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1-2)   La différence de marche demandée concerne 2 ondes se réfléchissant entre 2 points distants de 𝐿 ! 

 

3)   A partir des équations de Maxwell dans le vide, on explicite la relation 

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝐸⃗ 𝑖(𝑀, 𝑡)) = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑑𝑖𝑣 𝐸⃗ 𝑖(𝑀, 𝑡)) − ∆⃗⃗ 𝐸⃗ 𝑖(𝑀, 𝑡)  ⇔  −
𝜕

𝜕𝑡
𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝐵⃗ 𝑖(𝑀, 𝑡) = −∆⃗⃗  𝐸⃗ 𝑖(𝑀, 𝑡) 

⇔ ∆⃗⃗  𝑬⃗⃗ 𝒊(𝑴, 𝒕) −
𝟏

𝒄𝟐

∂2E⃗⃗ i(M,t)

∂t2
= 𝟎⃗⃗    Ce qui implique pour une O.P.P.H. :   𝐾⃗⃗ 𝑖

2 = 𝒌𝒊
𝟐 + 𝒒𝒊

𝟐 =
𝝎𝟐

𝒄𝟐  

 

4)   Dans la bande 𝐻𝐹, l’épaisseur 𝑙𝑎 est comprise entre 𝟒, 𝟔  et 𝟏𝟓 𝒄𝒎. C’est négligeable devant  

la profondeur des mers et les dimensions habituelles des vagues (notamment la grandeur ℎ définie après). 

Comme dans un conducteur parfait, la pénétration des ondes dans la mer ne sera pas envisagée. 

 

5)   𝐸⃗ 𝑖(𝑥, 𝑦 = 0, 𝑡) + 𝐸⃗ 𝑟(𝑥, 𝑦 = 0, 𝑡) = 0⃗    ∀(𝑥, 𝑡)  →  exp(𝑗𝑘𝑖𝑥) + 𝑟0 exp(𝑗𝑘0𝑥) = 0  ∀𝑥 

On en déduit que  𝒓𝟎 = −𝟏  et que  𝒌𝟎 = 𝒌𝒊 . Enfin,  𝑘0
2 + 𝑞0

2 = 𝑘𝑖
2 + 𝑞𝑖

2  →  𝒒𝟎 = 𝒒𝒊 > 𝟎 

 

6)   𝑶𝑴⃗⃗⃗⃗⃗⃗  ⃗ = 𝒙 𝒖⃗⃗ 𝒙 + 𝒉(𝒙) 𝒖⃗⃗ 𝒚 + 𝒛 𝒖⃗⃗ 𝒛  Ainsi, 𝐸⃗ 𝑖(𝑥, ℎ(𝑥), 𝑡) + 𝐸⃗ 𝑟(𝑥, ℎ(𝑥), 𝑡) = 0⃗    ∀(𝑥, 𝑡) 

→ exp(𝑗(𝑘𝑖𝑥 − 𝑞𝑖ℎ(𝑥))) − exp (𝑗(𝑘𝑖𝑥 + 𝑞𝑖ℎ(𝑥))) + 𝑟1 exp (𝑗(𝑘𝑟𝑥 + 𝑞𝑟ℎ(𝑥))) = 0  ∀𝑥 

→ −2𝑗 sin(𝑞𝑖ℎ(𝑥)) exp(𝑗𝑘𝑖𝑥) + 𝑟1 exp (𝑗(𝑘𝑟𝑥 + 𝑞𝑟ℎ(𝑥))) = 0  ∀𝑥 

 

A l’ordre 1, on obtient bien   −𝟐𝒋𝒒𝒊𝒉(𝒙) 𝐞𝐱𝐩(𝒋𝒌𝒊𝒙) + 𝒓𝟏 𝐞𝐱𝐩(𝒋𝒌𝒓𝒙) = 𝟎  ∀𝒙 

 

7)   La condition devient   −𝑗𝑞𝑖ℎ0 exp(𝑗(𝑘𝑖 − 𝑘𝑣)𝑥) + 𝑟1 exp(𝑗𝑘𝑟𝑥) = 0  ∀𝑥 

On en déduit que  𝒓𝟏 = 𝒋𝒒𝒊𝒉𝟎  et que  𝒌𝒓 = 𝒌𝒊 − 𝒌𝒗 . 

Le module de 𝑟1 étant proportionnel à ℎ0 , sa mesure nous permet de connaitre l’amplitude des vagues. 

