
DM 9 : Mines PC 2022 solution

Q 1) a) Avec d’Alembert, pour an = 1/n, comme an+1/an Ð→
n→+∞ 1, on sait que le rayon de Cv de

∑ zn/n est égal à 1.

b) Si z est un réel x ∈] − 1,1[, on sait d’après le cours que :

∀x ∈ ] − 1,1[, − ln(1 − x) =
+∞
∑
n=1

xn/n = L(x).

Ce résultat de cours s’obtient par Intégration terme à terme à partir du D.S.E. de 1/(1− x),
ITT possible par convergence uniforme sur tous les intervalles [0, x] (resp. [x,0]) pour ∣x∣ < 1.

Q 2) Pour tout t ∈ [−1,1], ∣tz∣ ≤ ∣z∣ < 1 donc la série ∑∣tz∣n/n est convergente et Φ ∶ t↦
+∞
∑
n=1

zn

n
tn

est la fonction somme d’une série entière de rayon de convergence 1/∣z∣ donc par le cours elle
est C∞ sur ] − 1/∣z∣,1/∣z∣[ et en particulier sur [−1,1] et la dérivée se calcule par dérivation
terme à terme :

∀ t ∈ [−1,1], Φ′(t) =
+∞
∑
n=1

zntn−1 = z
+∞
∑
n=1
(zt)n−1 = z

1 − zt

Q 3) N.B Le programme de 1ère année dit que :

Propriété : si Φ ∶ I ⊂ R→ C est dérivable, alors la fonction t↦ eΦ(t) est dérivable sur I,
de dérivée t↦ Φ′(t)eΦ(t).

vous pouviez donc l’affirmer directement.

Par contre vous ne devez pas invoquer théorème de composition des fonctions dérivables avec
la fonction exp ∶ C → C car le programme ne dit rien sur la dérivation par rapport à une
variable complexe , mais si on écrit Φ(t) = a(t)+ib(t), alors eΦ(t) = ea(t)(cos(b(t))+i sin(b(t))
et sous cette forme on peut appliquer les théorèmes de compositions (c’est la preuve du
théorème encadrée que vous avez faite en première année).

Une autre façon, plus conceptuelle, en 2ème année de démontrer cette propriété est d’appli-

quer le théorème de dérivation terme à terme pour∑
Φ(t)n

n!
dont la série dérivée∑Φ′(t)Φ(t)

n−1

(n − 1)!
converge normalement sur [0,1] puisque les fonctions Φ et Φ′ sont bornées sur [0,1] et donc

∣Φ′(t)Φ(t)
n−1

(n − 1)!
∣ ≤M1

Mn−1
0

(n − 1)!
T.G.S.C.

Ici donc ∀ t ∈ [0,1], d

dt
(eΦ(t)) = Φ′(t)eΦ(t).

Par théorème sur la dérivée d’un produit de deux fonctions à valeurs complexes :

∀t ∈ [0,1], Ψ′(t) = −zeΦ(t) + (1 − tz)Φ′(t)eΦ(t)
(†)= (−z + (1 − tz) × z

1 − tz
) eΦ(t) = 0

Ainsi Ψ est de dérivée nulle sur l’intervalle [0,1], donc Ψ est une application constante. On
détermine la valeur de cette constante grâce à une évaluation en t = 0 :

Ψ(0) = (1 − 0 × z)eL(0×z) = eL(0) (∗)= e0 = 1

Ainsi :
∀t ∈ [0,1], Ψ(t) = 1

En particulier, pour t = 1, on a Ψ(1) = 1, c’est-à-dire, en remplaçant Ψ(1) par son expression
explicite :

(1 − z) exp(L(z)) = 1
et donc :

exp(L(z)) = 1

1 − z
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Q 4) Soit z ∈D, on a ∣z∣ ∈ [0,1[,

∣L(z)∣ = ∣
+∞
∑
n=1

zn

n
∣ ⩽

+∞
∑
n=1

∣z∣n

n

(∗)= − ln(1 − ∣z∣),

avec (∗) vraie d’après la question 1.

Ceci démontre l’inégalité qu’on demandait.

Or, si z ∈D, alors zn ∈D pour tout n ∈ N∗, donc :

∀n ∈ N∗, 0 ⩽ ∣L (zn)∣ ⩽ − ln (1 − ∣zn∣) = − ln (1 − ∣z∣n) (∗∗)

Montrons que la série ∑n − ln (1 − ∣z∣n) converge. On a : ∣z∣n ÐÐÐ→
n→+∞ 0, car ∣z∣ < 1, et donc :

− ln (1 − ∣z∣n) ∼
n→+∞ ∣z∣

n > 0.

donc par théorème sur les équivalent pour les séries à termes positfifs, − ln (1 − ∣z∣n) est terme
général de série convergente, et par la majoration (∗∗) c’est aussi le cas de ∣L(zn)∣.

Q 5) L’exponentielle ne s’annule pas sur C, donc : P (z) ∶= exp [∑+∞n=1L (zn)] ≠ 0. De plus, pour
tout entier N ⩾ 1 on a :

exp [
N

∑
n=1

L (zn)] =
N

∏
n=1

exp (L (zn)) =
N

∏
n=1

1

1 − zn
. (1)

la dernière égalité étant donnée par la Q3.

Quand N → +∞, le membre de gauche tend vers P (z), par définition de P et continuité de
l’exponentielle sur C. Par conséquent :

P (z) = lim
N→+∞

N

∏
n=1

1

1 − zn

Par la déf de P (z) = exp(
+∞
∑
n=1

L(zn)), appliqué à z = e−t ∈]0,1[, P (e−t)) = exp(
+∞
∑
n=1

L(e−nt))

avec une exp réelle, dont le ln est la fonction réciproque, donc

∀ t > 0, ln(P (e−t)) =
+∞
∑
n=1

L(e−nt).

et par le résultat rappelé au 1) sur la fonction L en variable réelle :

∀ t > 0, ln(P (e−t)) = −
+∞
∑
n=1

ln(1 − e−nt)

Q 6) On sait que la fonction ≪ partie entière ≫ est continue par morceaux. La fonction q est somme
de fonctions continues par morceaux, donc elle est continue par morceaux sur R. De plus la
fonction partie entière vérifie : ∀x ∈R, ⌊x + 1⌋ = ⌊x⌋ + 1, donc :

∀x ∈R, q(x + 1) = (x + 1) − ⌊x + 1⌋ − 1

2
= x + 1 − ⌊x⌋ − 1 − 1

2
= x − ⌊x⌋ − 1

2
= q(x),

donc q est 1 -périodique.

