Théoreme de CvS de Dirichlet pour les séries de Fourier

Partie I : version non optimale pour les fonctions C?

D’aprés Oral Centrale 1 2022 A
Soit f: R — C de classe C! et 27-périodique. On pose ¢, (f) = i [T f(t)e"™ dt pour n € Z

N
(coefficient de Fourier complexe de f) puis Sy(f):z~ > ¢,(f)e™ la somme partielle d’ordre
—N
N "
n de sa série de Fourier et Dy iz~ Y. €™ pour N € N, appelé noyau de Dirichlet.
n=—N

b .
a) (Version C! du lemme de Riemann-Lebesgue) Montrer que f B(t)e™ dt - 0 pour tout
¢ €C([a,b],C).
b) Montrer que Sy (f)(x) = o f f(t)Dn(z —t)dt pour tout x € R.

1
T
sin((NJr%)u)
sinu/2

¢) Montrer que Dy (u) = pour tout u € R\27Z

d) Montrer que (Sn(f))yeny converge simplement vers f sur R.

Partie II : amélioration : CvS vers m(f) dans le cas C!-par morceaux

Soit f: R - C 2m-périodique, et Cl-par morceaux ce qui signifie qu’il existe une subdivision
To=-T <X < <Tpog < ¢ =7 de [-7m,7] telle que fijq, 2., SoOit C! et f et f admettent une
limite finie & gauche et & droite en tous les points x;. On pose encore ¢, (f) = i f;r f(t)e ™t dt

N N
pour n € Z, puis Sy(f) iz Y cu(f)e"™ et Dy:z— Y, €™ pour N eN.
n=—N n=—N
La preuve qui suit est trés analogue a celle de la partie 1 mais le résultat du a) est plus difficile

a établir et pour le d) on doit remplacer f(x) par m(f)(x).
b )
a) Montrer que / P(t)e"™ dt —s 0 pour tout ¢ € CM([a,b], C).
a T—>+00

b) Montrer que Sy(f)(z) =< [ WDN(u)du pour tout z € R.
sin(N+3)u

sinw

¢) (vide ici) On rappelle qu’on a montré au I ¢) que Dy (u) =

f(a™) + f(a7)
2

pour tout u € R\27Z

d) Soit x e R et m(f)(z) =

point x.

la moyenne des limites a gauche et a droite de f au

@)+ f(z7)

5 .
N.B. 1 Ce théoreme s’applique donc aux fonctions de type <« créneaux » que vous rencontrez en
physique.
N.B. 2 Dans le cas des fonctions continues, C' par morceaux, par exemple un signal triangle,
on peut montrer, mieux, que (Sy(f)) converge uniformément vers f. Cela n’est pas le cas si f
présente une discontinuité (phénomene de Gibbs).

Montrer que (Sn(f))yen () converge vers m(f)(x) =

Solution

Partie I : a) ici dans le cas C! une simple L.P.P. suffit.

b .
Notons I,(¢) = / B(t)e™ dt. On peut supposer x > 0 puisqu’on étudie ce qui se passe pour
a

T — +00.

e 1P ¢ do classe C1 . u(0) = ¢(0) = u'(0) = ¢'(0),
ar I.P.P, comme ¢ est de classe C*, en posan V(6) = expl(iah) < v(8) = ,iexp(xié)), on
iz

obtient :



_[o®) exp(izt) ] [t ¢ (9) exp(izt)
L(9) = [m]a - fa e
Donc, comme z > 0, par I.T.

IL(6)| < [#(b) exp(izb)| +|¢(a) exp(iza)]

T

/b ¢/(¢9)e.xp(iac9)d9‘ (+)

T
/bszﬁ’(@)exp(ix@)de </b|¢>’(9)|-|exp(ix9)|d9:[” [#"(O)1 4
a T ~Ja X a X

Comme ¢’ est une fonction continue sur un segment [a, b] il existe un M > 0 tel que V 0 € [a, b],
|6"(0)] < M. . b
M
En revenant & (), on a : |I(¢)] < @)+ |é(a)l + f —d
x

a X

Par I.T. pour les intégrales,

0.

b M M(b-
Comme f —df = M7 on conclut bien que :
a X X
A
Va>0,I:(¢) < — ot A=|p(a)|+]|p(b)|+ M(b-a) est une constante indépendante de z.

x
Donc I,(¢) — 0.
T—+00

b) Cette écriture simple de Sy (f) comme convolution 2w-périodique de f avec Dy est la raison
d’étre du noyau de Dirichlet Dy. Par linéarité de l'intégrale, (on ne considére que des sommes
finies), on a :

™ N . T
v = g [TIOCE e Dye= o [T r0Dx( -t ()

