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Q 1) Par déf. :

cn (Hr) =
1

2π
∫

π

−π

+∞
∑
k=0

akr
kei(k−n)θdθ.

Or si on pose uk ∶ θ ↦ akr
kei(k−n)θ, on remarque que ∣∣un∣∣∞ = supθ ∈[−π,π] ∣un(θ)∣ = ∣ak ∣rk.

Il y a donc convergence normale de la série de fonction∑un sur le segment [ −π,π ] puisque

la série (∑ ∣ak ∣ rk) converge grâce à l’hypothèse 0 < r < 1 et (H1).

En particulier la série de fonctions ∑un CvU sur le segment [−π,π], on peut donc intégrer
terme à terme sur le segment [−π,π] :

cn (Hr) =
+∞
∑
k=0

akr
k 1

2π
∫

π

−π
ei(k−n)θdθ.

Or on sait que
1

2π
∫

π

−π
ei(k−n)θdθ = δk,n

On obtient donc :

cn (Hr) = 0 si n < 0 et cn (Hr) = anrn si n ⩾ 0.

De même,

cn (Hr) = ∑
k∈N

akr
k 1

2π
∫

π

−π
e−i(k+n)θdθ

donne :

cn (Hr) = 0 si n > 0 et cn (Hr) = a−nr−n si n ⩽ 0.

Q 2) De l’égalité : ∀ z ∈ C, Re(z) (∗)= 1
2
(z + z̄) on déduit ici :

1

π
∫
+π

−π
Re (h (reiθ)) e−inθdθ déf= 1

π
∫
+π

−π
Re (Hr(θ)) e−inθdθ

cf. (∗)= 1

2π
∫

π

−π
(Hr(θ) +Hr(θ))e−inθdθ

déf= cn(Hr) + cn(Hr)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

anr
n si n > 0,

a−nr−n si n < 0,
a0 + a0 si n = 0.

par Q1.

Q 3) Par la question précédente pour n = 0, on sait que

1

π
∫

π

−π
Re (h (reiθ))dθ = a0 + a0 = 2a0 pour a0 ∈ R,

ce qui est donné par (H2).

Q 4) On va montrer l’inégalité demandée en allant de droite à gauche :

Puisque r < 1, la fonction θ ↦ Re (h (reiθ))) est continue donc bornée par M sur [ −π,π ]. En

posant un(θ) = Re (h (reiθ))) τn cos (nθ + φn), on a donc :

∀n ∈ N, ∀ θ ∈ [−π,π], ∣un(θ)∣ ⩽Mτn

et il y a convergence normale sur [−π,π] de la série de fonctions (∑un). On peut donc intégrer
terme à terme sur le segment [−π,π] pour obtenir :

1

π
∫

π

−π
Re (h (reiθ))(1

2
+ ∑

n⩾1
τn cos (nθ + φn))dθ

ITT et Q3= a0+
1

π
∑
n⩾1

τn ∫
π

−π
Re (h (reiθ)) cos (nθ + φn)dθ
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Avec cos (nθ + φn) = 1
2
(einθeiφn + e−inθe−iφn) on déduit pour n ⩾ 1 :

1

π
∫

π

−π
Re (h (reiθ)) cos (nθ + φn)dθ = 1

2π
∫

π

−π
Re (h (reiθ)) einθdθeiφn + 1

2π
∫

π

−π
Re (h (reiθ)) e−inθdθe−iφn

= 1

2
(anrneiφn + anrne−iφn)par Q2 appliquée à − n et n

= rn ∣an∣ puisque an = ∣an∣ eiφn

On obtient bien

a0 +
1

π
∑
n⩾1

τn ∫
π

−π
Re (h (reiθ)) cos (nθ + φn)dθ =

+∞
∑
n=0
∣an∣ τnrn

puisque a0 = ∣a0∣ ce qui donne bien l’égalité demandée.