Remarque : la fonction 1-périodique x↦ x−⌊x⌋ s’appelle aussi fonction ≪ partie décimale ≫ ou
≪ partie fractionnaire ≫.

Il reste à montrer que la fonction ∣q∣ est paire. Comme q est 1 -périodique, il suffit de démontrer
que ∣q(x)∣ = ∣q(−x)∣ pour tout x ∈ [0,1[. Pour x = 0, il est évident que l’égalité est vraie, et
on ne considère donc que x ∈]0,1[. Or, pour un tel x, on a plus simplement : q(x) = x − 1

2
,

et : q(−x) = −x− (−1) − 1
2
= −x+ 1

2
(car : −1 < −x < 0 ). Afin de simplifier ∣q(x)∣ et ∣q(−x)∣, on

traite deux cas :
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— si x ∈ [0, 1
2
], alors q(x) = x − 1

2
⩽ 0 et q(−x) = −x + 1

2
⩾ 0, donc dans ce cas : ∣q(x)∣ =

−q(x) = −x + 1
2
= q(−x) = ∣q(−x)∣;

— si x ∈ [ 1
2
,1 [ , alors q(x) = x − 1

2
⩾ 0 et q(−x) = −x + 1

2
⩽ 0, donc dans ce cas : ∣q(x)∣ =

q(x) = x − 1
2
= −q(−x) = ∣q(−x)∣.

Dans tous les cas, on a ∣q(x)∣ = ∣q(−x)∣, pour tout x ∈]0,1[, et donc pour tout x ∈R d’après la
réduction expliquée ci-dessus. Ainsi ∣q∣ est bien une fonction paire, ce qu’il fallait démontrer.

Q 7) Soit t > 0. L’application u ↦ ∣ q(u)
etu−1 ∣ est continue par morceaux sur [ 1,+∞ [ en tant que

quotient de fonctions continues dont le dénominateur ne s’annule pas (en fait ∣q∣ est même
continue comme on le voit sur le graphe ci-dessus).

Étudions l’intégrabilité au voisinage de +∞ : l’écriture explicite donnée Q6 montre que ∣q(x)∣ ⩽
1
2
pour tout x ∈ [0,1], et donc pour tout x ∈R par 1 -périodicité. Par conséquent, pour tout

u ⩾ 1 on a :

0 ⩽ ∣u2 q(u)
etu − 1

∣ ⩽ 1

2

u2

etu − 1
Ð→

u→+∞ 0,

puisque : u2

etu−1 ∼
u→+∞ u2e−tu ÐÐÐ→

u→+∞ 0 (théorème des croissances comparées). On en déduit :

∣ q(u)
etu − 1

∣ = o
u→+∞(

1

u2
) .

Par comparaison à l’exemple de Riemann, on conclut que u↦ q(u)
etu−1 est intégrable sur [0,+∞[

d’où le résultat, pour tout t > 0.
Q 8) Avec la définition de q, on sait que :

∫
n

1

q(u)
u

du = ∫
n

1

u

u
du − ∫

n

1

⌊u⌋
u

du − 1

2
∫

n

1

du

u

= (n − 1) − ∫
n

1

⌊u⌋
u

du − 1

2
ln(n) (2)

En découpant l’intégrale restante

∫
n

1

⌊u⌋
u

du =
n−1
∑
k=1
∫

k+1

k

k

u
du =

n−1
∑
k=1

k(ln(k + 1) − ln(k))

=
n−1
∑
k=1

k ln(k + 1) −
n−1
∑
k=1

k ln(k) =
n

∑
k=2
(k − 1) ln(k) −

n−1
∑
k=2

k ln(k)

= (n − 1) ln(n) +
n−1
∑
k=2
((k − 1) − k) ln(k) = n ln(n) −

n

∑
k=2

ln(k)

= n ln(n) − ln(n!) (3)

Avec (2) et (3) on a bien montré que :

∫
n

1

q(u)
u

du = (n − 1) + ln(n!) − (n + 1

2
) ln(n)

ce qu’il fallait démontrer. La seconde égalité de l’énoncé s’obtient en écrivant : n = ln (en),
et : (n + 1

2
) ln(n) = ln (nn+ 1

2 ) = ln (nn√n).
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Q 9) Soit x au voisinage de +∞. On a :

0 ⩽ ∣∫
x

⌊x⌋
q(u)
u

du∣ ⩽ ∫
x

⌊x⌋
∣q(u)∣
u

du ⩽ 1

2
∫

x

⌊x⌋
du

u
= 1

2
ln( x

⌊x⌋
) .

Or on a : x−1 < ⌊x⌋ ⩽ x, donc : 1− 1
x
< ⌊x⌋

x
⩽ 1. Par le théorème des gendarmes : limx→+∞

⌊x⌋
x
= 1.

Et donc, par continuité du logarithme : limx→+∞ ln ( ⌊x⌋
x
) = ln(1) = 0. L’encadrement ci-dessus

donne donc, par le théorème des gendarmes :

∫
x

⌊x⌋
q(u)
u

du Ð→
n→+∞ 0

Voyons comment en déduire, avec la Q8, que l’intégrale ∫
+∞
1

q(u)
u

du converge. D’abord,

notons que la question précédente permet de démontrer que la suite (∫
n
1

q(u)
u

du)
n⩾2

converge,

puisque par la formule de Stirling :

n!en

nn
√
n
Ð→

n→+∞
√
2π

et donc, par continuité du logarithme :

∫
n

1

q(u)
u

du = ln( n!en

nn
√
n
) − 1 Ð→

n→+∞
ln(2π)

2
− 1

Alors, pour tout réel x au voisinage de +∞, on se ramène au cas d’un paramètre entier avec
la relation de Chasles :

∫
x

1

q(u)
u

du = ∫
⌊x⌋

1

q(u)
u

du + ∫
x

⌊x⌋
q(u)
u

du

9. Soit x au voisinage de +∞. On a :

0 ⩽ ∣∫
x

⌊x⌋
q(u)
u

du∣ ⩽ ∫
x

⌊x⌋
∣q(u)∣
u

du ⩽ 1

2
∫

x

⌊x⌋
du

u
= 1

2
ln( x

⌊x⌋
) .

