
Chapitre 14 : notions sur les classes en
Python. Illustration sur les matrices

Table des matières

1 Classes et objets 1
1.1 Essai de définition d’une classe . 1
1.2 La notion de classe est plus générale que celle de type 2
1.3 Les classes font des enfants . 2
1.4 Les objets : leurs attributs et leurs valeurs . 3
1.5 Les fonctions attachées à une classe s’appellent des méthodes : 3
1.6 Le self : une autre façon d’appeler les méthodes . 3

2 Une construction concrète : l’exemple de la classe Matrice 3
2.1 Pour pouvoir définir des objets : la méthode init 3
2.2 Excursion : regardons une autre classe et d’autres attributs 5
2.3 Une deuxième méthode que nous allons mettre dans notre classe 5
2.4 Des méthodes magiques . 6

2.4.1 Méthode magique call : transforme en fonction 6
2.4.2 Méthode magique add : permet d’utiliser le + 6
2.4.3 Méthode magique iter . 7
2.4.4 Méthode magique str . 7
2.4.5 Méthode magique repr . 8

2.5 Et les opérations du chapitre sur les matrices alors ? . 8
2.5.1 Voici la réécriture des premières . 8
2.5.2 Vous pourrez jouer à faire les autres . 8

2.6 Remarque finale sur le polymorphisme illustrée sur les problèmes des copies 8

3 Le cas des polynômes formels 9
3.1 Une classe toute faite : dans la doc. de l’oral de Centrale : cf. feuille jointe 9
3.2 Comment faire notre propre classe polynôme : TP . 9

4 Bonus (hors-cours) exemple classe mère/classe fille, attributs privés, méthodes
privées 9
4.1 Classe mère : les points algébriques . 9

4.1.1 Première version de la méthode init . 9
4.1.2 Seconde version du init avec attributs privés 10

4.2 Classe fille : les points géométriques . 11

Introduction

Nous connaissons déjà bien la notion de type de variables. Ainsi en Python, a=1 va fabriquer
une variable a de type integer alors que a="1" va fabriquer une variable de type string et a=[1]

une liste. Pour chacun de ces types de variables, on a une opération + mais qui ne fait pas la même
chose.

On dit que la fonction + est ≪ polymorphe ≫ : elle s’applique à des types de variables différentes.

1 Classes et objets

1.1 Essai de définition d’une classe

a) Première idée sur les classes (très vague) : ≪ L’ensemble ≫ de toutes les variables de
type integer va s’appeler la classe des integer. Un entier particulier par exemple a=2 sera un
objet ou une instance de la classe.

1

b) La limite de la comparaison avec les ensembles : ce ne sont pas les objets qui
définissent la classe mais la forme et les propriétés communes. Quand on va programmer, la
définition de la classe précède celle des objets, un peu comme la confection d’un moule précède la
confection d’un objet.

Autrement dit :

�� ��Définir une classe, c’est plutôt définir une forme et des propriétés qu’auront les objets de la classe

c) Les opérations qu’on peut faire avec les objets font partie de la définition de la classe.

Par exemple, on va définir plus loin une classe Matrice dont chaque objet sera une matrice
avec un nombre de lignes, de colonnes, et avec des opérations possibles sur ces matrices. Bien sûr,
tout ce qu’on va faire va un peu faire double emploi avec par exemple les np.array de numpy, mais
le but est ici de montrer comment faire notre classe à nous, en utilisant seulement le type liste qui
est un type de base de Python.

1.2 La notion de classe est plus générale que celle de type

Prenons l’exemple d’une variable L en Python intervenant dans le code suivant :

for i in L:

print(i)

Pour que le code précédent soit valide, il est nécessaire que l’objet L soit iterable i.e. supporte une
boucle for, et que les éléments de L soient affichables (pour le print).

En Python, il existe une classe Iterable qui permet de dire que les objets de la classe ont
cette propriété, avec une méthode __iter__ qui retourne un objet qu’on peut parcourir 1.

1.3 Les classes font des enfants

Considérons le schéma suivant :

En pratique
Classes, sous-classes et héritage

a = [1] | (1,1) | 1
for i in a:
 print (i)

Code

Exemples

Typage canard

Si je vois un animal qui
vole comme un canard,
cancane comme un canard,
et nage comme un canard,
alors j'appelle cet oiseau
un canard

Attribué à James Whitcomb Riley

Classe
Type

Méthode
Fonction

a.append (x)
Code

Exemples

1.__add__ (2)
Code

Python est laxiste sur
les classes et on peut
se comporter comme
une classe sans
en être descendant
grâce au typage
canard

Iterable

List

Tuple
En fonction de ce que l'on met dans a,
le code fonctionne ou plante !