Q 5) a) Pour 0 < τ ⩽ 1
3
on a ∣τn cos (nθ + φn)∣ ⩽ 1

3n
donc

∑
n⩾1
∣τn cos (nθ + φn)∣ ⩽

1
3

1 − 1
3

= 1

2
,

et par suite
1

2
+ ∑

n⩾1
τn cos (nθ + φn) ⩾ 0.

b) Si on note encore M =max−π⩽θ⩽π ∣Re (h (reiθ))∣ on déduit de la Q4 que :

∑
n∈N
∣an∣ τnrn ⩽ 1

π
∫

π

−π
M ∣1

2
+ ∑

n⩾1
τn cos (nθ + φn)∣dθ

= M

π
∫

π

−π
(1
2
+ ∑

n⩾1
τn cos (nθ + φn))dθ

= M +M
+∞
∑
n=1

τn ∫
π

π
cos(nθ + φn)dθ

puisqu’on peut intégrer terme à terme (il y a convergence normale de la série de terme
général τn cos (nθ + φn) ) et comme de plus

∫
π

−π
cos (nθ + φn)dθ = [

sin (nθ + φn)
n

]
π

−π
= 0 pour n ⩾ 1

on conclut que :

∑
n∈N
∣an∣ τnrn ⩽M

Q 6) Puisque h vérifie (H1) et (H2), on peut lui appliquer la Q5 et avec H3 on sait que pour tout
r < 1 le M =max−π⩽θ⩽π ∣Re (h (reiθ))∣, vérifie M ≤ 1.
Donc pour τ = 1

3
et tout r ∈ [0,1[,

∑
n∈N
∣an∣

1

3n
rn ⩽ max

−π⩽θ⩽π
∣Re (h (reiθ))∣ ⩽ 1. (∗)

Puique le rayon de convergence est au moins égal à 1 il y a continuité de z ↦
+∞
∑
n=0
∣anzn∣ sur

le disque D(0,1) (car on a CvN sur tout disque D(0, r) avec r < 1) et donc en particulier sur
le disque fermé de rayon 1

3
et on peut faire tendre r vers 1 dans (∗) On obtient donc :

∀ ∣z∣ ⩽ 1

3
, ∑
n∈N
∣an∣ ∣z∣n ⩽ 1.
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Q 7) Remarque : on va obtenir le résultat pour tout ∣z∣ ⩽ 1
3
.

Le problème est que f vérifie l’hypothèse (H1) mais pas (H2).

Posons b0 = ∣b0∣ eiφ et h(z) = e−iφf(z),alors h vérifie les hypothèses (H1) et (H2) puisque b0e
−iφ

est un réel positif. Pour ∣z∣ < 1, ∣Re(h(z))∣ ⩽ ∣h(z)∣ = ∣f(z)∣ ⩽ 1 donc h vérifie aussi (H3). On
a donc par la question 6 : ∑n∈N ∣bn∣ ∣z∣n ⩽ 1 pour ∣z∣ ⩽ 1

3
et la conclusion car ∣an∣ = ∣bn∣.

Q 8) (i) Pour que fλ(z) soit défini pour ∣z∣ < 1 il faut et il suffit que λ ⩽ 1 (sinon z = 1
λ
donnerait

une contradiction).

(ii) Pour 0 ⩽ λ ⩽ 1, pour tout z ∈ D(0,1/λ), 1

1 − λz
=
+∞
∑
n=0
(λz)n donc fλ est D.S.E. sur le

disque D(0,1/λ) en particulier sur D(0,1) donc fλ vérifie (H1).

(iii) De plus, quand ∣z∣ < 1, en posant z = x + iy avec x, y ∈ R :

∣fλ(z)∣ ⩽ 1⇔ ∣z−λ∣2 ⩽ ∣1−λz∣2⇔ (x−λ)2+y2 ⩽ (1−λx)2+(λy)2⇔ (1 − λ2) (x2 + y2 − 1) ⩽ 0
qui est bien vérifié.

Donc fλ vérifie (H1) et (H4) si 0 ⩽ λ ⩽ 1 (et réciproquement on a vu au début que cette
condition était nécessaire pour que fλ soit bien définie sur D(0,1)).

