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Q 1) Par déf. :
(H,) = [ koi(k-n)0 19
)= o ) I;Ja gre

Or si on pose ug : 60— agr kgi(k-—n)0

on remarque que [ty = 8UPy [_x 1 [un(0)| = |lax|r".

Il y a donc convergence normale de la série de fonction Z u, sur le segment [ -7, 7 | puisque
la série (3 |ax|r*) converge grace 4 I’hypothese 0 < r < 1 et (HI).

En particulier la série de fonctions Zun CvU sur le segment [—m, 7], on peut donc intégrer
terme & terme sur le segment [-7, 7] :

+o00 1 T .
cn (Hy) = Z apr®— e (k=m0 g
o 2

=T

Or on sait que

if 1(k n)9d6 6k:
2m

On obtient donc :

’cn(Hr):Osin<Oetcn(Hr):anr” sinz0.

De méme,
1 L
( ) Tk?"k e—l(k+n)9d9
keN -

donne :

cn(E):OSin>Oet cn(ﬁr):ﬂf" sin<0.

Q 2) De I'égalité : Vz € C, Re(z) 1 5 (2 +2) on déduit ici :

1 fﬂr Re (h (T‘Gie)) emogp Y 1 fﬂr Re (H,.(0)) e ™ dg
™ J-7m ™ J-7

ef () 2i/ (H,(0) + H,(0))e""do
m™wJ-m

W e (Hy) + e ()

apr'sin >0,
= a_p,r" sin<0, par Q1.

ag+ag sin=0.
Q 3) Par la question précédente pour n =0, on sait que
1 [rr 0 _
ff Re(h(re ))d@ =ag+ag =2ag pourage€R,
™ J-m

ce qui est donné par (H2).

Q 4) On va montrer 'inégalité demandée en allant de droite & gauche :
Puisque r < 1, la fonction 6 » Re (h (reig))) est continue donc bornée par M sur [ -7, 7 |. En
posant u, () = Re (h (reie))) 7" cos (nf + ¢y,,), on a donc :

Vne N, VOe[-m 7], [u ()| < Mt

et il y a convergence normale sur [-m, 7] de la série de fonctions (¥ u, ). On peut donc intégrer
terme & terme sur le segment [—7, 7] pour obtenir :

i[:Re(h(reie))(2+ ZT cos(n0+g0n))d91TT€tQ3 0+*Z / Re (7”6 ))COS(n9+<,0n)d9

n>1l nzl



Avec cos (nb + p,) = % (ePeien 4 eminfe7i¥n) on déduit pour n > 1 :

1 fﬂ Re (h (rew)) cos (nf + p, ) do S /W Re (h (reig)) e deln + QL fﬂ Re (h (rew)) e 0 dgeien
mwJ-m s

2m J-x T J-
1 ) .
= 5 (ﬁr”ewn + anr”e_w") par Q2 appliquée & —netn

= r"lay| puisque a, = |a,|e"

On obtient bien

- ) +o00o
e L [ Re(h (7)) cos - = 55 770"
T - n=0

n>1

puisque ag = |ag| ce qui donne bien ’égalité demandée.

Q 5) a) Pour 0 <7< 3 ona|r"cos(nf + ¢,)| < 57 donc
3 1
5 I cos (nf + )| € —S1 = 1,
n>1 1-3
et par suite
1
5t > 7" cos (nf + ¢y) 2 0.

n>1

b) Si on note encore M = max_ <g<r |Re (h (reia))| on déduit de la Q4 que :

1

1 s
S lanl < [ MG S cos (nf + o)
nelN TS nz1

Mf (;+ZT"cos(n9+gpn))d9
™ -7

n>1

N

do

+00 T
M+M> 7" f cos(nb + ¢, )do
n=1 7r

puisqu’on peut intégrer terme a terme (il y a convergence normale de la série de terme
général 7" cos (nf + ¢,,) ) et comme de plus

/ cos (nf + @, ) df = [sm(n&-ﬂpn)] =0 pourn>1
-7 n r

on conclut que :

Z lan|7"r" <M

neN

Q 6) Puisque h vérifie (H1) et (H2), on peut lui appliquer la Q5 et avec H3 on sait que pour tout
r<1lle M =max_ ¢oer ’Re (h (re‘e)) , vérifie M < 1.

Donc pour 7 = % et tout r € [0, 1],

Z |ay] 3%7“" < max |Re (h (Teie))| <1 (%)

neN A
+0oo
Puique le rayon de convergence est au moins égal & 1 il y a continuité de z ~ " a,z"| sur
n=0

le disque D(0,1) (car on a CvN sur tout disque D(0,7) avec r < 1) et donc en particulier sur
le disque fermé de rayon 3 et on peut faire tendre r vers 1 dans (x) On obtient donc :

Vel <2, D lanllo" < 1.

1
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Q7

Q9)

Q 10)
Q11)

Q 12)

Q 13)

Remarque : on va obtenir le résultat pour tout |z| < %

Le probleme est que f vérifie 'hypothese (H1) mais pas (H2).

