Chapitre 14 : notions sur les classes en
PyTHON. Illustration sur les matrices

Table des matiéres

1 Classes et objets 1
1.1 Essai de définition d’une classe 1
1.2 La notion de classe est plus générale que cellede type. 2
1.3 Lesclasses font desenfants 2
1.4 Les objets : leurs attributs et leurs valeurs L. 3
1.5 Les fonctions attachées a une classe s’appellent des méthodes : 3
1.6 Le self : une autre fagon d’appeler les méthodes 3

2 Une construction concréte : I’exemple de la classe Matrice 3
2.1 Pour pouvoir définir des objets : la méthode __init__, 3
2.2 Excursion : regardons une autre classe et d’autres attributs 5
2.3 Une deuxieme méthode que nous allons mettre dans notre classe 5
2.4 Des méthodes magiques L 6

2.4.1 Méthode magique __call__: transforme en fonction 6
2.4.2 Méthode magique __add__ : permet d’'utiliser le + 6
2.4.3 Méthode magique __iter__. 7
2.4.4 Méthode magique __str__ 7
2.4.5 Méthode magique __repr__ e 8
2.5 Et les opérations du chapitre sur les matrices alors? 8
2.5.1 Voici la réécriture des premieéreso oo 8
2.5.2 Vous pourrez jouer a faire lesautres Lo o oL 8
2.6 Remarque finale sur le polymorphisme illustrée sur les probléemes des copies 8

3 Le cas des polynémes formels 9
3.1 Une classe toute faite : dans la doc. de l'oral de Centrale : cf. feuille jointe 9
3.2 Comment faire notre propre classe polynéme : TP 9

4 Bonus (hors-cours) exemple classe meére/classe fille, attributs privés, méthodes

privées 9

4.1 Classe mere : les points algébriques 9

4.1.1 Premiere version de la méthode __init__ 9

4.1.2 Seconde version du __init__ avec attributs privés L. 10

4.2 Classe fille : les points géométriques L o 11
Introduction

Nous connaissons déja bien la notion de type de variables. Ainsi en PYTHON, a=1 va fabriquer
une variable a de type integer alors que a="1" va fabriquer une variable de type string et a=[1]
une liste. Pour chacun de ces types de variables, on a une opération + mais qui ne fait pas la méme
chose.

On dit que la fonction + est « polymorphe » : elle s’applique & des types de variables différentes.

1 Classes et objets

1.1 Essal de définition d’une classe

a) Premiére idée sur les classes (trés vague) : < L’ensemble » de toutes les variables de
type integer va s’appeler la classe des integer. Un entier particulier par exemple a=2 sera un
objet ou une instance de la classe.

b) La limite de la comparaison avec les ensembles : ce ne sont pas les objets qui
définissent la classe mais la forme et les propriétés communes. Quand on va programmer, la
définition de la classe précede celle des objets, un peu comme la confection d’'un moule précede la
confection d’'un objet.

Autrement dit :

(Déﬁnir une classe, c’est plutdt définir une forme et des propriétés qu’auront les objets de la classe]

¢) Les opérations qu’on peut faire avec les objets font partie de la définition de la classe.

Par exemple, on va définir plus loin une classe Matrice dont chaque objet sera une matrice
avec un nombre de lignes, de colonnes, et avec des opérations possibles sur ces matrices. Bien str,
tout ce qu’on va faire va un peu faire double emploi avec par exemple les np.array de numpy, mais
le but est ici de montrer comment faire notre classe a nous, en utilisant seulement le type liste qui
est un type de base de Python.

1.2 La notion de classe est plus générale que celle de type
Prenons 'exemple d’une variable L en PYTHON intervenant dans le code suivant :

for i in L:
print (i)

Pour que le code précédent soit valide, il est nécessaire que ’objet L soit iterable i.e. supporte une
boucle for, et que les éléments de L soient affichables (pour le print).
En PYTHON, il existe une classe Iterable qui permet de dire que les objets de la classe ont

cette propriété, avec une méthode __iter__ qui retourne un objet qu’on peut parcourir®.