Or on a : x−1 < ⌊x⌋ ⩽ x, donc : 1− 1
x
< ⌊x⌋

x
⩽ 1. Par le théorème des gendarmes : limx→+∞

⌊x⌋
x
= 1.

Et donc, par continuité du logarithme : limx→+∞ ln ( ⌊x⌋
x
) = ln(1) = 0. L’encadrement ci-dessus

donne donc, par le théorème des gendarmes :

lim
x→+∞∫

x

⌊x⌋
q(u)
u

du = 0

Voyons comment en déduire que l’intégrale ∫
+∞
1

q(u)
u

du converge. D’abord, notons que la

question précédente permet de démontrer que la suite (∫
n
1

q(u)
u

du)
n⩾2

converge, puisque par

la formule de Stirling :

lim
n→+∞

n!en

nn
√
n
=
√
2π

et donc, par continuité du logarithme :

∫
n

1

q(u)
u

du = ln( n!en

nn
√
n
) − 1 Ð→

n→+∞
ln(2π)

2
− 1

Alors, pour tout réel x au voisinage de +∞, on se ramène au cas d’un paramètre entier avec
la relation de Chasles :

∫
x

1

q(u)
u

du = ∫
⌊x⌋

1

q(u)
u

du + ∫
x

⌊x⌋
q(u)
u

du
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Comme ⌊x⌋ ∈N tend vers l’infini quand x→ +∞, ce qui précède montre que, par composition

de limites : limx→+∞ ∫
⌊x⌋
1

q(u)
u

du = ln(2π)
2
− 1. La seconde intégrale a une limite nulle quand

x → +∞ d’après la résolution en début de question. Alors, en tant que somme de quantités
ayant une limite finie, on a :

lim
x→+∞∫

x

1

q(u)
u

du = ln(2π)
2
− 1 + 0

Ceci démontre que l’intégrale ∫
+∞
1

q(u)
u

du converge, et on a :

∫
+∞

1

q(u)
u

du = lim
x→+∞∫

x

1

q(u)
u

du = ln(2π)
2
− 1

Q 10) Pour tout u > 0 on a e−u ∈]0,1 [, et donc, comme on l’a rappelé à la question 1 :

− ln (1 − e−u) =
+∞
∑
n=1

e−nu

n

Nous allons en déduire l’égalité de l’énoncé via une intégration terme à terme, que nous allons
justifier en vérifiant les hypothèses du théorème d’intégration terme à terme de Lebesgue (ici
dans le cas des fonctions positives). Posons :

∀n ∈ N∗,∀u ∈]0,+∞[, fn(u) =
e−nu

n
.

Alors :

— pour tout n ∈ N∗, l’application fn est continue par morceaux et intégrable sur ]0,+∞[
(c’est une fonction intégrable de référence) à valeurs positives,

— la série de fonctions ∑n⩾1 fn converge simplement sur ]0,+∞[ vers la fonction continue
par morceaux u↦ − ln (1 − e−u)

D’après le théorème d’I.T.T. de Lebesgue dans le cas positif, on a l’égalité, dans [0,+∞].

∫
+∞

0

+∞
∑
n=1

fn(u)du =
+∞
∑
n=1
∫
+∞

0
fn(u)du

Or ∫
+∞
0 fn(u)du =

1

n2
pour tout n ∈ N∗, Ainsi :

∫
+∞

0
− ln (1 − e−u)du =

+∞
∑
n=1

1

n2
= π2

6

d’où le résultat demandé après multiplication par -1 .

Q 11) (M1) Suivant l’indication de l’énoncé, nous allons d’abord démontrer que l’application g ∶
x↦ 1−e−x

x
est décroissante sur R∗+. Elle est dérivable sur R

∗
+ en tant que quotient de fonctions

dérivables dont le dénominateur ne s’annule pas, et on a :

∀x ∈R∗+, g′(x) = e−xx − (1 − e−x)
x2

= (1 + x)e
−x − 1

x2
.

Or, par convexité de l’exp. on sait que

∀x ∈R, ex ⩾ 1 + x (**)

et donc : ∀x ∈R∗+,1 ⩾ (1+x)e−x ce dont on déduit : ∀x ∈R∗+, g′(x) ⩽ 0. Ainsi g est décroissante
sur R∗+.
Ainsi g est décroissante sur R∗+, donc ln ○g également (on a bien g > 0 sur R∗+, étant donné
que e−x < 1 pour tout x ∈R∗+, donc la composition avec le logarithme est bien définie).
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On en déduit :
∀t ∈]0,1],∀u ∈]0,1], ln(g(t)) ⩽ ln(g(tu)) ⩽ lim

0
ln ○g.

La limite du membre de droite existe bien (et est finie), puisque pour tout x au voisinage de
0 :

g(x) ∼
x→0

x

x
Ð→
x→0

1,

donc ∶ lim0 ln ○g = ln(1) = 0. Ceci démontre en passant que la fonction ln ○g se prolonge par
continuité sur le segment [0,1], et donc qu’elle est intégrable sur ]0,1 ]. Intégrons l’inégalité
cidessus sur ]0,1 ], pour obtenir :

∀t ∈]0,1], ∫
1

0
ln(g(t))du ⩽ ∫

1

0
ln(g(tu))du ⩽ ∫

1

0
0 du

c’est-à-dire :

∀t ∈]0,1], ln(g(t)) ⩽ ∫
1

0
ln(g(tu))du ⩽ 0

Comme on l’a vu ci-dessus, on a : limt→0 ln(g(t)) = 0. Par conséquent, par le théorème

des gendarmes, cet encadrement démontre qu’on a : limt→0+ ∫
1
0 ln(g(tu))du = 0. On a donc

démontré :

lim
t→0+
∫

1

0
ln(1 − e

−tu

tu
)du = 0

Or :

∀t > 0, ∫
1

0
ln(1 − e

−tu

t
)du = ∫

1

0
ln(1 − e

−tu

tu
)du + ∫

1

0
ln(u)du

donc : limt→0+ ∫
1
0 ln ( 1−e

−tu

t
)du = ∫

1
0 ln(u)du = [u ln(u) − u]10 = −1. En conclusion :

lim
t→0+
∫

1

0
ln(1 − e

−tu

t
)du = −1

(M2) (D’après une bonne idée d’Anâıs qui voulait utiliser un équivalent , avec un chan-
gement de variable et le théorème d’intégration des relations de comparaison qui n’est pas
au programme de PC d’où l’indication je pense. En fait on a besoin d’un peu plus qu’un
équivalent, d’un DL à deux termes.)

