
Théorème de CvS de Dirichlet pour les séries de Fourier

Partie I : version non optimale pour les fonctions C2
D’après Oral Centrale 1 2022
Soit f ∶ R → C de classe C1 et 2π-périodique. On pose cn(f) = 1

2π ∫
π
−π f(t)e−int dt pour n ∈ Z

(coefficient de Fourier complexe de f) puis SN(f) ∶ x↦
N

∑
n=−N

cn(f)einx la somme partielle d’ordre

n de sa série de Fourier et DN ∶ x↦
N

∑
n=−N

einx pour N ∈N, appelé noyau de Dirichlet.

a) (Version C1 du lemme de Riemann-Lebesgue) Montrer que ∫
b

a
ϕ(t)eixt dt Ð→

x→+∞ 0 pour tout

ϕ ∈ C1([a, b],C).

b) Montrer que SN(f)(x) =
1

2π
∫

π

−π
f(t)DN(x − t)dt pour tout x ∈R.

c) Montrer que DN(u) =
sin((N+ 1

2
)u)

sinu/2 pour tout u ∈R/2πZ
d) Montrer que (SN(f))N∈N converge simplement vers f sur R.

Partie II : amélioration : CvS vers m(f) dans le cas C1-par morceaux

Soit f ∶ R → C 2π-périodique, et C1-par morceaux ce qui signifie qu’il existe une subdivision
x0 = −π < x1 < ⋅ ⋅ ⋅ < xn−1 < cn = π de [−π,π] telle que f∣]xi,xi+1[ soit C1 et f et f ′ admettent une

limite finie à gauche et à droite en tous les points xi. On pose encore cn(f) = 1
2π ∫

π
π f(t)e−int dt

pour n ∈ Z, puis SN(f) ∶ x↦
N

∑
n=−N

cn(f)einx et DN ∶ x↦
N

∑
n=−N

einx pour N ∈N.

La preuve qui suit est très analogue à celle de la partie 1 mais le résultat du a) est plus difficile
à établir et pour le d) on doit remplacer f(x) par m(f)(x).

a) Montrer que ∫
b

a
ϕ(t)eixt dt Ð→

x→+∞ 0 pour tout ϕ ∈ CM([a, b], C).

b) Montrer que SN(f)(x) = 1
π ∫

π
0

f(x+u)+f(x−u)
2

DN(u)du pour tout x ∈R.

c) (vide ici) On rappelle qu’on a montré au I c) que DN(u) =
sin(N+ 1

2
)u

sinu
pour tout u ∈R/2πZ

d) Soit x ∈ R et m(f)(x) = f(x+) + f(x−)
2

la moyenne des limites à gauche et à droite de f au

point x.

Montrer que (SN(f))N∈N (x) converge vers m(f)(x) = f(x+) + f(x−)
2

.

N.B. 1 Ce théorème s’applique donc aux fonctions de type ≪ créneaux ≫ que vous rencontrez en
physique.
N.B. 2 Dans le cas des fonctions continues, C1 par morceaux, par exemple un signal triangle,
on peut montrer, mieux, que (SN(f)) converge uniformément vers f . Cela n’est pas le cas si f
présente une discontinuité (phénomène de Gibbs).

Solution

Partie I : a) ici dans le cas C1 une simple I.P.P. suffit.

Notons Ix(ϕ) = ∫
b

a
ϕ(t)eixt dt. On peut supposer x > 0 puisqu’on étudie ce qui se passe pour

x→ +∞.

Par I.P.P, comme ϕ est de classe C1, en posant

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(θ) = ϕ(θ) ⇒ u′(θ) = ϕ′(θ),
v′(θ) = exp(ixθ) ⇐ v(θ) = 1

ix
exp(xiθ),

on

obtient :
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Ix(ϕ) = [
ϕ(θ) exp(ixθ)

ix
]
b

a

− ∫
b

a

ϕ′(θ) exp(ixθ)
ix

dθ

Donc, comme x > 0, par I.T.

∣Ix(ϕ)∣ ≤
∣ϕ(b) exp(ixb)∣ + ∣ϕ(a) exp(ixa)∣

x
+ ∣∫

b

a

ϕ′(θ) exp(ixθ)
ix

dθ∣ (∗)

Par I.T. pour les intégrales, ∣∫
b

a

ϕ′(θ) exp(ixθ)
ix

dθ∣ ≤ ∫
b

a

∣ϕ′(θ)∣.∣ exp(ixθ)∣
x

dθ = ∫
b

a

∣ϕ′(θ)∣
x

dθ

Comme ϕ′ est une fonction continue sur un segment [a, b] il existe un M > 0 tel que ∀ θ ∈ [a, b],
∣ϕ′(θ)∣ ≤M .

En revenant à (∗), on a : ∣Ix(ϕ)∣ ≤
∣ϕ(b)∣ + ∣ϕ(a)∣

x
+ ∫

b

a

M

x
dθ.

Comme ∫
b

a

M

x
dθ = M(b − a)

x
, on conclut bien que :

∀x > 0, ∣Ix(ϕ)∣ ≤
A

x
où A = ∣ϕ(a)∣ + ∣ϕ(b)∣ +M(b − a) est une constante indépendante de x.