1.3 Les classes font des enfants

Considérons le schéma suivant :

Iterable
X List Code X Possedent les propriété
'S a=1[1]] (1,1) | 1 du parent
for i in a: .
4 Tuple print (i) 4 Peuvent enlgjouter
ou les modifier
\ / En fonction de ce que I'on met dans a,
le code fonctionne ou plante !

La classe Iterable admet (notamment) les classes List et Tuple comme classes filles. Le code
du milieu fonctionnera pour a=[1] ou a=(1,1) mais pas pour a=1. Le type Integer ne possede
pas de méthode __iter_

[Cette possibilité de faire « hériter » une sous-classe de prop. donne beaucoup d’efficacité !]

Exemple : pour un jeu vidéo on peut considérer une classe éléments avec deux classes
filles personnage et décor et pour la classe personnage deux classes filles personnage géré par
1’ordi. ou personnage géré par le joueur.

Toutefois dans ce qui suit nous ne considérerons qu’une classe... par manque de temps !

1. Nous revenons plus loin sur le sens du double-underscore autour de iter

1.4 Les objets : leurs attributs et leurs valeurs

[Pour définir une classe, on doit d’abord définir les attributs de ses objetsj

Par exemple, on peut penser a une classe Taupin avec l’objet Paul a un attribut moyenneMath
avec une valeur 14.

L’idée : tous les objets de la classe auront ’attribut moyenneMath mais avec des wvaleurs
différentes.

1.5 Les fonctions attachées a une classe s’appellent des méthodes :

[Pour définir une classe, on doit ensuite définir les méthodes qui operent sur ses objets)

On connait déja bien la syntaxe des méthodes pour les listes par exemples : 1.append(1).

D’une maniere générale, quand on va définir une classe, on va, a la suite des premieres ins-
tructions qui vont modeler les objets de la classe, définir un certain nombres de fonctions qui
s’appliqueront aux objets de la classe, et seulement & ces objets 2. Ce sont les méthodes de la classe.

Par exemple avec help(list) on voit toutes les méthodes définies pour la classe liste et les
docstrings qu’on aura écrites comme aide des fonctions apparaitront dans cette aide.

1.6 Le self: une autre facon d’appeler les méthodes

On a rappelé au paragraphe précédent la syntaxe d’appel des méthodes d’une classe. En réalité,
il en existe une autre : par exemple pour rajouter a une liste L une entrée 12, on peut au lieu de
faire L.append (12) faire :

list.append(L,12)

Il s’agit de la méme fonction appelée avec les arguments self, 12 : le premier argument
est la liste sur laquelle la méthode va opérer. On met list devant le append pour dire a
PyYTHON ou la chercher alors qu’avec L.append ce n’est pas nécessaire puisque en voyant L
il sait que c’est une liste.

D’une maniere générale : objet.méthode (arguments) et
nomclasse.méthode (objet,arguments) sont des appels équivalents de la fonction
méthode. Sous la deuxieme forme, ce premier argument est appelé self.

2 Une construction concrete : I’exemple de la classe Matrice

Convention : (pas forcément toujours respectée) les noms de classe en PYTHON commencent par
une majuscule.

2.1 Pour pouvoir définir des objets : la méthode __init__

Voici le début du code de déclaration de notre classe Matrice avec la premiere fonction
__init__ expliquée ci-apres.

class Matrice:
def __init__ (self, m, n):

self.lignes = m

self.colonnes = n

self.tableau = [] # Initialise notre représentation interne d’une matrice

comme un tableau

for i in range (self.lignes):
1=1(]
for j in range (self.colonnes):

1.append (None)

self.tableau.append (1)

2. ou aux objets d’une classe fille.

Le def est une déclaration de fonction. Comme, il est a I'intérieur de la classe, cette fonction
est une méthode de la classe. Le mot __init__ est un nom réservé de PYTHON. Avant de détailler
ce qu'il y a a l'intérieur de la déclaration de notre fonction __init__, voyons déja :

——

[A quoi sert notre méthode __init__? A initialiser i.e. & donner une forme a des objetsj

Utilisation concrete :

a=Matrice(3,3)
type(a)
<class ’__main__.Matrice’> ## youpi on a fabriqué un objet de la classe Matrice,

qui fait partie des classes directement accessibles (dans __main__).