Q 9) Pour ∣z∣ < 1, fλ(z) = (z − λ)∑n⩾0 λnzn = −λ +∑n⩾1 (1 − λ2)λn−1zn.
On a donc b0(λ) = −λ et pour n ⩾ 1 : bn(λ) = (1 − λ2)λn−1.
Ainsi :

∑
n⩾0
∣bn(λ)∣ ∣z∣n = λ + (1 − λ2) ∑

n⩾1
λn−1∣z∣n = λ + (1 − λ2) ∣z∣

1 − λ∣z∣
(∗)

Donc avec (∗), on voit que :

● si λ = 1,∑n⩾0 ∣bn(λ)∣ ∣z∣n = 1 pour tout z.

● Si 0 ⩽ λ < 1 :

∑
n⩾0
∣bn(λ)∣ ∣z∣n ⩽ 1⇔ (1 − λ2)

∣z∣
1 − λ∣z∣

⩽ 1 − λ⇔ (1 + λ) ∣z∣
1 − λ∣z∣

⩽ 1⇔ (1 + 2λ)∣z∣ ⩽ 1

Donc ∑n⩾0 ∣bn(λ)∣ ∣z∣n ⩽ 1 si et seulement si ∣z∣ ⩽ 1
1+2λ .

Q 10) Si ∣z∣ ∈] 1
3
,1 [ , par stricte décroissance de λ↦ 1/(1+ 2λ) il existe λ0 ∈]0,1 [ tel que 1

1+2λ0
< ∣z∣

et donc par Q9 ∑n⩾0 ∣bn (λ0)∣ ∣z∣n > 1.
Q 11) fλ0 vérifie (H1) et (H4) mais ∑n⩾0 ∣bn (λ0)∣ ∣z∣n ⩽ 1 n’est pas vérifiée pour ∣z∣ > 1

3
. La constante

1
3
ne peut donc pas être remplaçée par un réel plus grand.

Q 12) Quand 0 < r < 1 il y a convergence absolue pour f (reiθ) = ∑n∈N bnrneniθ et g (reiθ) =
∑n∈N cnrnre−niθ. La série produit de Cauchy converge donc aussi absolument :

f (reiθ) g (reiθ) = ∑
n∈N

rn
n

∑
k=0

bkcn−kei(2k−n)θ

Par suite la série de fonctions de terme général un(θ) = rn∑n
k=0 bkcn−ke

i(2k−n)θ converge
normalement sur [−π,π] car le module des termes généraux ne dépend pas de θ.

Donc par I.T.T. sur un segment :

∫
π

−π
f (reiθ) g (reiθ)dθ = ∑

n∈N
rn

n

∑
k=0

bkcn−k ∫
π

−π
ei(2k−n)θdθ.

Mais ∫
π
−π e

i(2k−n)θdθ est nul si 2k ≠ n et vaut 2π si n = 2k.
On a donc

1

2π
∫

π

−π
f (reiθ) g (reiθ)dθ = ∑

k∈N
r2kbkck.

Q 13) On déduit de la question 12 en prenant g = f , que :

1

2π
∫

π

−π
∣f (reiθ)∣

2
dθ = ∑

n∈N
r2n ∣bn∣2
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Comme ∣f (reiθ)∣ ⩽ 1 puisque 0 < r < 1 et que f vérifie (H4) on a ∑n∈N r2n ∣bn∣
2 ⩽ 1 et ceci

pour tout r < 1 d’où
∣∣∣f ∣∣∣ ⩽ 1.

Q 14) Si f vérifie (H1) on sait par la question 12 que :

∣∣∣f ∣∣∣2 = sup
0⩽r<1

1

2π
∫

π

−π
∣f (reiθ)∣

2
dθ.

En remplaçant f par Af(ψ) = fψ qui vérifie aussi (H1) on obtient

∣∣∣∣Af(ψ)∣∣∣2 = sup
0⩽r<1

1

2π
∫

π

−π
∣ f (reiθ)ψ (reiθ) ∣2dθ ⩽ ∣∣∣ψ∣∣∣2

puisque ∣f (reiθ)∣ ⩽ 1 comme f vérifie (H4).