Donc Ix(ϕ) Ð→
x→+∞ 0.

b) Cette écriture simple de SN(f) comme convolution 2π-périodique de f avec DN est la raison
d’être du noyau de Dirichlet DN . Par linéarité de l’intégrale, (on ne considère que des sommes
finies), on a :

SN(f) =
1

2π
∫

π

−π
f(t)(

N

∑
n=−N

ein(x−t))dt = 1

2π
∫

π

−π
f(t)DN(x − t)dt (1)

Autrement dit SN est la convoluée de f avec DN dans le monde des fonctions 2π-périodiques.
c) La fonction DN s’appelle le noyau de Dirichlet.
Soit u ∈R/2πZ, alors par formule sur les sommes des termes géométriques :

DN(u) =
e−iNu − ei(N+1)u

1 − eiu

= eiu/2(e−i(N+ 1
2 )u − ei(N+ 1

2 )u))
eiu/2(e−iu/2 − eiu/2)

=
sin ((N + 1

2
)u)

sin (u
2
)

Cette égalité s’étend aux x ∈ 2πZ en prolongeant le membre de droite par continuité.

d) Remarque : avec l’écriture initiale DN ∶ u ↦
N

∑
n=−N

einu, le calcul de ∫
π

−π
DN donne 2π

car seul le terme d’indice 0 dans la somme est d’intégrale non nulle.

Donc pour chaque x ∈ R, f(x) = 1

2π
∫

π

−π
f(x)DN(t)dt et avec la formule du b), on peut écrire :

f(x) − SN(f)(x) =
1

2π
∫

π

−π
(f(x) − f(t))DN(x − t)dt

ou encore, par un changement de variable u = x− t où les bornes ne changent pas par 2π-périodicité
de l’intégrande :

f(x) − SN(f)(x) =
1

2π
∫

π

−π
(f(x) − f(x − u))DN(u)dt

Soit x ∈ R. On pose ϕ(u) = f(x) − f(x − u)
sin(u/2) de sorte que :

f(x) − SN(f)(x) =
1

2π
∫

π

−π
ϕ(u) sin((N + 1

2
)u)du (†)

La fonction ϕ est bien C1 (même C2 avec l’hyp. sur f ici) en tout point u où sin(u/2) ≠ 0. Dans
[−π,π] le seul point à problème est donc 0.
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Mais comme f est deux fois dérivable au point x, on a f(x − u) = f(x) − uf ′(x) + u2/2f ′′(x) +
o

u→0
(u2) et sin(u/2) = u/2 + o(u2).

Donc ϕ(u) =
f ′(x) − u

2
f ′′(x) + o(u)

u→0

1/2 + o
u→0
(u) = 2f ′(x) − f ′′(x)u + o(u) donc ϕ admet un DL1 et donc

admet un prolongement dérivable en 0.
Mais pour appliquer notre pauvre lemme de Riemann-Lebesgue du a), on a besoin, mieux de

Φ de classe C1. On regarde pour cela la limite de la dérivée :

Φ′(u) = f ′(x − u) sin(u/2) − 1/2 cos(u/2)(f(x) − f(x − u)
sin2(u/2)

avec un DL2 (vérifiez !).
Mais alors le lemme de Riemann-Lebesgue du a) s’applique à ce ϕ avec x = N + 1

2
, pour conclure

qu’avec l’égalité (†) on a :
f(x) − SN(f)(x) Ð→

N→+∞
0.

D’où la convergence simple.
Partie II : a) Lemme de Riemann-Lebesgue plus général fait en exercice de cours au chapitre

T3 avec ces hypothèses.
b) Au I b) on a obtenue une écriture simple de SN(f) comme convolution de f avec DN :

SN(f) =
1

2π
∫

π

−π
f(t)(

N

∑
n=−N

ein(x−t))dt = 1

2π
∫

π

−π
f(t)DN(x − t)dt (1)

Autrement dit SN est la convoluée de f avec DN dans le monde des fonctions 2π-périodiques.
Mais pour les besoins du théorème du d) on va couper en deux.
(i) Par changement de variable u = x − t dans (1) on a :

SN(f) =
1

2π
∫

x+π

x−π
f(x − u)DN(u)(du) =

1

2π
∫

π

π
f(x − u)DN(u)du (2)

la dernière égalité étant vraie par 2π-périodicité.
(ii) Par changement de variable u = t − x dans (1), on a :

SN(f) =
1

2π
∫

x+π

x−π
f(x + u)DN(−u)(du) =

1

2π
∫

π

π
f(x + u)DN(u)du (3)

la dernière égalité étant vraie par 2π-périodicité et aussi par parité du noyau DN .
(iii) Par demi somme de (2) et (3) on trouve bien :

SN(f) =
1

2π
∫

π

π

f(x + u) + f(x − u)
2

DN(u)du

Comme l’intégrande u↦ f(x+u)+f(x−u)
2

DN(u) est paire (car DN l’est), on peut encore écrire :

SN(f) =
1

π
∫

π

0

f(x + u) + f(x − u)
2

DN(u)du

d) Idée : on a vu que
1

π
∫

π

0
DN = 1.

Donc pour chaque x ∈ R, f(x) = 1

π
∫

π

0
f(x)DN(t)dt et avec la formule du b), on peut écrire :

SN(f)(x) −m(f)(x)− =
1

π
∫

π

0
(f(x + u) + f(x − u)

2
−m(f)(x))DN(u)du

Notons ϕ(u) = ( f(x+u)+f(x−u)
2

−m(f)(x)) 1

sin(u/2) = (
f(x+u)+f(x−u)

2
− f(x+)+f(x−)

2
) 1

sin(u/2)
Comme f admet par hyp. un DL1 à gauche et à droite au point x, on a : ϕ(u) = uf ′(x+)−uf ′(x−)+o(u)

u/2+o(u)
donc ϕ se prolonge bien par continuité en 0 et donc Riemann-Lebesgue du a) (cas continu) s’ap-
plique à ϕ et donc la conclusion.
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