∫
1

0
ln(1 − e

−tu

t
)du = ∫

1

0
ln(1 − e−tu)du − ∫

1

0
ln(t)du = ∫

1

0
ln(1 − e−tu)du − ln(t) (4)

L’existence de ces intégrales est assurée si on montre que ∫
1

0
ln(1 − e−tu)du existe bien.

Or pour chaque t > 0, la fonction u↦ ln(1 − e−tu) est continue sur ]0,1] et en 0,

ln(1 − e−tu) = ln(tu + o(u)) = ln(u) + ln(t + o(1)) ∼
u →0

ln(u) = o(1/
√
u) donc la fonction est

intégrable par comparaison à l’exemple de Riemann.

Par changement de variable v = tu, donc dt = dv/u, on a :

∫
1

0
ln(1 − e−tu)du = 1

t
∫

t

0
ln(1 − e−v)dv (5)

Or ln(1 − e−v) = ln(v +O(v2)) = ln(v) + ln(1 +O(v)) = ln(v) + O
v→0
(v) et v ∈ [0, t] est de signe

constant donc par théorème d’intégration des relations de comparaison, appliqué aux restes
d’intégrales convergentes, on a :

∫
t

0
ln(1 − e−v)dv = ∫

t

0
ln(v)dv + O

t→0
(t2) = t ln(t) − t + O

t→0
(t2) (6)

Avec (6) dans (5) on a :

∫
1

0
ln(1 − e−tu)du = ln(t) − 1 + O

t→0
(t) (7)

6



Q 12) Soit k ∈ N∗. On note que uk est une intégrale à paramètre. Montrons donc sa continuité sur
R+en utilisant le théorème de continuité des intégrales à paramètres. Posons :

∀(u, t) ∈ [k
2
,
k + 1
2
] ×R+, vk(u, t) = {

tq(u)
etu−1 si t > 0
q(u)
u

si t = 0

Alors :

(H0) pour tout t ∈R+, l’application u↦ vk(u, t) est continue par morceaux sur [k
2
, k+1

2
] (car

on a vu que q est continue par morceaux sur R).
(H1) pour tout u ∈ [k

2
, k+1

2
], la continuité de l’application t↦ vk(u, t) est évidente sur R∗+ en

tant que quotient de fonctions continues dont le dénominateur ne s’annule pas, et on
vérifie qu’elle est continue en 0 également par un calcul de limite :

tq(u)
etu − 1

∼
t→0

tq(u)
tu
ÐÐ→
t→0

q(u)
u
= vk(u,0)

donc t↦ vk(u, t) est continue sur R+ ;
(H2) pour tout (u, t) ∈ [k

2
, k+1

2
] ×R+, on a :

∣vk(u, t)∣ ⩽
∣q(u)∣
u

;

en effet, pour t = 0 c’est évident, et pour t > 0 on utilise ( ∗∗ ) (question précédente)
pour obtenir :

∀(u, t) ∈ [k
2
,
k + 1
2
] ×R∗+,

etu − 1
tu

⩾ 1

et donc :

∀(u, t) ∈ [k
2
,
k + 1
2
] ×R∗+, ∣vk(u, t)∣ =

∣q(u)∣
u
× tu

etu − 1
⩽ ∣q(u)∣

u
.

L’application φ ∶ u ↦ ∣q(u)∣
u

est continue par morceaux sur le SEGMENT [k
2
, k+1

2
] si

k > 0, donc elle y est intégrable. L’hypothèse de domination est donc bien vérifiée.

On en déduit, par le théorème de continuité pour les intégrales à paramètre que l’application

uk ∶ t↦ ∫
(k+1)/2
k/2 vk(u, t)du est continue sur R+ : d’où le résultat.

Q 13) Soit k ∈ N∗. Comme t
etu−1 > 0 pour tout u ∈ [k

2
, k+1

2
], le signe de l’intégrande de uk(t) ne

dépend que du signe de q. Or l’expression de la fonction q montre que :

∀x ∈ [0,1[,
⎧⎪⎪⎨⎪⎪⎩

q(x) ⩽ 0 si x ∈ [0, 1
2
]

q(x) ⩾ 0 si x ∈ [ 1
2
,1]

Par 1-périodicité de q, on a donc :

∀x ∈]k
2
,
k + 1
2
[, q(x) = {

−∣q(x)∣ ⩽ 0 si k est pair,

∣q(x)∣ ⩾ 0 si k est impair.

J’exclus les bornes pour éviter les distinctions de cas fastidieuses, et inutiles (car l’intégrale
ignore les valeurs en les points isolés : il ne coûte donc rien d’étudier son signe en excluant
les extrémités de l’intervalle d’intégration). On en déduit d’une part :

∀x ∈]k
2
,
k + 1
2
[, q(x) = (−1)k+1∣q(x)∣

et d’autre part que, par croissance de l’intégrale : uk(t) ⩽ 0 si k est pair, et uk(t) ⩾ 0 si k est
impair (on a en effet établi plus haut que le signe de l’intégrande est dicté par le signe de q
). On a donc aussi, pour tenir compte de cette distinction de cas selon la parité de k :

uk(t) = (−1)k+1 ∣uk(t)∣
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(On note une erreur d’énoncé concernant l’exposant de -1 ). La première égalité demandée
est alors immédiate :

∣uk(t)∣ = (−1)k+1uk(t) = ∫
(k+1)/2

k/2
t(−1)k+1q(u)

etu − 1
du = ∫

(k+1)/2

k/2
t∣q(u)∣
etu − 1

du

Tout ce qui précède démontre que la série ∑k⩾1 uk(t) est alternée : montrons qu’il s’agit d’une
série alternée spéciale autrement dit que (∣uk ∣)k∈N tend vers zéro en décroissant.