Posons by = |bg|e'? et h(2) = ¥ f(z),alors h vérifie les hypotheses (H1) et (H2) puisque boe %
est un réel positif. Pour |z| < 1,|Re(h(2))| < |h(2)| = |f(2)| € 1 donc h vérifie aussi (H3). On
a donc par la question 6 : ¥,,cn [bn||2]" < 1 pour |2] < 3 et la conclusion car [ap| = |by|.

(i) Pour que fx(z) soit défini pour |z| <1 il faut et il suffit que A <1 (sinon z = £ donnerait
une contradiction).

+o0
(ii) Pour 0 € A € 1, pour tout z € D(0,1/)\), = > (A2)" donc fy est D.S.E. sur le
n=0

1-Az
disque D(0,1/)) en particulier sur D(0,1) donc fy vérifie (H1).

(iii) De plus, quand |z| < 1, en posant z = x + iy avec z,y € R :

A<l e z=A2<[1-X22 = (2-N)2+12 < (1-22)2+ (\y)? < (1 -A?) (22 +y?-1) <0
qui est bien vérifié.

Donc fy vérifie (H1) et (H4) si 0 < A < 1 (et réciproquement on a vu au début que cette
condition était nécessaire pour que fy soit bien définie sur D(0,1)).

Pour [2] <1, fa(2) = (2 = A) Tpso A"2" = =A+ Tynp (1= A7) A" 12",

On a donc by(A) ==X et pour n>1: b, (A) = (1= A2) A"

Ainsi :
S OOl = A+ (1-A2) 32 A el = e (1-22) — ()
n>0 n>l 1=z

Donc avec (*), on voit que :
esiA=1,3,50]bn(N)]]2]" =1 pour tout z.

eSi0<A<:
b2 <1 (1-22)— 1 n e arn 1o aran <
S <1 (1-8) T < 1= (L) o <o (120
Donc 3,50 [bn(A)|[2[™ < 1 si et seulement si |2] < 5.
Si|2| €]%,1[, par stricte décroissance de A~ 1/(1+2X) il existe Ag €]0,1[ tel que ﬁ < 7|

et donc par Q9 Y,.50 [bn (Ao)||2|" > 1.
fro vérifie (H1) et (H4) mais 3,50 [bn (Ao)||2|™ < 1 n’est pas vérifiée pour |2| > §. La constante

% ne peut donc pas étre remplagée par un réel plus grand.

Quand 0 < 7 < L il y a convergence absolue pour f(rel?) = ¥,enbarme™? et g (rel?) =
Y e Carre™™ La série produit de Cauchy converge donc aussi absolument :

Fre®) g(re®) = 3 1" S bygmoe (R

neN k=0

Par suite la série de fonctions de terme général u,(0) = r" ¥, bkcn_kei(%’”)o

normalement sur [-7, 7] car le module des termes généraux ne dépend pas de 6.

converge

Donc par I.'T.T. sur un segment :

Sl G aGean = 5 3 b [T,
-7 k —

neN =0 7r

Mais [ e!(*=)04d0 est nul si 2k # n et vaut 27 si n = 2k.

On a donc 1 .
— / f (reie) g (rei?)dd = " r2kb,cE.
2w Jom keN
On déduit de la question 12 en prenant g = f, que :
1 [ .
o [Tl o=
™ J-m

neN



Q 14)

Q 15)

Q 16)

Q17)

Comme |f(rei9)| < 1 puisque 0 < r < 1 et que f vérifie (H4) on a ¥, 72" |bn|2 <1 et ceci
pour tout r <1 d’ou

A<
Si f vérifie (H1) on sait par la question 12 que :

717 = sup - [7|f ()" ao.

0<r<1

En remplacant f par A¢(¢) = f1 qui vérifie aussi (H1) on obtient
A (I = Sup */ | £ (re”) g (ret®) 2do <[4

puisque | I (rei9)| <1 comme f vérifie (H4).
Si Ap()(2) = F(2)¥(2) = Tpen k2", on sait par définition de P, que :
P, o A¢(¢) = gn avec gn(2) = o + cp2"

Donc par définition de la norme triple ici :

1 0 Ap(IP = sup (§ +cur®™) < sup 3 v = | A () <[]
0<r<1 0<r<l keN

Sip(z) =a+pB2" et f(2) = Yrenbrz® on a
Ar()(2) = (a+B2") (D] biz®) = aby + ...+ (ab, + Bby) 2" + ...

keN
donc
Pn o Af(d))(z) = Otbo + (Ozbn + 51)0) "

Par suite So P, 0 Af(¢) = (ab“i‘ébo) d’ou la matrice D = ( zo I? )
n n 0

Cette propriété n’est pas spécifique a la matrice D de ’énoncé mais completement générale
(cf. cours du chapitre R4).