Sous-classes
Possèdent les propriétés
du parent

Peuvent en ajouter
ou les modi�er

Une question de méthode
Une question de méthode,

mais quel est donc cet
étrange concept ?

Objet

Programmeur

Entrée Sortie

C'est tout simplement
une action de l'objet

que l'on peut déclencher.

Un élément d'une classe
est un peut comme une
boîte noire sur laquelle
des boutons sont disposés.

Une classe est dé�nie par les attributs
de ses objets et leurs méthodes.

Mais la valeur des attributs peut varier
entre chaque objet. Tous les humains
peuvent avoir du pain, mais tous n'en
on pas 100 grammes !

Propriétés et attributs

Un attribut est une variable
spéci�que à un objet.

Paul a 100g de pain
Objet
Attribut
Valeur

La classe Iterable admet (notamment) les classes List et Tuple comme classes filles. Le code
du milieu fonctionnera pour a=[1] ou a=(1,1) mais pas pour a=1. Le type Integer ne possède
pas de méthode __iter__�� ��Cette possibilité de faire ≪ hériter ≫ une sous-classe de prop. donne beaucoup d’efficacité !

Exemple : pour un jeu vidéo on peut considérer une classe éléments avec deux classes
filles personnage et décor et pour la classe personnage deux classes filles personnage géré par

l’ordi. ou personnage géré par le joueur.
Toutefois dans ce qui suit nous ne considérerons qu’une classe... par manque de temps !

1. Nous revenons plus loin sur le sens du double-underscore autour de iter

2

1.4 Les objets : leurs attributs et leurs valeurs�� ��Pour définir une classe, on doit d’abord définir les attributs de ses objets

Par exemple, on peut penser à une classe Taupin avec l’objet Paul a un attribut moyenneMath
avec une valeur 14.

L’idée : tous les objets de la classe auront l’attribut moyenneMath mais avec des valeurs
différentes.

1.5 Les fonctions attachées à une classe s’appellent des méthodes :�� ��Pour définir une classe, on doit ensuite définir les méthodes qui opèrent sur ses objets

On connâıt déjà bien la syntaxe des méthodes pour les listes par exemples : l.append(1).
D’une manière générale, quand on va définir une classe, on va, à la suite des premières ins-

tructions qui vont modeler les objets de la classe, définir un certain nombres de fonctions qui
s’appliqueront aux objets de la classe, et seulement à ces objets 2. Ce sont les méthodes de la classe.

Par exemple avec help(list) on voit toutes les méthodes définies pour la classe liste et les
docstrings qu’on aura écrites comme aide des fonctions apparâıtront dans cette aide.

1.6 Le self : une autre façon d’appeler les méthodes

On a rappelé au paragraphe précédent la syntaxe d’appel des méthodes d’une classe. En réalité,
il en existe une autre : par exemple pour rajouter à une liste L une entrée 12, on peut au lieu de
faire L.append(12) faire :

list.append(L,12)

Il s’agit de la même fonction appelée avec les arguments self, 12 : le premier argument
est la liste sur laquelle la méthode va opérer. On met list devant le append pour dire à
Python où la chercher alors qu’avec L.append ce n’est pas nécessaire puisque en voyant L
il sait que c’est une liste.
D’une manière générale : objet.méthode(arguments) et
nomclasse.méthode(objet,arguments) sont des appels équivalents de la fonction
méthode. Sous la deuxième forme, ce premier argument est appelé self.

2 Une construction concrète : l’exemple de la classe Matrice

Convention : (pas forcément toujours respectée) les noms de classe en Python commencent par
une majuscule.

2.1 Pour pouvoir définir des objets : la méthode init

Voici le début du code de déclaration de notre classe Matrice avec la première fonction
init expliquée ci-après.

class Matrice:

def __init__ (self, m, n):

self.lignes = m

self.colonnes = n

self.tableau = [] # Initialise notre représentation interne d’une matrice

comme un tableau

for i in range (self.lignes):

l = []

for j in range (self.colonnes):

l.append (None)

self.tableau.append (l)

2. ou aux objets d’une classe fille.