𝐿 

𝐻𝑗+1 

  
𝐻𝑗  

  

𝑂𝑗 

  

𝜃 

  

𝑂𝑗+1 

  

𝑖 

  𝜃 

  

𝑖 

(2)                     𝑀∞                 (1) 

 (1) 

  

𝑆∞ 

  

(2) 

  

𝛿 = (𝑆∞𝑀∞)1 − (𝑆∞𝑀∞)2 = 𝐻𝑗𝑂𝑗+1 + 𝑂𝑗+1𝐻𝑗+1 

 

𝜹 = 𝑳(𝐬𝐢𝐧 𝒊 + 𝐬𝐢𝐧 𝜽) 

 

L’onde rétrodiffusée sera intense si toutes les ondes 

diffusées par les motifs sont en phase : ∆Φ = 2𝜋𝑝 

Avec 𝒑 ∈ ℤ 

Or  ∆Φ =
2𝜋𝛿

𝜆
 →  𝜹 = 𝒑𝝀 



8)   Soit  𝐾⃗⃗ 𝑟 = 𝑘𝑟𝑢⃗ 𝑥 + 𝑞𝑟 𝑢⃗ 𝑦 , le vecteur d’onde associé au terme d’ordre 1 dans l’onde réfléchie. 

Par linéarité des équations de Maxwell et de l’équation de propagation qui en découle, ‖𝐾⃗⃗ 𝑟‖ = ‖𝐾⃗⃗ 𝑖‖ =
𝜔

𝑐
 

 

 

9-10)   On a dans ce cas  𝒊 ~ 𝜽 ~ 
𝝅

𝟐
  et le calcul à l’ordre 1 en 𝜖 reste valable. 

Avec  𝑓 = 12,3 𝑀𝐻𝑧 →  𝜆 =
𝑐

𝑓
= 24 𝑚 →  𝑳 = 𝟏𝟐 𝒎 

 

11)   Onde s’éloignant du rivage :   𝒉+(𝒙, 𝒕) = 𝒉𝟎 𝐜𝐨𝐬(𝒌𝒗𝒙 − 𝝎𝒗𝒕)  

Onde s’approchant du rivage :   𝒉−(𝒙, 𝒕) = 𝒉𝟎 𝐜𝐨𝐬(𝒌𝒗𝒙 + 𝝎𝒗𝒕)  Avec dans les deux cas, 𝝎𝒗 = 𝒌𝒗𝑼 

 

12)   Dorénavant, pour une onde s’éloignant du rivage, 

−𝑗𝑞𝑖ℎ0 exp (𝑗((𝑘𝑖 − 𝑘𝑣)𝑥 − (𝜔 − 𝜔𝑣)𝑡)) + 𝑟1 exp(𝑗(𝑘𝑟𝑥 − 𝜔𝑟𝑡)) = 0    ∀(𝑥, 𝑡) 

On en déduit que  𝝎𝒓 = 𝝎 − 𝝎𝒗  et que  𝒌𝒓 = 𝒌𝒊 − 𝒌𝒗 . 

 

13)   𝜔𝑟 = 𝜔 − 𝑘𝑣𝑈 = 𝜔 + (𝑘𝑟 − 𝑘𝑖)𝑈 = 𝜔 − (𝜔𝑟 + 𝜔)
𝑈

𝑐
 ⇔  𝜔𝑟 (1 +

𝑈

𝑐
) = 𝜔 (1 −

𝑈

𝑐
) 

A l’ordre 1 en  
𝑈

𝑐
 ,  𝜔𝑟 ~ 𝜔 (1 −

2𝑈

𝑐
) → 𝒇𝒓 − 𝒇 = −

𝟐𝑼

𝝀
    Pour une onde s’approchant du rivage,  𝒇𝒓 = 𝒇 +

𝟐𝑼

𝝀
 

 

[On retrouve ici le comportement bien connu en acoustique où le son perçu lorsqu’un véhicule s’approche 

(resp. s’éloigne) de nous est plus aigu (resp. plus grave) que celui effectivement émis.] 

 

14)   𝑓𝑟 − 𝑓 = ±
2𝑈

𝜆
= ±

2√𝑔𝜆 (4𝜋)⁄

𝜆
= ± √

𝒈

𝝅𝝀
= ± 𝟎, 𝟑𝟔 𝑯𝒛  (+ si la vague s’approche du rivage) 

 

Il est remarquable de constater qu’en définitive, cette fréquence de Bragg 𝑓𝐵 ne dépend que de 𝑔 et 𝜆 ! 