— pour tout entier k ⩾ 1, on a :

∣uk(t)∣ − ∣uk+1(t)∣ = ∫
(k+1)/2

k/2
t∣q(u)∣
etu − 1

du − ∫
(k+2)/2

(k+1)/2
t[q(u) ∣
etu − 1

du

= ∫
(k+1)/2

k/2
t∣q(u)∣
etu − 1

du − ∫
(k+1)/2

k/2
t∣q(k + 1 − v)∣
et(k+1−v) − 1

dv (v = k + 1 − u)

= ∫
(k+1)/2

k/2
t∣q(u)∣
etu − 1

du − ∫
(k+1)/2

k/2
t∣q(v)∣

et(k+1−v) − 1
dv (∣q∣1-pér. et paire )

= ∫
(k+1)/2

k/2
t∣q(u)∣
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
⩾0

( 1

etu − 1
− 1

et(k+1−u) − 1
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩾0

du

⩾ 0,

le signe du terme en facteur de t∣q(u)∣ découlant du fait que l’application u↦ 1
etu−1 soit

clairement décroissante (on a u ⩽ k + 1 − u pour tout u ∈ [k
2
, k+1

2
] ) ; ceci montre que la

suite (∣uk(t)∣)k⩾1 est décroissante ;

— pour tout entier k ⩾ 1, on a :

0 ⩽ ∣uk(t)∣ ⩽
1

2
∫
(k+1)/2

k/2
t du

etu − 1
(∗∗)
⩽ 1

2
∫
(k+1)/2

k/2
du

u
= 1

2
ln(k + 1

k
) Ð→

k→+∞
ln(1)
2
= 0

donc par le théorème des gendarmes : limk→+∞ ∣uk(t)∣ = 0.
Ainsi par le théorème des séries alternées spéciales, la série ∑k⩾1 uk(t) converge (ce qu’en
fait, on pouvait déjà déduire de la question 7), et son reste est majoré en valeur absolue par
son premier terme :

∀n ∈ N∗, ∣
+∞
∑
k=n

uk(t)∣ ⩽ ∣un(t)∣ ⩽
1

2
ln(n + 1

n
) = 1

2
ln(1 + 1

n
) .

Or, on sait que pour tout entier n ⩾ 1 :

ln(1 + 1

n
) ⩽ 1

n

donc :

∀n ∈ N∗, ∣
+∞
∑
k=n

uk(t)∣ ⩽
1

2n
,

d’où le résultat.

Q 14) De la question précédente, il résulte que :

∀n ∈ N∗, ∥
+∞
∑
k=n

uk∥
∞
⩽ 1

2n
Ð→

n→+∞ 0

ce qui démontre que le reste de la série de fonctions∑k⩾2 uk converge uniformément surR+vers
la fonction nulle, et donc la série de fonctions ∑k⩾2 uk converge uniformément sur R+. En
tant que limite uniforme de fonctions continues sur R+(question 12), la somme ∑+∞k=2 uk est
continue sur R+. La continuité sur R+implique en particulier que, quand t→ 0+, on a :

lim
t→0+

+∞
∑
k=2

uk(t) =
+∞
∑
k=2

uk(0)
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Or, par la relation de Chasles :

∀t ∈R∗+,
+∞
∑
k=2

uk(t) =
+∞
∑
k=2
∫
(k+1)/2

k/2
tq(u)
etu − 1

du = ∫
+∞

1

tq(u)
etu − 1

du

et, par le même argument :
+∞
∑
k=2

uk(0) = ∫
+∞

1

q(u)
u

du

Le calcul de limite ci-dessus se réécrit donc ainsi :

lim
t→0+
∫
+∞

1

tq(u)
etu − 1

du = ∫
+∞

1

q(u)
u

du
[q.9]= ln(2π)

2
− 1

d’où le résultat.

Q 15) Soit t > 0. Sur chaque intervalle [k, k + 1[, sachant que pour u ∈ [k, k + 1[ q(u) = u + k − 1/2,

on fait une I.P.P. dans ∫
k+1

k

tq(u)
etu − 1

du en posant

⎧⎪⎪⎪⎨⎪⎪⎪⎩

v′(u) = t

etu − 1
⇐ v(u) = ln(1 − e−tu)

w(′u) = q(u) ⇒ w′(u) = 1

ce qui donne sachant q(u) Ð→
u→(k+1)−

1/2 et q(u) Ð→
u→k+

−1/2 que :

∫
k+1

k

q(u)t
etu − 1

du = 1

2
(ln(1 − e−(k+1)t) + ln(1 − e−kt)) − ∫

k+1

k
ln(1 − e−tu)du

En sommant ces intégrales, par relation de Chasles, on obtient :

∫
+∞

1

tq(u)
etu − 1

du = 1

2

+∞
∑
k=1

ln(1 − e−(k+1)t) + 1

2

+∞
∑
k=1

ln(1 − e−kt) − ∫
+∞

1
ln(1 − e−tu)du

= −1
2
ln(1 − e−t) +

+∞
∑
k=1

ln(1 − e−kt) − ∫
+∞

1
ln(1 − e−tu)du

en regroupant les deux sommes.

Or par la Q5,
+∞
∑
k=1

ln(1 − e−kt) = − ln(P (e−t) donc on obtient bien

∫
+∞

1

tq(u)
etu − 1

du = −1
2
ln (1 − e−t) − ln (P (e−t)) − ∫

+∞

1
ln (1 − e−tu)du

Q 16) Ainsi pour t > 0

ln (P (e−t)) = −∫
+∞

1

tq(u)
etu − 1

du − 1

2
ln (1 − e−t) − ∫

+∞

1
ln (1 − e−tu)du.

On regarde chaque terme :

● ln (1 − e−t) =
t→0+

ln (t +O (t2)) = ln(t) + ln(1 +O(t)) = ln(t) +O(t) = ln(t) + o(1).

● Avec la question 14 : ∫
+∞
1

tq(u)
etu−1 du =

t→0+

ln(2π)
2
− 1 + o(1).

● Avec la question 10 ∶ ∫
+∞
1 ln (1 − e−tu)du =

v=tu
1

t
∫
+∞
t ln (1 − e−v)du = −π2

6t
− 1

t ∫
t
0 ln (1 − e−v)dv

On a établi : ln (1 − e−v) =
v→0+

ln(v) +O(v), donc avec ce majorant v ≥ 0 par intégration

des O() appliquée aux restes d’intégrales convergentes, on a :

∫
t

0
ln(1 − e−v)dv = ∫

t

0
ln(v)dv +O(∫

t

0
vdv)

= t ln(t) − t +O(t2)

On regroupe tout : ln (P (e−t)) = 1 − ln(2π)
2
− ln(t)

2
+ π2

6t
+ ln(t) − 1 + o(1) et finalement :

ln (P (e−t)) = − ln(2π)
2
+ ln(t)

2
+ π2

6t
+ o(1).
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C. Développement de P en série entière

Q 17) Soit N ∈ N∗. (i) Tout d’abord, Pn,N est non vide, puisque (n,0, . . . ,0) ∈ Pn,N .