3

Le def est une déclaration de fonction. Comme, il est à l’intérieur de la classe, cette fonction
est une méthode de la classe. Le mot __init__ est un nom réservé de Python. Avant de détailler
ce qu’il y a à l’intérieur de la déclaration de notre fonction __init__, voyons déjà :�� ��A quoi sert notre méthode __init__ ? A initialiser i.e. à donner une forme à des objets

Utilisation concrète :

a=Matrice(3,3)

type(a)

<class ’__main__.Matrice’> ## youpi on a fabriqué un objet de la classe Matrice,

qui fait partie des classes directement accessibles (dans __main__).

La méthode __init__ est ≪ magique ≫ : on ne l’appelle pas par son nom, mais par le nom de la
classe. 3

Retour sur la déclaration def __init__ : les arguments self,m,n

Dans le code de déclaration def __init__ prend trois arguments self,m,n.
Dans l’utilisation, on n’a rentré que deux arguments, qui correspondent à m,n. En fait, l’écriture

magique a=Matrice(3,3) est équivalente à Matrice.__init__(a,3,3) dans laquelle self est
l’objet a surlequel agit la méthode (ici en l’initialisant) ou encore à __init__(a,3,3).

Davantage sur les attributs : La suite du code

self.lignes = m

self.colonnes = n

self.tableau = []

définit trois attributs pour l’objet self créé par cette méthode. L’attribut lignes, l’attribut
colonnes et l’attribut (moins parlant à ce stade) t.

La valeur donnée à ce attributs est pour les deux premiers respectivement m et n. Ainsi :�
�

�

Lors de l’appel de a=Matrice(3,3) équivalent à a=__init__(3,3) la méthode fa-
brique l’objet a avec comme valeurs 3 et 3 pour les deux attributs a.lignes et
a.colonnes

Suite du code : la déf. de l’attribut tableau ici : La ligne self.tableau=[] n’était que
l’initialisation de la valeur de l’attribut self.tableau. Le reste du code donne la vraie nature de
l’attribut self.tableau. A la fin de ce code self.tableau est une liste (de longueur m) de listes
de longueurs n dont toutes les entrées contiennent la variable None.�� ��Ici self.tableau donne donc le formatage par défaut de la matrice.

Tous les attributs contiennent des valeurs associées à notre matrice, directement ac-
cessibles :

>>>A=Matrice(3,2)

>>>A.lignes

3

>>> A.tableau

[[None, None], [None, None], [None, None]]

3. En fait c’est plus compliqué que cela : l’appel de Matrice provoque l’appel d’une méthode qui crée un objet,
puis de la méthode init . En revanche, une fois qu’un objet est créé, init pourra le modifier

4

2.2 Excursion : regardons une autre classe et d’autres attributs

>>>help(complex)

Help on class complex in module builtins:

class complex(object)

| complex(real[, imag]) -> complex number

|

| Create a complex number from a real part and an optional imaginary part.

|

| Methods defined here:

|

| __abs__(self, /)

| abs(self)

|

| __add__(self, value, /)

| Return self+value.

|

......

| Data descriptors defined here:

|

| imag

| the imaginary part of a complex number

|

| real

| the real part of a complex number

J’ai sauté la liste des méthodes, mais les data descriptors sont les attributs, et donc la
syntaxe pour extraire partie réelle et partie imaginaire est :

z=complex(15,7) # crée le complexe 15+7i

z.real # oui sans parenthèse après car attributs et pas fonctions....

z.imag

2.3 Une deuxième méthode que nous allons mettre dans notre classe

Pour remplir agréablement les matrices

Toujours à la suite (et donc indenté comme le premier def __init__) déclarons dans notre
classe Matrice : (d’où l’indentation !)

def remplir(self, f):

""" f est une fonction de deux variables, remplir fabrique la matrice M

telle que pour tout (i,j), M(i,j) = f(i,j)"""

for i in range (self.lignes):

for j in range (self.colonnes):

self.tableau[i][j] = f (i,j)

On pourra utiliser cela pour définir notre matrice de Hilbert du T.P. sur les matrices comme suit :

def f(i,j):

return 1/(i+j+1)

A=Matrice(3,3)

A.remplir(f) # Noter la syntaxe, qui est celle des méthodes.