Elle est connue par l’expérimentateur et ne dépend pas de la périodicité des vagues. Elle sera un point de 

repère pour mesurer la vitesse du courant s’ajoutant à celle des vagues. C’est l’objet de la question suivante  

pour laquelle il est conseillé d’écrire  𝒇𝒓 − 𝒇 = −
𝟐𝑼𝒙

𝝀
  avec 𝑈𝑥 , la coordonnée de la vitesse de la vague. 

 

 

𝜃 

  
𝑖 

  

𝐾⃗⃗ 𝑟 

  

𝐾⃗⃗ 𝑖 

  

𝑢⃗ 𝑦 

  

Si on note respectivement 𝑖 et 𝜃, les deux angles orientés (𝑢⃗ 𝑦 , −𝐾⃗⃗ 𝑖) et (𝑢⃗ 𝑦 , 𝐾⃗⃗ 𝑟),  

on peut écrire  𝑘𝑖 =
𝜔

𝑐
sin 𝑖  et  𝑘𝑟 = −

𝜔

𝑐
sin 𝜃. 

Ainsi,  𝑘𝑟 = 𝑘𝑖 − 𝑘𝑣  →  𝑳(𝐬𝐢𝐧 𝒊 + 𝐬𝐢𝐧𝜽) =
𝟐𝝅𝒄

𝝎
= 𝝀 Loi de Bragg pour 𝒑 = 𝟏 

𝑢⃗ 𝑥 

  



15)    Vitesse selon 𝑢⃗ 𝑥 des vagues s’éloignant du rivage dans ℛ :  𝑼𝒙 = 𝒗𝒙 + 𝑼 

Vitesse selon 𝑢⃗ 𝑥 des vagues s’approchant du rivage dans ℛ :  𝑼𝒙 = 𝒗𝒙 − 𝑼 

D’après l’écriture proposée en Q14,  𝑓𝑟 − 𝑓 = −
𝟐(𝒗𝒙 ± 𝑼)

𝝀
 →  𝑓𝐷 = −

2𝑣𝑥

𝜆
= −

𝟐𝒇𝒗𝒙

𝒄
 

 

16)   𝒇𝑩 ~ 𝟎, 𝟑𝟕 𝑯𝒛 →  𝜆 ~ 23 𝑚 →  𝐿 ~ 11,5 𝑚 La mesure semble satisfaisante mais l’énoncé nous 

pousse à la valider avec le calcul de l’écart-normalisé (Z-score) sans toutefois avoir des détails concernant  

la précision. Si on décide de façon un peu arbitraire que les incertitudes-types sur chacune des valeurs de 

𝑓𝐵 valent  𝑢(𝑓𝐵) =
10−2

√3
 𝐻𝑧 , l’écart normalisé est  𝐸𝑁 =

0,37 − 0,36

√2 𝑢(𝑓𝐵)
= 1,2 < 2. C’est validé ! 

 

A Pendeen,  𝑓𝐷 = 0,07 𝐻𝑧 →  𝒗𝒙 = −𝟎, 𝟖𝟓 𝒎. 𝒔−𝟏  Le courant s’approche de Pendeen. 

A Perranporth,  𝑓𝐷 = −0,07 𝐻𝑧 →  𝒗𝒙 = 𝟎, 𝟖𝟓 𝒎. 𝒔−𝟏  Le courant s’éloigne de Perranporth. 

17)   𝒗𝑬 = −𝟎, 𝟕𝟖 𝒎. 𝒔−𝟏 𝒗𝑵 = −𝟎, 𝟓𝟖 𝒎. 𝒔−𝟏  ‖𝒗⃗⃗ ‖ = √𝒗𝑬
𝟐 + 𝒗𝑵

𝟐 = 𝟎, 𝟗𝟕 𝒎. 𝒔−𝟏 

Il y a cohérence avec la carte, autant pour le niveau de couleur que pour l’orientation ((−𝑢⃗ 𝐸 , 𝑣  ) = 37 °). 