La méthode __init__ est < magique » : on ne ’appelle pas par son nom, mais par le nom de la
classe.

Retour sur la déclaration def __init__ : les arguments self,m,n

Dans le code de déclaration def __init__ prend trois arguments self ,m,n.
Dans l'utilisation, on n’a rentré que deux arguments, qui correspondent a m,n. En fait, I’écriture
magique a=Matrice(3,3) est équivalente a Matrice.__init__(a,3,3) dans laquelle self est

lobjet a surlequel agit la méthode (ici en l'initialisant) ou encore & __init__(a,3,3).

Davantage sur les attributs : La suite du code

self.lignes = m
self.colonnes = n
self.tableau = []

définit trois attributs pour l'objet self créé par cette méthode. L’attribut lignes, l'attribut
colonnes et l'attribut (moins parlant & ce stade) t.
La valeur donnée & ce attributs est pour les deux premiers respectivement m et n. Ainsi :

Lors de 'appel de a=Matrice(3,3) équivalent & a=__init__(3,3) la méthode fa-
brique [’objet a avec comme wvaleurs 3 et 3 pour les deux attributs a.lignes et
a.colonnes

Suite du code : la déf. de I’attribut tableau ici : La ligne self.tableau=[] n’était que
I’initialisation de la valeur de l'attribut self.tableau. Le reste du code donne la vraie nature de
Pattribut self.tableau. A la fin de ce code self.tableau est une liste (de longueur m) de listes
de longueurs n dont toutes les entrées contiennent la variable None.

[Ici self.tableau donne donc le formatage par défaut de la matrice.]

Tous les attributs contiennent des valeurs associées a notre matrice, directement ac-
cessibles :

>>>A=Matrice(3,2)

>>>A.lignes

3

>>> A.tableau

[[None, None], [None, Nonel, [None, None]l]

3. En fait c’est plus compliqué que cela : 'appel de Matrice provoque ’appel d’une méthode qui crée un objet,
puis de la méthode __init__. En revanche, une fois qu'un objet est créé, __init__ pourra le modifier

2.2 Excursion : regardons une autre classe et d’autres attributs

>>>help(complex)
Help on class complex in module builtins:

class complex(object)
| complex(reall, imagl) -> complex number

| Create a complex number from a real part and an optional imaginary part.
Methods defined here:

|

|

| __abs__(self, /)
| abs(self)
|

|

|

|

_add__(self, value, /)
Return self+value.

Data descriptors defined here:

|
|
| imag

| the imaginary part of a complex number
|

|

|

real
the real part of a complex number

Jai sauté la liste des méthodes, mais les data descriptors sont les attributs, et donc la
syntaxe pour extraire partie réelle et partie imaginaire est :

z=complex(15,7) # crée le complexe 15+7i
z.real # oul sans parenthése aprés car attributs et pas fonctioms....
z.imag

2.3 Une deuxieme méthode que nous allons mettre dans notre classe

Pour remplir agréablement les matrices

Toujours & la suite (et donc indenté comme le premier def
classe Matrice : (d’ot 'indentation!)

_init__) déclarons dans notre

def remplir(self, f):
""" f est une fonction de deux variables, remplir fabrique la matrice M
telle que pour tout (i,j), M(i,j) = £(i,jo"""
for i in range (self.lignes):
for j in range (self.colonnes):
self .tableauli] [j]1 = £ (i,j)

On pourra utiliser cela pour définir notre matrice de Hilbert du T.P. sur les matrices comme suit :

def £(i,j):
return 1/(i+j+1)
A=Matrice(3,3)
A.remplir(f) # Noter la syntaxe, qui est celle des méthodes.
A.tableau

2.4 Des méthodes magiques

n appelle méthodes magiques des méthodes qui s’utilisent tres agréablement a ’aid
par exemple d’un opérateur comme +,* ou une autre commande, plutot que par
la syntaxe usuelle d’appel de méthodes. Ces méthodes ont un nom réservé en Py-
THON, encadré par des __. Ce nom de méthode peut étre utilisé pour des classes tres
différentes : la méthode sous-jacente faisant des résultats tres différents. On va le voir
n reprenant I’exemple de I’addition de I'introduction.

