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1)   Le référentiel géocentrique admet pour point fixe le centre de masse de la Terre et a ses axes dirigés 

vers trois étoiles lointaines. Il est en translation par rapport au référentiel Héliocentrique. 

Un référentiel galiléen est un référentiel dans lequel la 1ère loi de Newton (principe d’inertie) est vérifiée : 

Tout point matériel pseudo isolé est au repos ou possède un mouvement rectiligne uniforme. 

 

2)   Tous les plans contenant la droite 𝑂𝑀 sont des plans de symétrie pour la distribution de masse donc  

des plans de symétrie pour le champ 𝒢(𝑀). Ainsi, 𝒢(𝑀) appartient à tous ces plans →  𝓖⃗⃗⃗(𝑴) = 𝓖(𝑴) 𝒖⃗⃗⃗ 

La distribution est à symétrie sphérique donc la norme du champ ne dépend que de 𝑟 :  𝓖(𝑴) = 𝓖(𝒓) 

D’après le théorème de Gauss gravitationnel appliqué sur une sphère de centre 𝑂 et rayon 𝑟 :  

4𝜋𝑟2𝒢(𝑟) = −4𝜋𝐺𝑀𝑇  →  𝑭⃗⃗⃗𝒈(𝑴) = −
𝑮𝑴𝑻𝒎

𝒓𝟐
𝒖⃗⃗⃗ 

 

3)   On applique le T.M.C. à 𝑀 en 𝑂. Seule 𝐹⃗𝑔 s’applique et son moment en 𝑶 est nul : ℒ⃗𝑂(𝑀) = 𝑐𝑠𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ 

Or  ℒ⃗𝑂(𝑀) = 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∧ 𝑚𝑣⃗(𝑀) donc  𝑶𝑴⃗⃗⃗⃗⃗⃗ ⃗⃗  est orthogonal à un vecteur constant, le mouvement est plan. 

 

4)   Il existe ℰ𝑝(𝑀) telle que  𝐹⃗𝑔(𝑀) = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ℰ𝑝  avec  𝓔𝒑(𝒓) = −
𝑮𝑴𝑻𝒎

𝒓
 

 

5-8)   En notant  
𝑑𝑟

𝑑𝑡
= 𝑟̇  et  

𝑑𝜃

𝑑𝑡
= 𝜃̇,   ℰ𝑚 = ℰ𝑝(𝑟) +

𝑚

2
(𝑟̇2 + 𝑟2𝜃̇2) = −

𝑮𝑴𝑻𝒎

𝒓
+

𝓛𝟎
𝟐

𝟐𝒎𝒓𝟐 +
𝒎

𝟐
𝒓̇𝟐

⏟
≥𝟎

≥ 𝓔𝒑,𝒆𝒇𝒇(𝒓) 

 

9)   D’après la 2ème loi de Newton appliquée au satellite sur sa trajectoire circulaire de vitesse 𝑣,  𝑣2 =
𝐺𝑀𝑇

𝑅
 . 

ℰ𝑚,𝑎𝑙𝑡 = −
𝐺𝑀𝑇𝑚

𝑅
+

𝑚

2
𝑣2 = −

𝐺𝑀𝑇𝑚

𝑅
+

𝐺𝑀𝑇𝑚

2𝑅
= −

𝑮𝑴𝑻𝒎

𝟐𝑹
 

 

10)   Soit 𝑇, la période de rotation. On a  𝑣2 =
4𝜋2𝑅2

𝑇2  →  
𝑹𝟑

𝑻𝟐 =
𝑮𝑴𝑻

𝟒𝝅𝟐  

ℰ𝑝,𝑒𝑓𝑓(𝑟) 

𝑟 

𝑦 = ℰ𝑚,𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑒 

𝒚 = 𝓔𝒎,𝑬𝒍𝒍𝒊𝒑𝒔𝒆 
𝒚 = 𝓔𝒑,𝒆𝒇𝒇

𝒎𝒊𝒏 = 𝓔𝒎,𝑪𝒆𝒓𝒄𝒍𝒆 

0 

Si  𝓔𝒑,𝒆𝒇𝒇
𝒎𝒊𝒏 < 𝓔𝒎 < 𝟎 , la trajectoire est elliptique. 

Au périgée et à l’apogée de l’ellipse, 𝑟̇ = 0 →  ℰ𝑝,𝑒𝑓𝑓 = ℰ𝑚 

Si  𝓔𝒎 = 𝓔𝒑,𝒆𝒇𝒇
𝒎𝒊𝒏  , la trajectoire est circulaire. 

