

Pour comprendre comment la fonction P de la premiere partie arrive ici, il faut se souvenir
qu’a la Q5, on a montré que pour tout z € D,

+00 N
P(2) = g o Ni+oo£[1 o produit convergent

Or par la question précédente :

N 1 +o0
H 1 n an,NZ
n=117% n=0

Pour z =z € [0, 1] réel, pour tout n € N, > 1, donc pour tout N € N*;

—37”_

autrement dit .
VNeN, 0< Y pyna™ < P(x) < +o00
n=0

En particulier,
N

VNeN, 0< ) ppna" < P(z)<+o0
n=0

Mais on sait que pour N >n, p, v = pn, donc

N
VNEeN,0< ) ppa” < P(z) < +00

n=0

Ceci montre que pour tout x € [0,1[, la série Z pnx”™ converge, donc que le rayon de
convergence de Y p,z" est au moins de 1. D’autre part pour z = 1 la série Y p, diverge
grossierement car p, > 1 pour tout n.

Donc le rayon de convergence est exactement 1.
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Q 20)

Q 21)

Soit N € N* On rappelle que d’apres la question 17 , on a p,, = p, y pour tout n < N donc

+o00o +o00 +o00
Y pnz" = Y PNzt = Y, (pn—pan) 2" (8)
n=0 n=0 n=N+1

On a donc, d’apres I'inégalité triangulaire, et du fait que p, > p,,n €t p,.n > 0 pour tout
nelN:

+o00o +o00 +00 +0o +oo
Yopn2" = Y a2t <Y pn—panl 2" = Y, (Pa—pan) M <Y palz”
n=0 n=0 n=N+1 n=N+1 n=N+1

Comme |z| < 1, d’aprés la question précédente la série Y,,5o pn|2z|[" converge, donc son reste
converge vers 0, autrement dit :

+o00
lim Y pafe]" =

N—+oo n=N+1

Et donc, par la majoration (8) :
+ 00
lim Z P, NZ" Z Pz
N —+o0 n=0

Mais on a aussi :

= . &l @
lim Z Pn. NZ (q:18) lim H - - (q:5) P(Z)
—zk

N—>+oo — N—+oco0 k=1

Donc, par unicité de la limite :
+ 00
P(Z) = Z pnzn
n=0

N.B. On a enfin justifié ce qui était annoncé au début du sujet. La fonction P est la somme
de la série génératrice associée a la suite (p,). Depuis Euler on sait qu’on peut apprendre
beaucoup sur une suite via cette série génératrice

Il s’agit en fait d’'un résultat tres standard de récupération des coefficients d’'un D.S.E d’une
fonction z + f(z) comme les coefficients de Fourier complexe de 8 ~ f(re®?). Icile e permet
juste d’assurer que 0 — e te’ = e’ avec r < 1.

Précisément : pour ¢ >0 on a :

[ —1n0P oif d& f Zpkei(k—n)e—kt a0

T k=0

i(k=n)6- kt| =pre Pt et et e [0,1[ et on a vu que la série entiere Y, prx® est de rayon

—kt

Or |pke
de convergence 1. Donc la série numérique Y, pre™"" converge et la série de fonctions (de la
variable 0 ) ¥, pre'* ™97kt converge normalement sur le segment [, 7).

Donc par Intégration Terme & Terme sur un segment,

fﬂe—inep(e—teiﬁ)da Zpke ktf oi(k=n)0 49

k=0 “

Oor [T dFm099=0 pour k*n et Ja. elk-m)0q9 = 21 sinon. Il reste donc :

™ . .
f e—mGP (e—teu‘)) de = 27Tpne—nt
=T

et finalement :

nt T . . ntP —t - _imgP —t i6
pn:L[ e_maP(e_te‘g)deze (e )f N (e )d9

2T T 2 T P (e*t)

en multipliant en haut en bas par P(e™") suivant la fantaisie de I’énoncé dont on se dit qu’elle
doit servir a qq chose plus loin.
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Q 22)

Q 23)

Q 24)

Avec la Q3, on sait que pour z€ D on a
1
. Z0)
-z

Comme z € [0,1[ on a z € D et ze'’ € D, donc 1 - = exp(~L(x)) et
Ainsi au total on peut écrire :

e = exp (L (2e)).

en passant au module

1 - _ 0
|| = e (Re (£ (w6) - £2)) 0
Or +oo xnelne +o0o o.m cos(n@)
Re(L(meg)) Re(z )=
n=1 n n=1 n
tandis que

n=1

ce qui dans (9) donne :

1-z °°cosn9 1
Or
zcos(rf)—lxn :a;(cos(&)_l)Jr:i(m(rf)—lxn
<0

d’ott Y723 M " < cos(f) - 1 et finalement : |1 Ie,9| <exp((cos(f) —1)x).