Nous avons déja vu que __init__ était magique. En voici une autre, avant l'addition :

2.4.1 Meéthode magique __call__ : transforme en fonction

def __call__ (self, i, j):
"nt permet d’obtenir 1l’entrée (i,j) de la matrice A en tapant A(i,j), autrement dit
informatiquement, en considérant la matrice comme fonction de i,j"""
return self.tableauli] [j]

Alors on pourra voir I'entrée A(2,1) d’une matrice A simplement avec la syntaxe :
>>A(2,1)

Remarque : ceci doit vous faire comprendre les messages d’erreurs que vous avez souvent ren-
contrés : par exemple si on fait

>>>a=2
>>>a(2)
TypeError: ’int’ object is not callable

Le message d’erreur not callable dit que vous essayer d’appliquer une syntaxe de fonction
i.e. une parenthese, a un objet qui n’a pas de méthode call comme ici un entier

2.4.2 Méthode magique __add__ : permet d’utiliser le +

def __add__ (self, autre):
renvoie la somme de la matrice self et de la matrice autre
if isinstance (autre, Matrice):

if self.lignes == autre.lignes and self.colonnes == autre.colonnes:
m = Matrice (self.lignes, self.colonnes)
m.remplir (lambda i,j: self(i,j) + autre(i,j)) # lambda définit une fonction
return m

else:
raise ValueError ("Dimension des matrices incompatibles")

else:
raise ValueError("L’objet que vous voulez ajouter n’est pas une matrice")

Cette méthode est magique car ensuite, si A et B sont deux objets de notre classe matrice, elle
sera appelée si on tape A+B.

Détail sur ce qui se passe lorsqu’on tape A+B pour PYTHON.

En fait PYTHON exécute A.__add__(B). L’interpréteur PYTHON lit de gauche a droite :

e Il rencontre d’abord l'objet A et regarde a quelle classe, il appartient. Pour nous c’est une
matrice.

e Il rencontre ensuite la méthode __add__ : il va chercher si la classe a laquelle appartient
I’objet A a bien une méthode __add__. Pour nous c’est le cas, on vient de définir cette méthode
sur les matrices.

e Enfin il lit argument B qui est la variable autre de notre programme ci-dessus.

Dans le programme, il y a deux cas : celui ou B est une matrice, et ’autre cas, ol le message
renvoie une erreur. Méme pour une matrice il renvoie une erreur si la taille de B n’est pas adaptée.

Exercice : FEcrire de méme le code de la méthode magique __ mul__ pour la multiplication
qu’on peut appeler ensuite avec le symbole *.

2.4.3 Méthode magique __iter__

On a évoquée cette méthode au § 1.2 : on a envie de pouvoir faire une boucle for en parcourant
la matrice, comme on le fait pour une liste en PYTHON, autrement dit, on veut donner du sens a
for a in A pour A une matrice et a parcourant les entrées de a. Cela se fait ainsi :

def __iter__ (self):
""" Permet de faire des boucles
for qui parcourent les entrées de la matrice """
for ligne in self.tableau:
for entree in ligne:

yield entree

N.B. Ici, il y a une subtilité, le return a été remplacé par un yield : grossierement un yield
renvoie une valeur, mais ne sort pas de la fonction. Plus précisément, le yield fabrique un objet
appelé générateur qui justement est ce qu’on peut utiliser dans une boucle for. (Par exemple un
range(1,n) est un générateur aussi).

2.4.4 Méthode magique __str__

La méthode __str__ est ce qui permet d’utiliser la commande print. En ligne de commande,
jusqu’a maintenant si on rentre

>>>A=Matrice(3,3)
>>>A

<__main__.Matrice object at 0x1712950>

on nous dit juste que c’est un objet de la classe Matrice dans le module __main__. Et print (A)
donne la méme chose.