  



18)   𝒗𝒊 = 𝜶(𝐜𝐨𝐬(𝟐𝝅(𝒇𝟐 − 𝒇𝟏)𝒕 + 𝝋𝟎) + 𝐜𝐨𝐬(𝟐𝝅(𝒇𝟐 + 𝒇𝟏)𝒕 + 𝝋𝟎)) 

Un filtre passe-bas de fréquence de coupure 𝑓𝑐   telle que  |𝑓2 − 𝑓1| < 𝑓𝑐 ≪ 𝑓2 + 𝑓1 sélectionnerait 𝑣𝑑 . 

 

19-20)   On peut opter pour un double 𝑅𝐶 (𝑓𝑐  ~ 
1

2𝜋𝑅𝐶
) ou un 𝑅𝐿𝐶 série (𝑓𝑐  ~ 

1

2𝜋√𝐿𝐶
) avec par exemple 

𝑹 = 𝟏 𝒌𝛀 , 𝑪 = 𝟏 𝝁𝑭  et  𝑳 = 𝟏 𝑯 . La fréquence de coupure à −3 𝑑𝐵 sera alors de l’ordre 102 𝐻𝑧. 

 

21)   𝑣𝑖𝑄 = 𝛼(sin(2𝜋(𝑓2 − 𝑓1)𝑡 + 𝜑0) − sin(2𝜋(𝑓2 + 𝑓1)𝑡 + 𝜑0))  →  𝒗𝒅𝑸 = 𝜶𝐬𝐢𝐧(𝟐𝝅(𝒇𝟐 − 𝒇𝟏)𝒕 + 𝝋𝟎) 

Puisque  𝑣𝑑 = 𝛼 cos(2𝜋(𝑓2 − 𝑓1)𝑡 + 𝜑0), on peut affirmer que si 𝑣𝑑 est en quadrature avance par rapport 

à 𝑣𝑑𝑄 , alors  𝒇𝟐 > 𝒇𝟏 et au contraire, si 𝑣𝑑 est en quadrature retard par rapport à 𝑣𝑑𝑄 , alors  𝒇𝟐 < 𝒇𝟏. 

 

22-23)   𝒇(𝒕) = 𝒇𝟎 +
𝑩𝒕

𝑻𝒎
   𝝉 =

𝟐𝒅

𝒄
= 𝟔𝟔 𝝁𝒔 ≪ 𝑻𝒎 

 

24)   Si on écarte les très courts instants de durée 𝜏 pendant lesquels 𝑓𝑟(𝑡) > 𝑓(𝑡), le signal 𝑣𝑑 a pour 

fréquence 𝑓(𝑡) − 𝑓𝑟(𝑡) = 𝑓0 +
𝐵𝑡

𝑇𝑚
− (𝑓0 +

𝐵(𝑡 − 𝜏)

𝑇𝑚
) =

𝐵𝜏

𝑇𝑚
=

𝟐𝑩𝒅

𝑻𝒎𝒄
 →  𝒅 =

𝒇𝒅𝑻𝒎𝒄

𝟐𝑩
 

𝑣𝑖  𝑣𝑑  𝐶 𝐶 

𝑅 𝑅 

𝑉𝐴 =
𝑣𝑖
𝑅
 + 

𝑣𝑑
𝑅

 + 0∗𝑗𝐶𝜔

2

𝑅
 +𝑗𝐶𝜔

=
𝑣𝑖 + 𝑣𝑑

2+𝑗𝑅𝐶𝜔
   et   𝑣𝑑 =

1 𝑗𝐶𝜔⁄

𝑅+1 𝑗𝐶𝜔⁄
𝑉𝐴  

→ 𝑣𝑑 =
𝑣𝑖 + 𝑣𝑑

(2+𝑗𝑅𝐶𝜔)(1+𝑗𝑅𝐶𝜔)
 →  

𝒗𝒅

𝒗𝒊
=

𝟏

𝟏+𝟑𝒋𝑹𝑪𝝎 −(𝑹𝑪𝝎)𝟐
  

𝐴 

Plus précisément, à la pulsation de coupure 𝜔𝑐 , on a  (1 − 𝑥𝑐
2)2 + 9𝑥𝑐

2 = 2  avec 𝑥𝑐 = 𝑅𝐶𝜔𝑐 

→ 𝑥𝑐 = √√53−7

2
 ~ 0,37  →  𝑓𝑐 =

𝑥𝑐

2𝜋𝑅𝐶
~ 60 𝐻𝑧  La condition exigée en Q18 est vérifiée. 