En notation plus usuelle que celle de I'énoncé, si X,Y sont deux vecteurs de R? identifié &
M 1 (R) ici alors :
(XlY)=X"Y

Mais alors avec X =W et Y =DO : et donc on a :
(Y|DO) = ¥'.(DO)
mais par symétrie du produit scalaire ;
(Y|DO) = (DO|¥) = (DO)". ¥ =0'D"¥ = (OD'¥) = (D"¥|O)

ce qu’il fallait démontrer.

a) Une remarque cruciale pour la suite : pour ¢ € V,,, z = a+ 2" oll « et § appartiennent a
R, on a:

el Sup|a + B2or® |12 = \Ja? + 52 = | ];
avec U = S(v).

Autrement dit S est une isométrie entre la norme ||| ||| dans V, et la norme euclidienne cano-
nique de R2.



Q 18)

Q19)

Q 20)

Q 21)

Mais alors par définition de D comme matrice de So P, 0 Af oS~ on calcule pour ¥ = (g) :

[P0 47057 ()]
|PnoAfoS~HW)||* par S isométrique
[IS7H(®)||[* par Q 14 appliquée & ¥ = 57 (¥)

||¥|[* par S isométrique

(D'DY | ¥) = (DV | DV)

N

donc pour tout ¥ e R?,
(AU | @) = (¥ | )~ (D'DY | ) = |¥|* - [D¥[* >0
ce qui signifie que la matrice A est positive.
b) Avec la forme explicite de la matrice D vue & la Q15, on peut calculer :
IDW|? = (abo)® + (aby, + Bbo)’

Donc I'inégalité du a) dit que pour tout (a, 3) € R?;

(aby)® + (aby, + Bbo)? < a? + 32

En prenant ¥ = ((1)) on obtient b3 + b2 < 1 donc .

c¢) Ce sera encore un résultat de cours du chap. R4 sur les matrices symétriques positives.
Si A est une valeur propre de A, il existe ¥ # 0 tel que AV = \W.
Alors

(AU [ ) =AW [w) (1)

et comme A est positive, on sait que pour tout ¥, (A¥ | ¥) > 0 donc avec (1), comme
(T | ¥) >0 on obtient A > 0 : les valeurs propres de la matrice symétrique A sont des réels
positifs ou nuls.

1-b2-b2 —bgd
_ M) — 0 n 0Yn
On calcule A=1,-D'D = ( bob, 1 bg )donc

det(A) = (1-52=62) (1-52) = (bobn)? = (1 -B2)" =12 >0

puisque det(A) est égal au produit des valeurs propres de A. On a donc |b,| < 1-b2 puisqu’on
a vu & la question précédente que b3 < 1.

De la question 18 on déduit pour |z| < 1:

2]

> [ball2l™ <Jbol + 3 (1= 03) |#I™ = [bol + (1 - )

< M([2])
neN n>1 1 -z

par définition de M (puisque ¢ = |bg| vérifie bien 0 < |by| < 1 ).

Sir=0ona M(0)=1.

Pour 0 < r < 1 étudions g(t) = ¢+ (1-¢*) <= sur [0,1]. Or ¢'(t) = 1 - 2t~ s’annule quand
1-r 1-r 1

t=550r 5r<ler>g.

Donc si r < 3 alors V¢ € [0,1], ¢/(t) > 0 donc g est croissante et M(r) = g(1) = 1.

1—7-) _ 1-2r+5r2
2r 4r(1-r) *

En revanche, si r > % alors g atteint son maximum en ¢ = 12;; donc M(r) =g (

a) Il y a une coquille dans I’énoncé du concours : il fallait supposer |z| < 1 - ¢ sinon 'inégalité
2
demandée n’a pas de sens vue la racine carrée de 1 — |1|i|2'
L’inégalité de Cauchy-Schwarz donne
(Emen) (S -0 2] <Ema-ore £
bnz = bn(l—¢ < bn(l—¢
n=0 " n=0 " (1 _g)n n=0 " n=0 (1 _e)n




Pour |z| < 1 - ¢ on peut faire tendre N vers +oco pour obtenir :

(f b z"|)2 SRy
e T =0 (1=¢)*"
Or avec la formule sur les sommes géométriques :
teo |y ) 1
2 =,

donc ici

1/2 -1/2
Yo" < D b2(1-¢e)*" 1- |2
" 11-el?

neN neN

ce qui est la formule attendue.

b) Pour |z| < 1, on choisit £ < 1 —|z| de sorte que |z| <1-e.

Par la question 13 on a |[|f||| < 1 donc ¥,,en b2 (1 -¢)?" < 1 donc par l'inégalité qu’on vient
de prouver au a) :

~1/2
i
b2 < [1-
Z| 2" ( TEE

neN

d’ou en faisant tendre ¢ vers O :

Z |bn2n| < (1 _ |Z|2)_1/2 .

neN

Comme on a aussi par la question 19 : Y ,on [0n] |2 < M(|2|) on obtient bien

2 1bnll2™ <m(]2])

neN

Ouf!!