A.tableau

5

2.4 Des méthodes magiques#

"

!

On appelle méthodes magiques des méthodes qui s’utilisent très agréablement à l’aide
par exemple d’un opérateur comme +,* ou une autre commande, plutôt que par
la syntaxe usuelle d’appel de méthodes. Ces méthodes ont un nom réservé en Py-
thon, encadré par des . Ce nom de méthode peut être utilisé pour des classes très
différentes : la méthode sous-jacente faisant des résultats très différents. On va le voir
en reprenant l’exemple de l’addition de l’introduction.

Nous avons déjà vu que __init__ était magique. En voici une autre, avant l’addition :

2.4.1 Méthode magique call : transforme en fonction

def __call__ (self, i, j):

""" permet d’obtenir l’entrée (i,j) de la matrice A en tapant A(i,j), autrement dit

informatiquement, en considérant la matrice comme fonction de i,j"""

return self.tableau[i][j]

Alors on pourra voir l’entrée A(2,1) d’une matrice A simplement avec la syntaxe :

>>A(2,1)

Remarque : ceci doit vous faire comprendre les messages d’erreurs que vous avez souvent ren-
contrés : par exemple si on fait

>>>a=2

>>>a(2)

TypeError: ’int’ object is not callable�

�
	Le message d’erreur not callable dit que vous essayer d’appliquer une syntaxe de fonction

i.e. une parenthèse, à un objet qui n’a pas de méthode call comme ici un entier

2.4.2 Méthode magique add : permet d’utiliser le +

def __add__ (self, autre):

""" renvoie la somme de la matrice self et de la matrice autre"""

if isinstance (autre, Matrice):

if self.lignes == autre.lignes and self.colonnes == autre.colonnes:

m = Matrice (self.lignes, self.colonnes)

m.remplir (lambda i,j: self(i,j) + autre(i,j)) # lambda définit une fonction

return m

else:

raise ValueError ("Dimension des matrices incompatibles")

else:

raise ValueError("L’objet que vous voulez ajouter n’est pas une matrice")

Cette méthode est magique car ensuite, si A et B sont deux objets de notre classe matrice, elle
sera appelée si on tape A+B.

Détail sur ce qui se passe lorsqu’on tape A+B pour Python.
En fait Python exécute A.__add__(B). L’interpréteur Python lit de gauche à droite :
● Il rencontre d’abord l’objet A et regarde à quelle classe, il appartient. Pour nous c’est une

matrice.
● Il rencontre ensuite la méthode __add__ : il va chercher si la classe à laquelle appartient

l’objet A a bien une méthode __add__. Pour nous c’est le cas, on vient de définir cette méthode
sur les matrices.
● Enfin il lit l’argument B qui est la variable autre de notre programme ci-dessus.
Dans le programme, il y a deux cas : celui ou B est une matrice, et l’autre cas, où le message

renvoie une erreur. Même pour une matrice il renvoie une erreur si la taille de B n’est pas adaptée.
Exercice : Ecrire de même le code de la méthode magique mul pour la multiplication

qu’on peut appeler ensuite avec le symbole ∗.

6

2.4.3 Méthode magique iter

On a évoquée cette méthode au § 1.2 : on a envie de pouvoir faire une boucle for en parcourant
la matrice, comme on le fait pour une liste en Python, autrement dit, on veut donner du sens à
for a in A pour A une matrice et a parcourant les entrées de a. Cela se fait ainsi :

def __iter__ (self):

""" Permet de faire des boucles

for qui parcourent les entrées de la matrice """

for ligne in self.tableau:

for entree in ligne:

yield entree

N.B. Ici, il y a une subtilité, le return a été remplacé par un yield : grossièrement un yield

renvoie une valeur, mais ne sort pas de la fonction. Plus précisément, le yield fabrique un objet
appelé générateur qui justement est ce qu’on peut utiliser dans une boucle for. (Par exemple un
range(1,n) est un générateur aussi).

2.4.4 Méthode magique str

La méthode str est ce qui permet d’utiliser la commande print. En ligne de commande,
jusqu’à maintenant si on rentre

>>>A=Matrice(3,3)

>>>A

<__main__.Matrice object at 0x1712950>

on nous dit juste que c’est un objet de la classe Matrice dans le module __main__. Et print(A)

donne la même chose.�� ��On aimerait que le print nous donne un joli affichage de A.tableau.