𝑅 𝐿 
𝑣𝑑  𝑣𝑖  𝐶 

𝑣𝑑 =
1 𝑗𝐶𝜔⁄

𝑅+𝑗𝐿𝜔+1 𝑗𝐶𝜔⁄
𝑣𝑖   →  

𝒗𝒅

𝒗𝒊
=

𝟏

𝟏+𝒋𝑹𝑪𝝎 −𝑳𝑪𝝎𝟐 

  

 →  
𝒗𝒅

𝒗𝒊
=

𝟏

𝟏+𝟐𝒋𝒎𝒙 −𝒙𝟐  Avec 𝒙 = √𝑳𝑪𝜔  et  2𝑚 = 𝑅√
𝐶

𝐿
= 1 

  
Plus précisément, à la pulsation de coupure 𝜔𝑐 , on a  (1 − 𝑥𝑐

2)2 + 𝑥𝑐
2 = 2   

→  𝑥𝑐 = √√5 + 1

2
 ~ 1,3  →  𝑓𝑐 =

𝑥𝑐

2𝜋𝑅𝐶
~ 200 𝐻𝑧  La condition exigée en Q18 est vérifiée. 

𝑡 

𝑓(𝑡) 

𝑇𝑚 

𝑓0 

𝑓0 + 𝐵 

0 

𝑓𝑟(𝑡) 𝜏 = 2𝑑 𝑐⁄  



25)   L’échantillonnage s’apparente à une multiplication de 𝑣(𝑡) par une série d’impulsions (0 ou 1), de 

valeur moyenne non nulle et de fréquence 𝑓𝑒 =
1

𝑇𝑒
 . Le spectre du signal qui en découle possède (entre 

autres) les fréquences 𝑓𝑖 présentes dans 𝑣(𝑡) et les fréquences 𝑓𝑒 − 𝑓𝑖  . Pour éviter tout chevauchement 

entre les fréquences 𝑓𝑖  désirées et les autres, il faut que la condition de Shannon-Nyquist soit vérifiée : 

𝑓𝑒 − 𝑚𝑎𝑥(𝑓𝑖) > 𝑚𝑎𝑥(𝑓𝑖)  →  𝒇𝒆 > 𝟐 𝒎𝒂𝒙(𝒇𝒊) 

Un filtre passe-bas anti chevauchement est souvent nécessaire pour imposer une fréquence maximale. 

Le phénomène de repliement du spectre correspond au cas extrême où 𝑓𝑒 − 𝑓𝑖 < 0. Si le chevauchement 

est évité, à fortiori le repliement l’est aussi !  

[Pour plus de détails, on se reportera à l’annexe du Cours Echantillonnage et conversions d’un signal.] 

 

26)   La précision en fréquence correspond à l’écart entre deux fréquences 𝑓𝑘 successives, c’est-à-dire  
𝟏

𝑵𝒆𝑻𝒆
 . 

Pour le spectre de gauche, (𝜹𝒇)𝑮 = 𝟓 𝑯𝒛 : Les fréquences 𝑓1 et 𝑓2 sont restituées et distinguées. 

Pour le spectre de droite, (𝜹𝒇)𝑫 = 𝟐𝟎 𝑯𝒛 : Seule la fréquence 𝑓2 est restituée, le terme de fréquence 𝑓1  

se répartissant principalement sur les valeurs 140 𝐻𝑧 et 160 𝐻𝑧. Il en est de même pour le bruit qui 

possède théoriquement un spectre continu. Ses composantes spectrales se concentrent sur les fréquences 

accessibles (tous les 20 𝐻𝑧) et donnent ainsi au spectre une allure faussée avec surestimation du bruit. 

En conclusion, le critère de Shannon-Nyquist est nécessaire mais une fois la fréquence d’échantillonnage 

correctement choisie, il faut s’assurer que le nombre de prélèvements soit suffisant.  

[Le seul souci par la suite serait de prendre des points trop proches les uns des autres. Ils encombreraient  

la mémoire inutilement. Voir TP 1 C.A.N. & C.N.A. Paragraphe 2.a]. 

