
PROBLÈME 1

Ce problème comporte 3 parties indépendantes.

Notations et définitions

- N désigne l’ensemble des entiers naturels, N∗ désigne l’ensemble des entiers naturels non nuls.
- R désigne l’ensemble des nombres réels.
- R[X] désigne le R-espace vectoriel des polynômes à coefficients réels et, pour tout entier n ∈ N,

on note Rn[X] le R-espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal
à n.

- Si n1 et n2 sont deux entiers naturels, on note !n1, n2" l’ensemble des entiers naturels compris
(au sens large) entre n1 et n2.

Objectifs
On s’intéresse dans ce problème à l’équation différentielle x2y′′ + axy′ + by = 0. La partie I est une
partie d’algèbre linéaire qui traite des solutions polynomiales de cette équation lorsque a et b sont des
constantes réelles. Dans la partie II, on détermine l’ensemble des solutions de l’équation lorsque a
et b sont des constantes réelles. La partie III traite des solutions de cette équation lorsque a = 1 et b
est la fonction carrée.

Partie I - Endomorphismes

Dans toute cette partie, n désigne un entier naturel non nul et a et b des constantes réelles.

Q1. On note ∆ l’endomorphisme de R[X] défini par :

∀P ∈ R[X], ∆(P) = XP.′

Calculer, pour tout k ∈ !0, n", ∆(Xk).

Q2. Montrer que pour tout P ∈ R[X], X2P′′ = ∆ ◦ (∆ − Id) (P), où Id désigne l’endomorphisme
identité sur R[X].

Q3. Montrer que si P ∈ Rn[X], ∆(P) ∈ Rn[X].

On notera ∆n l’endomorphisme de Rn[X] induit par ∆.

Q4. Déterminer la matrice de ∆n dans la base canonique (1, X, · · · , Xn) de Rn[X].

Q5. On définit l’application Φ par :

∀P ∈ R[X], Φ(P) = X2P′′ + aXP′.

Montrer que Φ = ∆2 + (a − 1)∆ et en déduire que Φ définit un endomorphisme de R[X].
Q6. Montrer que Φ induit un endomorphisme Φn de Rn[X].

Q7. Montrer que Φn est diagonalisable.

On considère l’endomorphisme ϕ de R[X] défini par :

∀P ∈ R[X], ϕ(P) = X2P′′ + aXP′ + bP.
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Q8. Montrer que ϕ induit un endomorphisme de Rn[X], endomorphisme que l’on notera ϕn.
Exprimer ϕn en fonction de ∆n.

Q9. Exprimer la matrice de ϕn dans la base canonique de Rn[X].

On considère l’équation :
s2 + (a − 1)s + b = 0. (1)

Q10. Expliciter le noyau de ϕn lorsque l’équation (1) admet deux racines entières m1,m2 ∈ !0, n".

Q11. Expliciter le noyau de ϕn lorsque l’équation (1) admet une unique racine entière m ∈ !0, n".

Q12. Déterminer le noyau de ϕ. En déduire qu’il est de dimension finie et déterminer sa dimension.

Partie II - Une équation différentielle

On considère dans cette partie l’équation différentielle

x2y′′ + axy′ + by = 0, (2)

où a et b sont des constantes réelles.

Q13. Que déduit-on du théorème de Cauchy quant à la structure de l’ensemble des solutions de
l’équation (2) sur I =]0,+∞[ ? Et sur J =] −∞, 0[?

Q14. Montrer que si y est une solution de (2) sur I, alors g = y ◦ exp est une solution sur R de
l’équation différentielle linéaire à coefficients constants :

u′′ + (a − 1)u′ + bu = 0. (3)

Q15. Réciproquement, soit t &→ g(t) une solution de (3) sur R. Montrer que la fonction g ◦ ln est
solution de (2) sur I.

Q16. Donner les solutions à valeurs réelles de l’équation (3) dans le cas où a = 3 et b = 1 et dans
le cas où a = 1 et b = 4. En déduire, dans chacun des cas, les solutions à valeurs réelles de
l’équation (2) sur l’intervalle I.

On suppose dans les deux questions suivantes uniquement que a = 1 et b = − 4.

Q17. Montrer que si y est solution de (2) sur J, alors h = y ◦ (− exp) est solution de (3) sur R.

Q18. Déduire de ce qui précède l’ensemble des solutions de (2) de classe C2 sur R.

Partie III - Une équation de Bessel

On se propose dans cette partie d’étudier l’équation différentielle :

x2y′′ + xy′ + x2y = 0. (4)

Q19. Rappeler la définition du rayon de convergence d’une série entière.
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Série entière dont la somme est solution de (4)

On suppose qu’il existe une série entière
∑

k≥0

ckxk, avec c0 = 1, de rayon de convergence R > 0 et dont

la fonction somme J0 est solution de (4) sur ] − R,R[.