[Si  ℰ𝑚 > 0 , la trajectoire est hyperbolique. 

Si  ℰ𝑚 = 0 , la trajectoire est parabolique.] 



11)   En 𝐴 et 𝑃, 𝑟̇ = 0 →  ℰ𝑚,𝑡𝑟 = −
𝐺𝑀𝑇𝑚

𝑅
+

ℒ0
2

2𝑚𝑅2 = −
𝐺𝑀𝑇𝑚

𝑅𝑐
+

ℒ0
2

2𝑚𝑅𝑐
2 

→  ℰ𝑚,𝑡𝑟𝑅2 + 𝐺𝑀𝑇𝑚𝑅 = ℰ𝑚,𝑡𝑟𝑅𝑐
2 + 𝐺𝑀𝑇𝑚𝑅𝑐  →  𝓔𝒎,𝒕𝒓 = −

𝑮𝑴𝑻𝒎

𝑹 + 𝑹𝒄
 

 

12)   ∆𝓔𝒎 = −
𝑮𝑴𝑻𝒎(𝑹 − 𝑹𝒄)

𝟐(𝑹 + 𝑹𝒄)𝑹
< 𝟎  Cette opération nécessite un freinage du satellite. 

 

13)   Il faudra de nouveau freiner le satellite car  ℰ𝑚,𝑐 = −
𝐺𝑀𝑇𝑚

2𝑅𝑐
< ℰ𝑚,𝑡𝑟 . 

 

14-15)   𝑠(𝑡) = ∫ 𝐴(𝜉 − 𝑡) exp(−2𝑖𝜋𝑓0(𝜉 − 𝑡))
+∞

−∞
𝛼𝐴(𝜉 − 𝑡𝑅) exp(2𝑖𝜋𝑓0(𝜉 − 𝑡𝑅)) 𝑑𝜉 

→  𝒔(𝒕) = 𝜶 𝐞𝐱𝐩(𝟐𝒊𝝅𝒇𝟎(𝒕 − 𝒕𝑹)) ∫ 𝑨(𝝃 − 𝒕)
+∞

−∞

𝑨(𝝃 − 𝒕𝑹)𝒅𝝃 

 

 

16-17)   𝑠(𝑡) = 𝛼 𝐴0
2 cos(2𝜋𝑓0(𝑡 − 𝑡𝑅))(𝑡 + 𝜏 − 𝑡𝑅)      pour    𝑡𝑅 − 𝜏 ≤ 𝑡 ≤ 𝑡𝑅 

et    𝑠(𝑡) = 𝛼 𝐴0
2 cos(2𝜋𝑓0(𝑡 − 𝑡𝑅))(𝜏 + 𝑡𝑅 − 𝑡)      pour    𝑡𝑅 ≤ 𝑡 ≤ 𝑡𝑅 + 𝜏 

𝑠′(𝑡) = 𝛼 𝐴0
2 cos(2𝜋𝑓0(𝑡 − 𝑡𝑅

′ ))(𝑡 + 𝜏 − 𝑡𝑅
′ )      pour    𝑡𝑅

′ − 𝜏 ≤ 𝑡 ≤ 𝑡𝑅
′  

et    𝑠′(𝑡) = 𝛼 𝐴0
2 cos(2𝜋𝑓0(𝑡 − 𝑡𝑅

′ ))(𝜏 + 𝑡𝑅
′ − 𝑡)      pour    𝑡𝑅

′ ≤ 𝑡 ≤ 𝑡𝑅
′ + 𝜏 

 

𝐴(𝜉 − 𝑡) 

𝜉 

𝑡 −
𝜏

2
                𝑡𝑅 −

𝜏

2
                        𝑡 +

𝜏

2
                𝑡𝑅 +

𝜏

2
 

𝐴(𝜉 − 𝑡𝑅) 

𝐴0 

∫ 𝐴(𝜉 − 𝑡)
+∞

−∞

𝐴(𝜉 − 𝑡𝑅)𝑑𝜉 = ∫ 𝐴0
2

𝑡 + 
𝜏
2

 𝑡𝑅 − 
𝜏
2

𝑑𝜉 = 𝐴0
2(𝑡 + 𝜏 − 𝑡𝑅) 

→  𝒔(𝒕) = 𝜶 𝑨𝟎
𝟐𝐞𝐱𝐩(𝟐𝒊𝝅𝒇𝟎(𝒕 − 𝒕𝑹))(𝒕 + 𝝉 − 𝒕𝑹) 

𝑡 

𝑠(𝑡)            𝑠′(𝑡) 

0 

𝑡𝑅 − 𝜏                   𝑡𝑅                   𝑡𝑅 + 𝜏        𝑡𝑅
′  

Les deux échos sont distingués si 

 𝑡𝑅
′ − 𝑡𝑅 ≥ 𝜏 ⇔  

2∆𝑑

𝑐
≥ 𝜏 

∆𝒅𝒎𝒊𝒏 =
𝒄𝝉

𝟐
= 𝟏𝟕 𝒌𝒎 

C’est beaucoup trop grand, il faut 

trouver une autre méthode. 