(ii) Justifions que Pn,N est inclus dans ⟦0, n⟧N : soit (a1, . . . , aN) ∈ Pn,N . Alors pour tout
ℓ ∈ ⟦1,N⟧, aℓ ≥ 0 et

n =
n

∑
k=1

kak ≥ ℓaℓ ⩾ aℓ.

d’où l’inclusion demandée.

(iii) Montrons que la suite (pn,N)N⩾1 est croissante ; pour cela, il suffit de montrer qu’il existe
une injection de Pn,N dans Pn,N+1 pour tout N ∈ N∗. Il suffit de considérer l’application :

Φn,N ∶ {
Pn,N Ð→ Pn,N+1

(a1, . . . , aN) z→ (a1, . . . , aN ,0) ,

Ceci vaut pour tout N ⩾ 1, donc la suite (pn,N)N⩾1 est croissante.

(iv) Il reste à justifier qu’elle est constante à partir du rang n0 =max(n,1) ∶
● si n = 0, alors on a clairement p0,N = 1 pour tout N ⩾ 1 = max(n,1), vu que l’égalité

0 = ∑N
k=1 kak impose : ∀k ∈ ⟦1,N⟧, ak = 0 (somme de réels positifs).

● Supposons à présent n ⩾ 1. Montrons :

∀N ⩾max(n,1), pn,N = pn,N+1

Pour cela, il suffit de démontrer que l’application Φn,N ci-dessus, en plus d’être injective, est
surjective. Soit, donc, (b1, . . . , bN , bN+1) ∈ Pn,N+1, on va montrer que le dernier coefficient
bN+1 est nul. On a en effet, comme (b1, . . . , bN , bN+1) ∈ Pn,N+1 :

n =
N+1
∑
k=1

kbk = (N + 1)bN+1 +
N

∑
k=1

kbk.

Or N + 1 ⩾max(n,1) + 1 ⩾ n+ 1 > n. Par conséquent, si par l’absurde bN+1 ≠ 0, alors bN+1 ⩾ 1
(c’est un entier naturel), et donc on aurait :

n = (N + 1)bN+1 +
N

∑
k=1

kbk
°
⩾0
⩾ (N + 1)bN+1 ⩾ N + 1 > n.

Contradiction. Ainsi bN+1 = 0 et Φn,N est bijective d’où l’égalité des cardinaux demandée.

Q 18) Pour z ∈D on a ∣zN ∣ < 1 donc : 1
1−zN = ∑+∞k=0 zNk. On a donc le résultat voulu avec :

an,N = 0 si n n’est pas un multiple de N et an,N = 1 sinon.

Soit z ∈ D. Appelons H(N) la propriété : [la série ∑n pn,Nzn est absolument convergente et

∏N
k=1

1
1−zk = ∑+∞n=0 pn,Nzn],

● Pour N = 1 : on a Pn,1 = {(n)} donc pn,1 = 1 et la série ∑n≥1 pn,1zn est absolument
convergente de somme ∑+∞n=0 pn,1zn = ∑

+∞
n=0 z

n = 1
1−z , donc H(1) est vraie.

● Supposons H(N) vraie pour un N ≥ 1. On a alors :

N+1
∏
k=1

1

1 − zk
= (

+∞
∑
n=0

pn,Nzn)(
+∞
∑
n=0

an,N+1zn) .

Les deux séries sont absolument convergentes : celle de gauche par hypothèse de récurrence et
celle de droite car c’est la série géométrique de raison ∣zN ∣ < 1. Donc par produit de Cauchy :

N+1
∏
k=1

1

1 − zk
=
+∞
∑
n=0
(

n

∑
k=0

pk,Nan−k,N+1) zn
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Or on a la réunion disjointe :

Pn,N+1 = {(a1, . . . , aN+1) ∈ Nn+1,
N+1
∑
k=1

kak = n}

= ⋃
i∈N
{(a1, . . . , aN , i) , (a1, . . . , aN) ∈ NN et

N

∑
k=1

kak = n − (N + 1)i}

Or pour i ∈ N :

card{(a1, . . . , aN , i) , (a1, . . . , aN) ∈ NN et
N

∑
k=1

kak = n − (N + 1)i} = {
0 si n − (N + 1)i < 0
pn−(N+1)i sinon

Ainsi :

pn,N+1 = ∑
0≤i≤n/(N+1)

pn−(N+1)i,N =
n

∑
j=0

pj,Nan−j,N+1

où on a posé j = n − (N + 1)i ∶ j ∈ ⟦0, n⟧ et le terme pj,N est neutralisé par an−j,N+1 lorsque

n − j n’est pas un multiple de N + 1 . Finalement on a bien ∏N+1
k=1

1
1−zk = ∑+∞n=0 pn,N+1zn et

H(N + 1) est vraie.
La récurrence est établie.

Q 19) Pour comprendre comment la fonction P de la première partie arrive ici, il faut se souvenir
qu’à la Q5, on a montré que pour tout z ∈D,

P (z) =
+∞
∏
n=1

1

1 − zn
= lim

N→+∞

N

∏
n=1

1

1 − zn
produit convergent

Or par la question précédente :

N

∏
n=1

1

1 − zn
=
+∞
∑
n=0

pn,Nzn

Pour z = x ∈ [0,1[ réel, pour tout n ∈ N, 1

1 − xn
≥ 1, donc pour tout N ∈ N∗ ;

N

∏
n=1

1

1 − xn
≤
+∞
∏
n=1

1

1 − xn

autrement dit

∀N ∈ N, 0 ≤
+∞
∑
n=0

pn,Nxn ≤ P (x) < +∞

En particulier,

∀N ∈ N, 0 ≤
N

∑
n=0

pn,Nxn ≤ P (x) < +∞

Mais on sait que pour N ≥ n, pn,N = pn, donc

∀N ∈ N, 0 ≤
N

∑
n=0

pnx
n ≤ P (x) < +∞

Ceci montre que pour tout x ∈ [0,1[, la série ∑pnx
n converge, donc que le rayon de

convergence de ∑pnx
n est au moins de 1. D’autre part pour x = 1 la série ∑pn diverge

grossièrement car pn ≥ 1 pour tout n.