Si Af(ψ)(z) = f(z)ψ(z) = ∑k∈N ckzk, on sait par définition de Pn que :

Pn ○Af(ψ) = gn avec gn(z) = c0 + cnzn.

Donc par définition de la norme triple ici :

∣∣∣∥Pn ○Af(ψ)∣∣∣2 = sup
0⩽r<1

(c20 + c2nr2n) ⩽ sup
0⩽r<1

∑
k∈N

r2kc2k = ∣∣∣Af(ψ)∣∣∣2 ⩽ ∣∣∣ψ∣∣∣2

Q 15) Si ψ(z) = α + βzn et f(z) = ∑k∈N bkzk on a

Af(ψ)(z) = (α + βzn) (∑
k∈N

bkz
k) = αb0 + . . . + (αbn + βb0) zn + . . .

donc
Pn ○Af(ψ)(z) = αb0 + (αbn + βb0) zn

Par suite S ○ Pn ○Af(ψ) = ( αb0
αbn+βb0) d’où la matrice D = ( b0 0

bn b0
).

Q 16) Cette propriété n’est pas spécifique à la matrice D de l’énoncé mais complètement générale
(cf. cours du chapitre R4).

En notation plus usuelle que celle de l’énoncé, si X,Y sont deux vecteurs de R2 identifié à
M2,1(R) ici alors :

(X ∣Y ) =X⊺.Y

Mais alors avec X = Ψ et Y = DΘ : et donc on a :

(Ψ∣DΘ) = Ψ⊺.(DΘ)

mais par symétrie du produit scalaire ;

(Ψ∣DΘ) = (DΘ∣Ψ) = (DΘ)⊺.Ψ = Θ⊺D⊺Ψ = (Θ∣D⊺Ψ) = (D⊺Ψ∣Θ)

ce qu’il fallait démontrer.

Q 17) a) Une remarque cruciale pour la suite : pour ψ ∈ Vn, z ↦ α+ βzn où α et β appartiennent à
R, on a :

∣∣∣ψ∣∣∣ def= sup
r<1
∣α2 + β2br2n∣1/2 =

√
α2 + β2 = ∣∣Ψ∣∣;

avec Ψ = S(ψ).
Autrement dit S est une isométrie entre la norme ∣∣∣ ∣∣∣ dans Vnet la norme euclidienne cano-
nique de R2.
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Mais alors par définition de D comme matrice de S ○Pn ○Af ○S−1, on calcule pour Ψ = (α
β
) :

(D⊺DΨ ∣ Ψ) = (DΨ ∣ DΨ) = ∥S ○ Pn ○Af ○ S−1(Ψ)∥
2

= ∣∣∣Pn ○Af ○ S−1(Ψ)∣∣∣2 par S isométrique

⩽ ∣∣∣S−1(Ψ)∣∣∣2 par Q 14 appliquée à ψ = S−1(Ψ)
= ∣∣Ψ∣∣2 par S isométrique

donc pour tout Ψ ∈ R2,

(AΨ ∣ Ψ) = (Ψ ∣ Ψ) − (D⊺DΨ ∣ Ψ) = ∥Ψ∥2 − ∥DΨ∥2 ⩾ 0

ce qui signifie que la matrice A est positive.

b) Avec la forme explicite de la matrice D vue à la Q15, on peut calculer :

∥DΨ∥2 = (αb0)2 + (αbn + βb0)2

Donc l’inégalité du a) dit que pour tout (α,β) ∈ R2 ;

(αb0)2 + (αbn + βb0)2 ≤ α2 + β2

En prenant Ψ = (1
0
) on obtient b20 + b2n ⩽ 1 donc b20 ⩽ 1 .

c) Ce sera encore un résultat de cours du chap. R4 sur les matrices symétriques positives.

Si λ est une valeur propre de A, il existe Ψ ≠ 0 tel que AΨ = λΨ.

Alors
(AΨ ∣ Ψ) = λ(Ψ ∣ Ψ) (1)

et comme A est positive, on sait que pour tout Ψ, (AΨ ∣ Ψ) ≥ 0 donc avec (1), comme
(Ψ ∣ Ψ) > 0 on obtient λ ⩾ 0 : les valeurs propres de la matrice symétrique A sont des réels
positifs ou nuls.