 

27)   D’après le critère de Shannon-Nyquist, |𝑓𝑟 − 𝑓|𝑚𝑎𝑥 =
1

2𝑇𝑚
= 𝟏, 𝟗𝟏 𝑯𝒛 →  |𝒇𝑫|𝒎𝒂𝒙 = 𝟏, 𝟑𝟓 𝑯𝒛 

On en déduit que la vitesse maximale mesurable est  |𝑣𝑥|𝑚𝑎𝑥 =
𝑐|𝑓𝐷|𝑚𝑎𝑥

2𝑓
= 𝟔, 𝟕𝟖 𝒎. 𝒔−𝟏 

 

28)   𝛿𝑓 =
1

𝑁𝑇𝑚
= 𝟗, 𝟑𝟐. 𝟏𝟎−𝟒 𝑯𝒛 →  ∆𝑣𝑥 = |

𝑣𝑥

𝑓𝐷
| =

𝑐

2𝑓
𝛿𝑓 = 𝟓. 𝟏𝟎−𝟑 𝒎. 𝒔−𝟏 

 

29)   Toujours d’après le critère de Shannon-Nyquist, 𝒇𝒅,𝒎𝒂𝒙 =
𝑴

𝟐𝑻𝒎
 → 𝑴 = ⌈

𝟒𝑩𝒅𝒎𝒂𝒙

𝒄
⌉ = 𝟖𝟒  

 

30)   𝛿𝑓𝑑 =
1

𝑇𝑚
= 𝟑, 𝟖𝟐 𝑯𝒛 →  ∆𝑑 =

𝑐

2𝐵
= 𝟏, 𝟐 𝒌𝒎 

Pour obtenir les résolutions de 0,6 𝑘𝑚 ou 0,3 𝑘𝑚, il faudrait que l’utilisateur puisse multiplier la valeur de 

𝐵 par 2 ou 4. Si le radar fonctionne à 𝑀 constant, la portée maximale sera alors divisée par 2 ou 4.  

En fait, le rapport  
∆𝑑

𝑑𝑚𝑎𝑥
  est fixé par 𝑀, il vaut environ  

2

𝑀
 ~ 2,4 % . 



31)   L’espèce prédominante à 𝑝𝐻 = 8,1 est l’ion hydrogénocarbonate 𝑯𝑪𝑶𝟑
− . 

 

32-33)   𝐾 =
1

[𝐶𝑎2+]é𝑞[𝐻𝐶𝑂3
−]é𝑞[𝐻𝑂−]é𝑞

=
𝐾𝑎2

𝐾𝑠1𝐾𝑒
= 𝟏𝟎𝟏𝟐,𝟐 D’après le tableau, [𝐶𝑎2+] = 9,9. 10−3 𝑚𝑜𝑙. 𝐿−1 

[𝐻𝐶𝑂3
−] = 2,4. 10−3 𝑚𝑜𝑙. 𝐿−1  et   [𝐻𝑂−] = 1,3. 10−6 𝑚𝑜𝑙. 𝐿−1 

→ 𝑄𝑟 =
1

[𝐶𝑎2+][𝐻𝐶𝑂3
−][𝐻𝑂−]

= 𝟏𝟎𝟏𝟎,𝟓 < 𝑲 Les conditions sont réunies pour que la réaction se produise. 

 

Il y a une légère ambiguïté : Est-ce que les concentrations données par le tableau sont des valeurs initiales 

(Sel introduit) ou des valeurs d’équilibre définitives (Composition d’une eau de mer) ? Supposons que nous 

sommes dans le second cas, on peut alors affirmer que la réaction est cinétiquement bloquée. 

 

34)   Initialement, [𝑀𝑔2+] = 5,3. 10−2 𝑚𝑜𝑙. 𝐿−1 Or  𝐾𝑠2 = [𝑀𝑔2+][𝐻𝑂−]2  

Le précipité apparaitra lorsque   [𝐻𝑂−] = 1,5. 10−5 𝑚𝑜𝑙. 𝐿−1  → 𝒑𝑯 = 𝟗, 𝟐 

 

35)   𝑂2 + 4𝑒− + 4𝐻+ ⇌  2𝐻2𝑂        𝐸1 = 1,23 +
0,06

4
log(0,2) − 0,06 ∗ 8,1 = 𝟎, 𝟕𝟑 𝑽 

 

36)   2𝐻+ + 2𝑒− ⇌ 𝐻2        𝐸2 = −0,06 ∗ 8,1 = −𝟎, 𝟒𝟗 𝑽 

 

37-38)   Dans le domaine (𝑎), on assiste à la réduction du dioxygène dissout (𝑂2 + 4𝑒− + 2𝐻2𝑂 ⇌ 4𝐻𝑂−) 

avec un palier de diffusion dont le niveau est proportionnel à la concentration en dioxygène dissout.  