Donc le rayon de convergence est exactement 1.
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Q 20) Soit N ∈ N∗ On rappelle que d’après la question 17 , on a pn = pn,N pour tout n ≤ N donc

+∞
∑
n=0

pnz
n −

+∞
∑
n=0

pn,Nzn =
+∞
∑

n=N+1
(pn − pn,N) zn. (8)

On a donc, d’après l’inégalité triangulaire, et du fait que pn ⩾ pn,N et pn,N ⩾ 0 pour tout
n ∈N :

0 ⩽ ∣
+∞
∑
n=0

pnz
n −

+∞
∑
n=0

pn,Nzn∣ ⩽
+∞
∑

n=N+1
∣pn − pn,N ∣ ⋅ ∣z∣n =

+∞
∑

n=N+1
(pn − pn,N) ∣z∣n ⩽

+∞
∑

n=N+1
pn∣z∣n

Comme ∣z∣ < 1, d’après la question précédente la série ∑n⩾0 pn∣z∣n converge, donc son reste
converge vers 0, autrement dit :

lim
N→+∞

+∞
∑

n=N+1
pn∣z∣n = 0

Et donc, par la majoration (8) :

lim
N→+∞

+∞
∑
n=0

pn,Nzn =
+∞
∑
n=0

pnz
n

Mais on a aussi :

lim
N→+∞

+∞
∑
n=0

pn,Nzn
(q.18)= lim

N→+∞

N

∏
k=1

1

1 − zk
(q.5)= P (z)

Donc, par unicité de la limite :

P (z) =
+∞
∑
n=0

pnz
n

N.B. On a enfin justifié ce qui était annoncé au début du sujet. La fonction P est la somme
de la série génératrice associée à la suite (pn). Depuis Euler on sait qu’on peut apprendre
beaucoup sur une suite via cette série génératrice

Q 21) Il s’agit en fait d’un résultat très standard de récupération des coefficients d’un D.S.E d’une
fonction z ↦ f(z) comme les coefficients de Fourier complexe de θ ↦ f(reiθ). Ici le e−t permet
juste d’assurer que θ ↦ e−teiθ = reiθ avec r < 1.
Précisément : pour t > 0 on a :

∫
π

−π
e−inθP (e−teiθ)dθ = ∫

π

−π

+∞
∑
k=0

pke
i(k−n)θ−kt dθ

Or ∣pkei(k−n)θ−kt∣ = pke−kt et e−t ∈ [0,1 [ et on a vu que la série entière ∑k pkx
k est de rayon

de convergence 1. Donc la série numérique ∑k pke
−kt converge et la série de fonctions (de la

variable θ ) ∑k pke
i(k−n)θ−kt converge normalement sur le segment [−π,π].

Donc par Intégration Terme à Terme sur un segment,

∫
π

−π
e−inθP (e−teiθ)dθ =

+∞
∑
k=0

pke
−kt ∫

π

−π
ei(k−n)θdθ

Or ∫
π
−π e

i(k−n)θdθ = 0 pour k ≠ n et ∫
π
−π e

i(k−n)θdθ = 2π sinon. Il reste donc :

∫
π

−π
e−inθP (e−teiθ)dθ = 2πpne−nt

et finalement :

pn =
ent

2π
∫

π

−π
e−inθP (e−teiθ)dθ =

entP (e−t)
2π

∫
π

−π
e−inθP (e−teiθ)

P (e−t)
dθ

en multipliant en haut en bas par P (e−t) suivant la fantaisie de l’énoncé dont on se dit qu’elle
doit servir à qq chose plus loin.
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Q 22) Avec la Q3, on sait que pour z ∈D on a

1

1 − z
= exp(L(z))

Comme x ∈ [0,1[ on a x ∈ D et xeiθ ∈ D, donc 1 − x = exp(−L(x)) et 1
1−xeiθ = exp (L (xe

iθ)).
Ainsi au total on peut écrire :

1 − x
1 − xeiθ

= exp (L (xeiθ) −L(x))

en passant au module

∣ 1 − x
1 − xeiθ

∣ = exp (Re (L (xeiθ) −L(x))) . (9)

Or

Re (L (xeiθ)) = Re(
+∞
∑
n=1

xneinθ

n
) =

+∞
∑
n=1

xn cos(nθ)
n

tandis que

Re(L(x)) = Re(
+∞
∑
n=1

xn

n
) =

+∞
∑
n=1

xn

n

ce qui dans (9) donne :

∣ 1 − x
1 − xeiθ

∣ = exp(
+∞
∑
n=1

cos(nθ) − 1
n

xn)

Or +∞
∑
n=1

cos(nθ) − 1
n

xn = x(cos(θ) − 1) +
+∞
∑
n=2

cos(nθ) − 1
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

xn

d’où ∑+∞n=1
cos(nθ)−1

n
xn ≤ cos(θ) − 1 et finalement : ∣ 1−x

1−xeiθ ∣ ≤ exp((cos(θ) − 1)x).
Q 23) - Toujours sous les hypothèses de l’énoncé on a :

1

1 − x
−Re( 1

1 − xeiθ
) = 1

1 − x
− 1 − x cos(θ)
1 + x2 − 2x cos(θ)

= x2(1 − cos(θ)) + x(1 − cos(θ))
(1 − x) (1 + x2 − 2x cos(θ))

Le dénominateur est positif car 1 + x2 − 2x cos(θ) = ∣1 − xeiθ ∣2 et x2(1 − cos(θ)) ≥ 0. On a

donc bien en réarrangeant le dénominateur : 1
1−x − Re (

1
1−xeiθ ) ≥

x(1−cos(θ))
(1−x)((1−x)2+2x(1−cos(θ))) Il

s’en suit que ∣P(xe
iθ)

P (x) ∣ ≤ exp (
−x(1−cos(θ))

(1−x)((1−x)2+2x(1−cos(θ)))). On suppose désormais que x ∈ [ 1
2
,1[ .