[On aimerait que le print nous donne un joli affichage de A.tableau.j

Pour cela, on doit, comme annoncé, munir notre classe Matrice d’une méthode __str__

def __str__ (self):
""" représentation textuelle de la matrice """
sortie = ""
détermination de la longueur de la plus grande entrée de la matrice
m=20
for entree in self: # utilise la méthode iter pour parcourir la matrice
s = str (entree) # convertit en chaine de caract.
m = max (m, len(s))
m contient en fn de boucle cette longueur maximale
for Ligne in self.tableau:

for entree in Ligne : #
s = str(entree)
espaces = " " x (m - len (s)) # va combler la différence d’espaces
sortie += espaces + s + " " #

sortie += "\n" # saut de ligne
return sortie

Et voila, avec cela, on pourra avoir un joli print d’une matrice. Si on trouve que 'affichage
compte trop de décimales, on peut remplacer la ligne :

s = str(entree) # convertit en chaine de caract.
par
s="{:.3f}".format (entree) # convertit en chaine de caract. et affiche les flottants avec 3 chif

éventuellement en testant d’abord si I’entrée est bien un flottant.

2.4.5 Méthode magique __repr__

Si on sait maintenant faire un joli affichage avec print, si A est une matrice et qu’on tape A
dans le shell, on aura toujours un truc du genre

<__main__.Matrice object at 0x10a03b4a8>

En revanche si on crée une méthode __repr__ on peut choisir ce qui s’affiche dans le shell
quand on tape A dans le shell pour une matrice A. On peut, pour ne pas s’embéter choisir de ren-
voyer self.__str__ (). Mais ceci explique pourquoi pour certains objets vous avez des résultats

différents entre A et print (A) (par exemple pour une chaine de caractéres).

2.5 Et les opérations du chapitre sur les matrices alors ?
2.5.1 Voici la réécriture des premieres

def echange (self, i, j):

"v Fchange les ligne i et j : L(i) <-> L(j) attention au pb. de la copie non autonome
A=self.tableau
Li=[]

for p in range (len(A[il)): #
Li+=[A[i] [p]] # on copie entrée par entrée.
fin de boucle Li est une copie autonome de A[i] car les entrées sont des nombres sj
for p in range (len(A[jl)):
A[i] [pl=A[j][p]
for p in range(len(A[i])):
ATj] [pl=Lilp]

Bien siir il serait mieux de gérer directement les problemes de copies avec une fonction copy
comme dans np.copy ou deepcopy

def transvection (self, i, j, mu):
"t Effectue une transvection :L(i) <- L(i) + mu * L(j)"""
for k in range (self.colonnes):
self.tableau[i] [k] = self.tableauli] [k] + mu * self.tableaul[j] [k]

2.5.2 Vous pourrez jouer a faire les autres

2.6 Remarque finale sur le polymorphisme illustrée sur les problemes
des copies

[Ce qui suit est une incitation a se méfier des copies avec [:] : utilisez deepcopy par prudence]

Une situation connue

L=[1,2,3] # je crée une liste

C=L[:] # je fais une copie de la liste (shallow but sufficient)
L[1]=2000 # je parie que C n’est pas modifié

print (C) # gagné

Une vilaine surprise

T=np.array([1,2,3]) # je crée un tableau numpy
R=T[:] # je pense faire une copie du tableau
T[1]=2000 # je parie que R n’est pas modifié
print(R) # bah non, je me suis planté...

Horrible non ?

La raison : toujours le polymorphisme. Pour chaque classe, on peut redéfinir comme on veut la
valeur d’une fonction ici celle appelée par [:].

La méthode correspondante porte le nom significatif de __getitem__. Il se trouve que la
méthode a été définie différemment pour les deux classes (comme le + etc.)

Une morale pour survivre :

[Moralité : faire des copy.deepcopy par sécurité.]

Un exemple radical pour comprendre

On va définir une classe stupide :

class A:
def __getitem__(self,_):
return 17

a=AQ0 # 1’objet a est crée méme sans init : il n’ a pas de forme..
print(al:]1) #
print(al[1]) #

Un autre exemple pour le méme getitem avec les matrices

Le code de Maud pour le calcul de Gram-Schmidt au DM 20 repose sur la définition, pratique
dans ce contexte, du getitem pour les matrices, différentes de celles des np.array.
En effet :

import numpy as np
A=np.matrix([[1,2,3],[4,5,61])
L=A[0]

print (L)

affiche :
[[1 2 3]]

3 Le cas des polynomes formels

3.1 Une classe toute faite : dans la doc. de ’oral de Centrale : cf. feuille
jointe

3.2 Comment faire notre propre classe polynome : TP

Instancier les objets polynémes avec comme attribut une liste de coefficients. Ecrire des foncions
(méthodes) qui renvoie, le degré, calcule la somme, le produit, la division euclidienne (quotient et
reste), le pged avec I'algorithme d’Euclide.