- Toujours sous les hypotheses de I’énoncé on a :

1 R ( 1 )_ 1 1-zcos(h) ~ 2?(1-cos(f)) +z(1 - cos(H))
1-z l-ze®) 1-2 1+22-2zcos(d)  (1-z)(1+x2-2zcos(h))
Le dénominateur est positif car 1+ 22 - 2z cos(@) = ’1 z,’ei0|2 et 22(1 - cos(f)) > 0. On a

z(1-cos(6)) il
= (1-z)((1-z)2+2z(1-cos(0)))

donc bien en réarrangeant le dénominateur : — — Re(1 melﬁ)

P(wei? (1
](D(Z)) < exp ( (171)((178232((91)7)008(0))) ) On suppose désormais que z € [1,1[.

-1 cas @ si (1-2)2 <z(1-cos(f))
Alors (1 - )2 + 22(1 - cos(0)) < 3z(1 - cos(f)) et sachant w < 0 on en déduit
‘PI(’JZZ;) eXp(3(11z))

- 21eme cag i si (1-2)2 > z(1 - cos())

Alors (1-z)%+2x(1-cos(f)) < 3(1-x)? et de méme

P
P(weie) 1—cos(60
Py | < eXp( o= r>3)))

s’en suit que

P(ee”)
(=)

—z(1-cos(f
Sexp(%) Or -z <-4

L’alternative de 1’énoncé est donc

ce qui permet de conclure : ‘

bien établie

- Regardons la fonction f: 0 — 1_%5(9) prolongée par continuité en 0 en posant f(0) = %;
alors f est continue sur le segment [—m, 7] et admet un minimum « = f (6y) sur ce segment.
Donc V@ € [-m, 7], f(#) > a. En outre pour § € [-7, 7] et § #0 on a 1 —cos(f) >0 et f(0) >0
et par ailleurs f(0) >0, donc a = f (6p) >0 et finalement :

On a bien trouvé a > 0 tel que Y0 € [-7, 7], 1 - cos(f) > ab?.
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Donc pour 0 € [-m, 7] et > % on a en reprenant ’alternative précédente :

P (ze') <exp( 1 )ou P (ze?) <exp(_(1_COS(9)))<eXP( —ab? )
P(z) |~ 3(1-x) P(z) |~ 6(1-z)3 |~ 6(1-x)3

Donc en particulier pour tg =1n(2) et t€]0,¢p] on ae e [%, 1[, donc 'alternative devient :
On rappelle que e* > 1 -t et donc que t>1—-e7? >0 donc :

P(e elo) _ab?
’ exp(G(l—et)S)
‘P(e elg) xp(_—l) ou ‘P(e_te‘(’) .

P(e e“g) <
P(et) |~

< exp (_1) ou
- 3(1-e?)

—ab?
Peh | S \% P(ct) ‘eXp( 613 )

. . 0 -
- Dans le premier cas, on utilise que Lr—‘ <1 pour écrire :

P (e 619) —|9|2/3 _3/2,\2/3 1
B A — (e -
‘ P(et) |=FP ( 3772/3t) <o e 5 - 372/
-t if _ -3/ 2
- Dans le second cas : ‘Pl(f(e,et)) < exp(’gg?) =e B(t%0) avec 3= ¢

On a donc bien les inégalités voulues.

e tel® 8320 _A(¢3/ /
Q 25) 25- On aainsi I'inégalité toujours valide pour 0 < ¢ < tg : PI()(e,t)) < o B(E20) (e R0)Ie
e tel? T e tel? T _g(+-3/20)* o (+-329))/3 3
De la : ’f e_lsTe PP(e_t))de <[ PIg(e_t))‘dﬁﬁfﬂr (e B(+%0) +e 2(#7%0)) )d9 On uti-

lise la parité (pour se débarrasser de la valeur absolue) et on fait le changement de variable
affine z = t73/20 :
3/2

- —t 119 _ ks T
/ e 2,‘9 P( d9 <2 f ( 3/29 + e_v(t 3/2‘9))2/%) de = 2t3/? / ' (e_ﬁg”2 + e‘”"”w) dz
-7 P(e t) 0

Par positivité de la fonction intégrée on a donc pour 0 <t <t :

T .29 P —toif ; 32
[ T Md& <232 f ’ (e_ﬂ"’c2 + e_WZ/S)dx
-7 P (e‘t) 0

L’intégrale résiduelle ne dépend plus de t et cette majoration montre donc :

™ a2 P(e7'e) 3/2
[ﬂe 6t 7P(e‘t) detij(t )

—W/meie)

i) nP e
i0 Mde = O (=3 )- Par ailleurs

comme ﬁ >0 on peut écrire (1) avec ¢ = Ton et on obtient :

Q 26) 26 - Comme lim,, ;oo f =0%n a donc [ e

S s I Gy

eIV p (V) 0 (L)

Pr= 27 N S T
On utilise alors la question 16 : P(e‘t) L e’ /Gt\/_m o (6”2/“\/%). Donc
() = ofer R

ex T 2.*”
On regroupe tout : p, = O (e%ﬁn/:/i"im) = O( p< n\/T) ) .CQFD.
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