- 1er cas : si (1 − x)2 ≤ x(1 − cos(θ))
Alors (1 − x)2 + 2x(1 − cos(θ)) ≤ 3x(1 − cos(θ)) et sachant −x(1−cos(θ))

1−x ≤ 0 on en déduit

∣P(xe
iθ)

P (x) ∣ ≤ exp (
−1

3(1−x)).

- 2ième cas : si (1 − x)2 ≥ x(1 − cos(θ))

Alors (1−x)2+2x(1−cos(θ)) ≤ 3(1−x)2 et de même ∣P(xe
iθ)

P (x) ∣ ≤ exp (
−x(1−cos(θ))

3(1−x)3 ) Or −x ≤ − 1
2

ce qui permet de conclure : ∣P (xe
iθ)

P (x) ∣ ≤ exp (−(1−cos(θ))
6(1−x)3 ). L’alternative de l’énoncé est donc

bien établie

Q 24) - Regardons la fonction f ∶ θ ↦ 1−cos(θ)
θ2 prolongée par continuité en 0 en posant f(0) = 1

2
;

alors f est continue sur le segment [−π,π] et admet un minimum α = f (θ0) sur ce segment.
Donc ∀θ ∈ [−π,π], f(θ) ≥ α. En outre pour θ ∈ [−π,π] et θ ≠ 0 on a 1 − cos(θ) > 0 et f(θ) > 0
et par ailleurs f(0) > 0, donc α = f (θ0) > 0 et finalement :

On a bien trouvé α > 0 tel que ∀θ ∈ [−π,π],1 − cos(θ) ≥ αθ2.
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Donc pour θ ∈ [−π,π] et x ≥ 1
2
on a en reprenant l’alternative précédente :

RRRRRRRRRRR

P (xeiθ)
P (x)

RRRRRRRRRRR
≤ exp( −1

3(1 − x)
) ou

RRRRRRRRRRR

P (xeiθ)
P (x)

RRRRRRRRRRR
≤ exp(−(1 − cos(θ))

6(1 − x)3
) ≤ exp( −αθ2

6(1 − x)3
)

Donc en particulier pour t0 = ln(2) et t ∈]0, t0] on a e−t ∈ [ 1
2
,1[ , donc l’alternative devient :

RRRRRRRRRRR

P (e−teiθ)
P (e−t)

RRRRRRRRRRR
≤ exp( −1

3 (1 − e−t)
) ou

RRRRRRRRRRR

P (e−teiθ)
P (e−t)

RRRRRRRRRRR
≤ exp( −αθ2

6 (1 − e−t)3
)

On rappelle que e−t ≥ 1 − t et donc que t ≥ 1 − e−t > 0 donc :

RRRRRRRRRRR

P (e−teiθ)
P (e−t)

RRRRRRRRRRR
≤ exp(−1

3t
) ou

RRRRRRRRRRR

P (e−teiθ)
P (e−t)

RRRRRRRRRRR
≤ exp(−αθ

2

6t3
)

- Dans le premier cas, on utilise que ∣θ∣
π
≤ 1 pour écrire :

RRRRRRRRRRR

P (e−teiθ)
P (e−t)

RRRRRRRRRRR
≤ exp(−∣θ∣

2/3

3π2/3t
) = e−γ(t

−3/2θ∣)2/3
avec γ = 1

3π2/3

- Dans le second cas : ∣P (e
−teiθ)

P (e−t) ∣ ≤ exp (
−αθ2

6t3
) = e−β(t

−3/2θ)2
avec β = α

6

On a donc bien les inégalités voulues.

Q 25) 25 - On a ainsi l’inégalité toujours valide pour 0 < t < t0 ∶ ∣
P (e−teiθ)
P (e−t) ∣ ≤ e

−β(t−3/2θ)2+e−γ(t
−3/2θ)∥2/3

.

De là : ∣∫
π
−π e

−iπ2θ
6t2

P (e−teiθ)
P (e−t) dθ∣ ≤ ∫

π
−π ∣

P(e−teiθ)
P (e−t) ∣dθ ≤ ∫

π
−π (e

−β(t−3/2θ)2 + e−γ(t
−3/2θ))2/3)dθ On uti-

lise la parité (pour se débarrasser de la valeur absolue) et on fait le changement de variable
affine x = t−3/2θ :

RRRRRRRRRRR
∫

π

−π
e−i

π2θ
6t2

P (e−teiθ)
P (e−t)

dθ
RRRRRRRRRRR
≤ 2∫

π

0
(e−β(t

−3/2θ)2 + e−γ(t
−3/2θ))2/3)dθ = 2t3/2 ∫

πt3/2

0
(e−βx

2

+ e−γx
2/3

)dx

Par positivité de la fonction intégrée on a donc pour 0 < t < t0 :

RRRRRRRRRRR
∫

π

−π
e−i

π2θ
6t2

P (e−teiθ)
P (e−t)

dθ
RRRRRRRRRRR
≤ 2t3/2 ∫

πt
3/2
0

0
(e−βx

2

+ e−γx
2/3

)dx

L’intégrale résiduelle ne dépend plus de t et cette majoration montre donc :

∫
π

−π
e−i

π2θ
6t2

P (e−teiθ)
P (e−t)

dθ =
t→0+

O (t3/2)

Q 26) 26 - Comme limn→+∞ π√
6n
= 0+on a donc ∫

π
−π e

−iθn P(e−π/
√

6neiθ)
P(e−π/√6n) dθ =

t→0+
O ( 1

n3/4 ). Par ailleurs

comme π√
6n
> 0 on peut écrire (1) avec t = π√

6n
et on obtient :

pn =
eπ
√
n/√6P (e−π/

√
6n)

2π
∫

π

−π
e−inθ

P (e−π/
√
6neiθ)

P (e−π/
√
6n)

dθ =
n→+∞ eπ

√
n/√6P (e−π/

√
6n)O ( 1

n3/4 )

On utilise alors la question 16 ∶ P (e−t) ∼
t→0+

eπ
2/6t√t 1√

2π
=

t→0+
O (eπ

2/6t√t). Donc

P (e−π/
√
6n) =

n→+∞ O (eπ
√
n/√6n−1/4)

On regroupe tout : pn = O ( e
2π
√

n/
√

6n−1/4

n3/4 ) = O
⎛
⎝

exp(π
√

2n
3 )

n

⎞
⎠
.CQFD.
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