Si celle-ci était plus faible, la courbe serait modifiée ainsi. 

 

 

𝑝𝐻 
6,1 10,2 

 

𝐶𝑂2 

 

𝐻𝐶𝑂3
− 

 

𝐶𝑂3
2− 

 

Dans le domaine (𝑏), on reconnait l’un des deux 

murs du solvant, celui lié à la réduction de l’eau 

(2𝐻2𝑂 + 2𝑒− ⇌ 𝐻2 + 2𝐻𝑂−). La réduction du 

dioxygène dissout se poursuit également. 

 

Pour les deux réactions, on constate un blocage 

cinétique qui se traduit par deux surtensions 

cathodiques importantes : 

𝜂𝐶,1 = −0,45 − 0,73 = −1,18 𝑉 

𝜂𝐶,2 = −1,00 + 0,49 = −0,51 𝑉 



39)   La précipitation du carbonate de calcium est thermodynamiquement spontanée à 𝑝𝐻 = 8,1 

contrairement à celle de l’hydroxyde de magnésium qui nécessite un 𝑝𝐻 > 9,2.  

Si 𝐸 − 𝐸𝑟𝑒𝑓 = −0,80 𝑉, la lente réduction du dioxygène accompagnée d’une faible production d’ions 𝑯𝑶− 

au voisinage de la cathode lève le blocage cinétique et entraine la formation du dépôt de 𝐶𝑎𝐶𝑂3. 

Si 𝐸 − 𝐸𝑟𝑒𝑓 = −1,10 𝑉, la vive réduction de l’eau a pour conséquence une nette augmentation du 𝒑𝑯 au 

voisinage de l’électrode. Ainsi, l’hydroxyde de magnésium précipite et se mêle au carbonate de calcium. 

 

40-41)   A l’anode, deux réactions d’oxydation sont envisageables, celle de l’eau en dioxygène et celle de 

l’ion chlorure en dichlore :          𝟐𝑯𝟐𝑶 ⇌ 𝑶𝟐 + 𝟒𝒆− + 𝟒𝑯+              𝟐𝑪𝒍− ⇌ 𝑪𝒍𝟐 + 𝟐𝒆− 

 

 

42-43)   L’atome de carbone est environné de 𝟑 atomes d’oxygène et ne possède aucun doublet d’électron 

non liant. La structure est trigonale plane afin de minimiser les interactions entre les électrons de valence. 

 

 

44)   Les interactions ioniques de type électrostatique entre les cations 𝐶𝑎2+ et les atomes d’oxygène sont 

à l’origine de la cohésion de l’aragonite. 

 

45)  La maille orthorhombique (et non rhomboédrique) de l’aragonite contient quatre groupements 𝐶𝑎𝐶𝑂3 

donc la masse volumique de l’aragonite est  𝜌′ =
4𝑀(𝐶𝑎𝐶𝑂3)

𝑎𝑏𝑐 𝒩𝐴
= 𝟐, 𝟗𝟑 𝒈. 𝒄𝒎−𝟑 > 𝝆 

En effet, à basse pression, l’aragonite qui est plus dense que la calcite, est moins stable. 

 

 

𝑈𝑔é𝑛é𝑟𝑎𝑡𝑒𝑢𝑟 

 

Cathode ⊖ 

𝑂2𝑎𝑞
+ 4𝑒− + 2𝐻2𝑂 ⇌ 4𝐻𝑂− 

𝐶𝑎2+ + 𝐻𝐶𝑂3
− + 𝐻𝑂− ⇄ 𝐶𝑎𝐶𝑂3 + 𝐻2𝑂 

⨁ Anode            2𝐶𝑙− ⇌ 𝐶𝑙2 + 2𝑒− 

Et éventuellement  2𝐻2𝑂 ⇌ 𝑂2𝑔
+ 4𝑒− + 4𝐻+ 

La surtension anodique du couple de l’eau 

inverse généralement l’ordre des potentiels.  

𝑖 

𝐶 

𝑂 𝑂 

𝑂 

𝐶 

𝑂 𝑂 

𝑂 

𝐶 

𝑂 

𝑂 𝑂 

6 𝑒− délocalisés 

𝑂 

𝑂 𝑂 

𝐶 

2 − 

120 ° 