Autrement dit Sy est la convoluée de f avec Dy dans le monde des fonctions 27-périodiques.
¢) La fonction Dy s’appelle le noyau de Dirichlet.
Soit u € R\27Z, alors par formule sur les sommes des termes géométriques :

e~ iNu _ ei(NJrl)u

DN(U) = 1 - etu
eiu/Q(e—i(N-%—%)u _ ei(N+%)u))
= eiuf2(e-iuf2 — giuf2)
sin ((N + %) u)
- sin (%)
Cette égalité s’étend aux x € 277Z en prolongeant le membre de droite par continuité.
N . ™
d) Remarque : avec l’écriture initiale Dy @ u +— Z €™, le calcul de [ Dy donne 27
=T

n=—N
car seul le terme d’indice 0 dans la somme est d’intégrale non nulle.

1 ™
Donc pour chaque z € R, f(x) = Py f f(x)Dy(t)dt et avec la formule du b), on peut écrire :
s -7

F@) - Sn(N@) = 5= [T (F@) - 1)y (o - 1)

ou encore, par un changement de variable u = x —t ou les bornes ne changent pas par 2m-périodicité
de l'intégrande :

F@) - Sw(NE) = 5= [T (@)= - u) Dy(u)ir

f(x) - f(z—u)

Soit # € R. On pose ¢(u) = in(u/2)
sin(u

de sorte que :
F@) - Sx (@) = 5= [T ot)sin((V+ Dwydu (1)

La fonction ¢ est bien C! (méme C? avec I'hyp. sur f ici) en tout point u ou sin(u/2) # 0. Dans
[-7, 7] le seul point & probléme est donc 0.



Mais comme f est deux fois dérivable au point x, on a f(x —u) = f(z) —uf'(z) +u?/2f"(z) +
00(u2) et sin(u/2) = u/2 + o(u?).

f'(@) =5 f" (@) +o(u)
Donc ¢(u) = r oo(u) u20 _ 2f"(z) - f(z)u + o(u) donc ¢ admet un DLy et donc
admet un prolongement dérivable en 0.
Mais pour appliquer notre pauvre lemme de Riemann-Lebesgue du a), on a besoin, mieux de
® de classe C'. On regarde pour cela la limite de la dérivée :

f'(x = u)sin(u/2) - 1/2cos(u/2)(f (x) - f(x - u)
sin?(u/2)

& (u) =

avec un DLy (vérifiez!).
Mais alors le lemme de Riemann-Lebesgue du a) s’applique a ce ¢ avec © = N + %, pour conclure
quavec I’égalité (1) on a :

1) - Sn(N@) —_0.

D’ou la convergence simple.

Partie II : a) Lemme de Riemann-Lebesgue plus général fait en exercice de cours au chapitre
T3 avec ces hypotheses.

b) AuIb) on a obtenue une écriture simple de Sy (f) comme convolution de f avec Dy :

T N . T
Sx() = g [TIOCY =g [T 0D (-t (1)

Autrement dit Sy est la convoluée de f avec Dy dans le monde des fonctions 27-périodiques.
Mais pour les besoins du théoréme du d) on va couper en deux.
(i) Par changement de variable u = 2 — ¢ dans (1) on a :

1 T+ 1 s
Sv(N=5- [ F@-wDy () = o= [ f@-w)Dy(wdu (2)
la derniere égalité étant vraie par 2m-périodicité.

(ii) Par changement de variable u =t — 2 dans (1), on a :

1

SN(f):%fw:rﬂf(x+u)DN(—u)(du):%/ﬂﬂf(eru)DN(u)du (3)

la derniere égalité étant vraie par 2m-périodicité et aussi par parité du noyau Dy .
(iii) Par demi somme de (2) et (3) on trouve bien :

sw(f) = o [T TED by

f(x+u);f($—U)DN(u)

Comme l'intégrande u —

S(f) = %[Ow f(m+u)-2rf(x—u)DN(u)du

est paire (car Dy ’est), on peut encore écrire :

1 ™
d) Idée : on a vu que — f Dy =1.
7w Jo | e
Donc pour chaque z € R, f(z) = — [ f(x)Dy(t)dt et avec la formule du b), on peut écrire :
T Jo

flx+u)+ f(z—u) o

sv(n@) - mn@-- 2 [ (1)) D)

2
1 + - 1
Not _ [ fru)+f(z—u) _ [ fGerw)+flz—u)  flz)+f(z7)
otons ¢(u) ( 2 m(f)(ac)) sin(u/2) ( 2 2 ) sin(u/2)
Comme f admet par hyp. un DL; & gauche et & droite au point z, on a : ¢(u) = 2 i}gfo((z))m(“)

donc ¢ se prolonge bien par continuité en 0 et donc Riemann-Lebesgue du a) (cas continu) s’ap-
plique a ¢ et donc la conclusion.