Q20. Montrer que, pour tout k ∈ N, on a :



c2k+1 = 0

c2k =
(−1)k

4k(k!)2

.

Q21. Déterminer le rayon de convergence R de la série entière obtenue :
∑

k≥0

ckxk.

Q22. Soit r > 0 et soit f une autre solution de (4) sur ]0, r[. Montrer que si (J0, f ) est liée dans
l’espace vectoriel des fonctions de classe C2 sur ]0, r[, alors f est bornée au voisinage de 0.

Inverse d’une série entière non nulle en 0

Soit
∑

k≥0

αkxk une série entière de rayon de convergence Rα > 0 telle que α0 = 1. L’objectif de ce

paragraphe est de montrer l’existence et l’unicité d’une série entière
∑

k≥0

βkxk de rayon de convergence

Rβ > 0 telle que pour tout x appartenant aux domaines de convergence des deux séries :


+∞∑

k=0

αkxk






+∞∑

k=0

βkxk


 = 1.

Q23. Montrer que si
∑

k≥0

βkxk est solution, alors la suite (βk)k∈N satisfait aux relations suivantes :




β0 = 1

∀n ∈ N∗
n∑

k=0

αkβn−k = 0 . (5)

Soit r un réel tel que 0 < r < Rα.

Q24. Montrer qu’il existe un réel M > 0 tel que pour tout k ∈ N :

|αk| ≤
M
rk .

Q25. Montrer que (5) admet une unique solution (βk)k∈N et que, pour tout k ∈ N∗ :

|βk| ≤
M(M + 1)k−1

rk .

On pourra raisonner par récurrence.

Q26. Que peut-on dire du rayon de convergence Rβ de la série entière
∑

k≥0

βkxk ?

4/8



Série entière dont la somme est solution de (4)

On suppose qu’il existe une série entière
∑

k≥0

ckxk, avec c0 = 1, de rayon de convergence R > 0 et dont

la fonction somme J0 est solution de (4) sur ] − R,R[.

Q20. Montrer que, pour tout k ∈ N, on a :



c2k+1 = 0

c2k =
(−1)k

4k(k!)2

.

Q21. Déterminer le rayon de convergence R de la série entière obtenue :
∑

k≥0

ckxk.

Q22. Soit r > 0 et soit f une autre solution de (4) sur ]0, r[. Montrer que si (J0, f ) est liée dans
l’espace vectoriel des fonctions de classe C2 sur ]0, r[, alors f est bornée au voisinage de 0.

Inverse d’une série entière non nulle en 0

Soit
∑

k≥0

αkxk une série entière de rayon de convergence Rα > 0 telle que α0 = 1. L’objectif de ce

paragraphe est de montrer l’existence et l’unicité d’une série entière
∑

k≥0

βkxk de rayon de convergence

Rβ > 0 telle que pour tout x appartenant aux domaines de convergence des deux séries :


+∞∑

k=0

αkxk






+∞∑

k=0

βkxk


 = 1.

Q23. Montrer que si
∑

k≥0

βkxk est solution, alors la suite (βk)k∈N satisfait aux relations suivantes :




β0 = 1

∀n ∈ N∗
n∑

k=0

αkβn−k = 0 . (5)

Soit r un réel tel que 0 < r < Rα.

Q24. Montrer qu’il existe un réel M > 0 tel que pour tout k ∈ N :

|αk| ≤
M
rk .

Q25. Montrer que (5) admet une unique solution (βk)k∈N et que, pour tout k ∈ N∗ :

|βk| ≤
M(M + 1)k−1

rk .

On pourra raisonner par récurrence.

Q26. Que peut-on dire du rayon de convergence Rβ de la série entière
∑

k≥0

βkxk ?

4/8

Ensemble des solutions de (4)

Q27. Soit r > 0 et soit λ une fonction de classe C2 sur ]0, r[.
Montrer que la fonction y : x !→ λ(x)J0(x) est solution de (4) sur ]0, r[ si et seulement si la
fonction x !→ xJ2

0(x)λ′(x) est de dérivée nulle sur ]0, r[.

Q28. Montrer que J2
0 est somme d’une série entière dont on donnera le rayon de convergence. Que

vaut J2
0(0) ?

Q29. En déduire l’existence d’une fonction η somme d’une série entière de rayon de convergence
Rη > 0 telle que

x !→ η(x) + J0(x) ln(x)

soit solution de (4) sur un intervalle ]0,Rη[.
Q30. En déduire l’ensemble des solutions de (4) sur ]0,Rη[.
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