[C’est votre mission pour le TP 17.]

4 Bonus (hors-cours) exemple classe meére/classe fille, attri-
buts privés, méthodes privées

4.1 Classe mere : les points algébriques

4.1.1 Premieéere version de la méthode __init__

On va définir un point algébrique par I'entrée d’un couple de coordonnées cartésiennes d’ou la
méthode __init__ ci-dessous :

class PointAlg:
def __init__(self, xy=[0,0]):

self.x = float(xy[0])

self.y = float(xyl[1])

self.r = None # r,a seront module et argument & compléter aprés.
self.a = None

Question : Pourquoi ne pas directement définir plutot :
self.r=m.sqrt(self.x**2 + self.y**2) # le m. pour le module math
Essayons : en regardant ce qui se passe si on modifie un attribut P.x d’un point P ?
On comprend la nécessité de fonctions qui vont mettre a jour les attributs.
4.1.2 Seconde version du __init__ avec attributs privés

On va empeécher l'utilisateur d’avoir directement acces aux attributs, en les déclarant comme
attributs privés

class PointAlg:
def __init__(self, xy=[0,0]):

self.__x = float(xy[0]) # avec un double underscore devant l’utilisateur n’a pas accés
self.__y = float(xy[1])

self.__r = None # r,a seront module et argument & compléter aprés.

self.__a = None

Cette fois 'utilisateur n’a pas acces aux attributs : essayez !
A quoi bon avoir des attributs si on ne peut pas y accéder ? On définit des méthodes d’acces
en lecture :

def getX(self):
return self.__x
def getY(self):
return self.__y
def getXY(self):
return self.__x,self.__y
def getRho(self):
return self.__r

def getTheta(self):

return m.degrees(self.__a)

et des méthodes d’acces en écriture :

def setX(self, x):
self.__x = x
self.__majRA()

def setY(self, y):
self.__y =y
self.__majRA()

def setTheta(self, angleDegre):
self.__a = m.radians(angleDegre)

Attributs 1liés

self.__majXY(Q)

def setRho(self, rho_mm):

10

self.__r = rho_mm
Attributs liés
self.__majXY(Q)

Quelle différences notez vous ?
11 faut bien str définir les méthodes (privés i.e. 'utilisateur n’y a pas acces)

_majRA et __majXY.

def __majXY(self):
self.__x=self.__r*m.cos(self.__a)
self.__y=self.__r*m.sin(self.__a)
def __majRA(self):

self.__r = m.sqrt(self.__x**2 + self.__y*x2)
self.__a = m.atan2(self.__y,self.__x) # en rad

Que manque-t-il encore dans la définition de la méthode __init__7

4.2 Classe fille : les points géométriques

Dans le script qui suit, on définit une classe PointGraphique (PointAlg) ce qui signifie une
classe PointGraphique fille de la classe PointAlg. On la munit d’'une méthode __init__ qui lui
est propre : ce n’est pas forcément nécessaire : parfois la classe fille peut simplement hériter de la
méthode __init__ de la classe mere et étre simplement pourvue d’autre méthode.

Ici donc avec ce nouveau __init__, les objets PointGraphique auront tous les attributs des
objets PointAlg (grace a la ligne PointAlg.__init__(self,coord)), mais auront deux autres
attributs.

import matplotlib.pyplot as plt
class PointGraphique(PointAlg):
def __init__(self,coord,couleur,forme):
PointAlg.__init__(self,coord)# création d’un point alg
self.couleur=couleur
self.forme=forme
le point graphique hérite des attributs et des méthodes
du point algébrique avec des attributs supplémentaires..
def affiche(self):
x=self.getX()
y=self.getY()
plt.plot(x,y,color=self.couleur,marker=self.forme)
plt.show()

11