Pour cela, on doit, comme annoncé, munir notre classe Matrice d’une méthode str

def __str__ (self):

""" représentation textuelle de la matrice """

sortie = ""

détermination de la longueur de la plus grande entrée de la matrice

m = 0

for entree in self: # utilise la méthode iter pour parcourir la matrice

s = str (entree) # convertit en chaı̂ne de caract.

m = max (m, len(s))

m contient en fn de boucle cette longueur maximale

for Ligne in self.tableau:

for entree in Ligne : #

s = str(entree)

espaces = " " * (m - len (s)) # va combler la différence d’espaces

sortie += espaces + s + " " #

sortie += "\n" # saut de ligne

return sortie

Et voilà, avec cela, on pourra avoir un joli print d’une matrice. Si on trouve que l’affichage
compte trop de décimales, on peut remplacer la ligne :

s = str(entree) # convertit en chaı̂ne de caract.

par

s="{:.3f}".format(entree) # convertit en chaı̂ne de caract. et affiche les flottants avec 3 chiffres après la virgule.

éventuellement en testant d’abord si l’entrée est bien un flottant.

7

2.4.5 Méthode magique repr

Si on sait maintenant faire un joli affichage avec print, si A est une matrice et qu’on tape A

dans le shell, on aura toujours un truc du genre

<__main__.Matrice object at 0x10a03b4a8>

En revanche si on crée une méthode repr on peut choisir ce qui s’affiche dans le shell
quand on tape A dans le shell pour une matrice A. On peut, pour ne pas s’embêter choisir de ren-
voyer self.__str__ (). Mais ceci explique pourquoi pour certains objets vous avez des résultats
différents entre A et print(A) (par exemple pour une châıne de caractères).

2.5 Et les opérations du chapitre sur les matrices alors ?

2.5.1 Voici la réécriture des premières

def echange (self, i, j):

""" Échange les ligne i et j : L(i) <-> L(j) attention au pb. de la copie non autonome des listes ici on fait à la main"""

A=self.tableau

Li=[]

for p in range (len(A[i])): #

Li+=[A[i][p]] # on copie entrée par entrée.

fin de boucle Li est une copie autonome de A[i] car les entrées sont des nombres sj

for p in range (len(A[j])):

A[i][p]=A[j][p]

for p in range(len(A[i])):

A[j][p]=Li[p]

Bien sûr il serait mieux de gérer directement les problèmes de copies avec une fonction copy

comme dans np.copy ou deepcopy

def transvection (self, i, j, mu):

""" Effectue une transvection :L(i) <- L(i) + mu * L(j)"""

for k in range (self.colonnes):

self.tableau[i][k] = self.tableau[i][k] + mu * self.tableau[j][k]

2.5.2 Vous pourrez jouer à faire les autres

2.6 Remarque finale sur le polymorphisme illustrée sur les problèmes
des copies�� ��Ce qui suit est une incitation à se méfier des copies avec [:] : utilisez deepcopy par prudence

Une situation connue

L=[1,2,3] # je crée une liste

C=L[:] # je fais une copie de la liste (shallow but sufficient)

L[1]=2000 # je parie que C n’est pas modifié

print(C) # gagné

Une vilaine surprise

T=np.array([1,2,3]) # je crée un tableau numpy

R=T[:] # je pense faire une copie du tableau

T[1]=2000 # je parie que R n’est pas modifié

print(R) # bah non, je me suis planté...�� ��Horrible non ?

8

La raison : toujours le polymorphisme. Pour chaque classe, on peut redéfinir comme on veut la
valeur d’une fonction ici celle appelée par [:].

La méthode correspondante porte le nom significatif de __getitem__. Il se trouve que la
méthode a été définie différemment pour les deux classes (comme le + etc.)

Une morale pour survivre :�� ��Moralité : faire des copy.deepcopy par sécurité.

Un exemple radical pour comprendre

On va définir une classe stupide :

class A:

def __getitem__(self,_):

return 17

a = A() # l’objet a est crée même sans init : il n’ a pas de forme..

print(a[:]) #

print(a[1]) #

Un autre exemple pour le même getitem avec les matrices

Le code de Maud pour le calcul de Gram-Schmidt au DM 20 repose sur la définition, pratique
dans ce contexte, du getitem pour les matrices, différentes de celles des np.array.