Q 18) On calcule A = I2 −D⊺D = (
1 − b20 − b2n −b0bn
−b0bn 1 − b20

)donc

det(A) = (1 − b20 − b2n) (1 − b20) − (b0bn)
2 = (1 − b20)

2 − b2n ⩾ 0

puisque det(A) est égal au produit des valeurs propres de A. On a donc ∣bn∣ ⩽ 1−b20 puisqu’on
a vu à la question précédente que b20 ≤ 1.

Q 19) De la question 18 on déduit pour ∣z∣ < 1 ∶

∑
n∈N
∣bn∣ ∣z∣n ⩽ ∣b0∣ + ∑

n⩾1
(1 − b20) ∣z∣n = ∣b0∣ + (1 − b20)

∣z∣
1 − ∣z∣

⩽M(∣z∣)

par définition de M (puisque t = ∣b0∣ vérifie bien 0 ⩽ ∣b0∣ ⩽ 1 ).

Q 20) Si r = 0 on a M(0) = 1.
Pour 0 < r < 1 étudions g(t) = t + (1 − t2) r

1−r sur [0,1]. Or g′(t) = 1 − 2t r
1−r s’annule quand

t = 1−r
2r

. Or 1−r
2r
⩽ 1⇔ r ⩾ 1

3
.

Donc si r ⩽ 1
3
alors ∀ t ∈ [0,1], g′(t) ⩾ 0 donc g est croissante et M(r) = g(1) = 1.

En revanche, si r > 1
3
alors g atteint son maximum en t0 = 1−r

2r
doncM(r) = g ( 1−r

2r
) = 1−2r+5r2

4r(1−r) .

Q 21) a) Il y a une coquille dans l’énoncé du concours : il fallait supposer ∣z∣ < 1− ε sinon l’inégalité

demandée n’a pas de sens vue la racine carrée de 1 − ∣z∣2
∣1−ε∣2 .

L’inégalité de Cauchy-Schwarz donne

(
N

∑
n=0
∣bnzn∣)

2

= (
N

∑
n=0
∣bn(1 − ε)n

zn

(1 − ε)n
∣)

2

⩽
N

∑
n=0
∣bn(1 − ε)n∣2

N

∑
n=0
∣ zn

(1 − ε)n
∣
2
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Pour ∣z∣ < 1 − ε on peut faire tendre N vers +∞ pour obtenir :

(
+∞
∑
n=0
∣bnzn∣)

2

⩽
+∞
∑
n=0

b2n(1 − ε)2n
+∞
∑
n=0

∣z∣2n

(1 − ε)2n

Or avec la formule sur les sommes géométriques :

+∞
∑
n=0

∣z∣2n

(1 − ε)2n
= 1

1 − ∣z∣2
(1−ε)2

,

donc ici

∑
n∈N
∣bnzn∣ ⩽ ( ∑

n∈N
b2n(1 − ε)2n)

1/2
(1 − ∣z∣2

∣1 − ε∣2
)
−1/2

ce qui est la formule attendue.

b) Pour ∣z∣ < 1, on choisit ε < 1 − ∣z∣ de sorte que ∣z∣ < 1 − ε.
Par la question 13 on a ∣∣∣f ∣∣∣ ⩽ 1 donc ∑n∈N b2n(1 − ε)2n ⩽ 1 donc par l’inégalité qu’on vient
de prouver au a) :

∑
n∈N
∣bnzn∣ ⩽ (1 −

∣z∣2

∣1 − ε∣2
)
−1/2

d’où en faisant tendre ε vers 0 :

∑
n∈N
∣bnzn∣ ⩽ (1 − ∣z∣2)

−1/2
.

Comme on a aussi par la question 19 : ∑n∈N ∣bn∣ ∣z∣n ⩽M(∣z∣) on obtient bien

∑
n∈N
∣bn∣ ∣z∣n ⩽m(∣z∣)

Ouf ! !
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