En effet :

import numpy as np

A=np.matrix([[1,2,3],[4,5,6]])

L=A[0]

print(L)

affiche :

[[1 2 3]]

3 Le cas des polynômes formels

3.1 Une classe toute faite : dans la doc. de l’oral de Centrale : cf. feuille
jointe

3.2 Comment faire notre propre classe polynôme : TP

Instancier les objets polynômes avec comme attribut une liste de coefficients. Ecrire des foncions
(méthodes) qui renvoie, le degré, calcule la somme, le produit, la division euclidienne (quotient et
reste), le pgcd avec l’algorithme d’Euclide.�� ��C’est votre mission pour le TP 17.

4 Bonus (hors-cours) exemple classe mère/classe fille, attri-
buts privés, méthodes privées

4.1 Classe mère : les points algébriques

4.1.1 Première version de la méthode init

9

On va définir un point algébrique par l’entrée d’un couple de coordonnées cartésiennes d’où la
méthode init ci-dessous :

class PointAlg:

def __init__(self, xy=[0,0]):

self.x = float(xy[0])

self.y = float(xy[1])

self.r = None # r,a seront module et argument à compléter après.

self.a = None

Question : Pourquoi ne pas directement définir plutôt :

self.r=m.sqrt(self.x**2 + self.y**2) # le m. pour le module math

Essayons : en regardant ce qui se passe si on modifie un attribut P.x d’un point P ?
On comprend la nécessité de fonctions qui vont mettre à jour les attributs.

4.1.2 Seconde version du init avec attributs privés

On va empêcher l’utilisateur d’avoir directement accès aux attributs, en les déclarant comme
attributs privés

class PointAlg:

def __init__(self, xy=[0,0]):

self.__x = float(xy[0]) # avec un double underscore devant l’utilisateur n’a pas accès aux attributs.

self.__y = float(xy[1])

self.__r = None # r,a seront module et argument à compléter après.

self.__a = None

Cette fois l’utilisateur n’a pas accès aux attributs : essayez !
A quoi bon avoir des attributs si on ne peut pas y accéder ? On définit des méthodes d’accès

en lecture :

def getX(self):

return self.__x

def getY(self):

return self.__y

def getXY(self):

return self.__x,self.__y

def getRho(self):

return self.__r

def getTheta(self):

return m.degrees(self.__a)

et des méthodes d’accès en écriture :

def setX(self, x):

self.__x = x

self.__majRA()

def setY(self, y):

self.__y = y

self.__majRA()

def setTheta(self, angleDegre):

self.__a = m.radians(angleDegre)

Attributs liés

self.__majXY()

def setRho(self, rho_mm):

10

self.__r = rho_mm

Attributs liés

self.__majXY()

Quelle différences notez vous ?
Il faut bien sûr définir les méthodes (privés i.e. l’utilisateur n’y a pas accès) __majRA et __majXY.

def __majXY(self):

self.__x=self.__r*m.cos(self.__a)

self.__y=self.__r*m.sin(self.__a)

def __majRA(self):

self.__r = m.sqrt(self.__x**2 + self.__y**2)

self.__a = m.atan2(self.__y,self.__x) # en rad

Que manque-t-il encore dans la définition de la méthode init ?

4.2 Classe fille : les points géométriques

Dans le script qui suit, on définit une classe PointGraphique(PointAlg) ce qui signifie une
classe PointGraphique fille de la classe PointAlg. On la munit d’une méthode init qui lui
est propre : ce n’est pas forcément nécessaire : parfois la classe fille peut simplement hériter de la
méthode init de la classe mère et être simplement pourvue d’autre méthode.

Ici donc avec ce nouveau init , les objets PointGraphique auront tous les attributs des
objets PointAlg (grâce à la ligne PointAlg.__init__(self,coord)), mais auront deux autres
attributs.

import matplotlib.pyplot as plt

class PointGraphique(PointAlg):

def __init__(self,coord,couleur,forme):

PointAlg.__init__(self,coord)# création d’un point alg

self.couleur=couleur

self.forme=forme

le point graphique hérite des attributs et des méthodes

du point algébrique avec des attributs supplémentaires..

def affiche(self):

x=self.getX()

y=self.getY()

plt.plot(x,y,color=self.couleur,marker=self.forme)

plt.show()

11