18)   𝒇𝒆 = 𝒇𝟎 + 𝑲𝒕  𝒇𝒄 = 𝒇𝟎   et   𝑩 = 𝑲𝝉 

 

19)   Les deux échos sont distingués si  𝑡𝑅
′ − 𝑡𝑅 ≥

1

𝐾𝜏
=

1

𝐵
  →   ∆𝒅𝒎𝒊𝒏 =

𝒄

𝟐𝑩
= 𝟒𝟕 𝒄𝒎 C’est bien mieux ! 

 

20)   La direction de propagation est 𝒆⃗⃗𝒛 et la direction de polarisation est 𝒆⃗⃗𝒙 . 

 

21)   Si les charges sont non relativistes, la force magnétique est négligeable devant la force électrique car 

‖𝐹⃗𝑚‖ ≤ 𝑒‖𝑣⃗‖‖𝐵⃗⃗‖ ≪ 𝑒𝑐‖𝐵⃗⃗‖ ~ 𝑒‖𝐸⃗⃗‖ = ‖𝐹⃗𝑒‖  

Car dans une onde électromagnétique, ‖𝐸⃗⃗‖ n’est jamais trop éloigné de 𝑐‖𝐵⃗⃗‖. 

 

22)   𝑖𝜔𝑚𝑒𝑣𝑒⃗⃗ ⃗⃗ = −𝑒𝐸⃗⃗  →  𝒗𝒆⃗⃗⃗⃗⃗ =
−𝒆

𝒊𝝎𝒎𝒆
𝑬⃗⃗⃗    et   𝑖𝜔𝑚𝑐𝑣𝑐⃗⃗ ⃗⃗ = 𝑒𝐸⃗⃗  →  𝒗𝒄⃗⃗⃗⃗⃗ =

𝒆

𝒊𝝎𝒎𝒄
𝑬⃗⃗⃗ 

 

23)   𝑗 = 𝑛𝑒 (𝑣𝑐⃗⃗ ⃗⃗ − 𝑣𝑒⃗⃗ ⃗⃗ ) =
𝑛𝑒2

𝑖𝜔
(

1

𝑚𝑐
+

1

𝑚𝑒
) 𝐸⃗⃗ ~ 

𝑛𝑒2

𝑖𝜔𝑚𝑒
𝐸⃗⃗  →  𝝎𝒑 = 𝒆√

𝒏

𝒎𝒆𝜺𝟎
 

 

24)   L’onde électromagnétique est transverse (𝑘⃗⃗. 𝐸⃗⃗ = 0),  𝑑𝑖𝑣 𝐸⃗⃗ = 0 →  𝜌 = 0 

 

25)   −𝒊𝒌⃗⃗⃗. 𝑬⃗⃗⃗ = 𝟎        − 𝒊𝒌⃗⃗⃗. 𝑩⃗⃗⃗ = 𝟎        − 𝒊𝒌⃗⃗⃗ ∧ 𝑬⃗⃗⃗ = −𝒊𝝎𝑩⃗⃗⃗         − 𝒊𝒌⃗⃗⃗ ∧ 𝑩⃗⃗⃗ = 𝝁𝟎𝜸𝑬⃗⃗⃗ + 𝒊
𝝎

𝒄𝟐 𝑬⃗⃗⃗ 

−𝑖𝑘⃗⃗ ∧ (−𝑖𝑘⃗⃗ ∧ 𝐸⃗⃗) = 𝑘2𝐸⃗⃗  ⇔  −𝜔𝑘⃗⃗ ∧ 𝐵⃗⃗ = 𝑘2𝐸⃗⃗  ⇔  −𝑖𝜔𝜇0𝛾𝐸⃗⃗ +
𝜔2

𝑐2
𝐸⃗⃗ = 𝑘2𝐸⃗⃗  →  𝒌𝟐 =

𝝎𝟐 − 𝝎𝒑
𝟐

𝒄𝟐
 

 

26-27)   Nous sommes en présence d’une onde évanescente, c’est-à-dire d’une onde stationnaire amortie. 

𝒌 = −𝒊
√𝝎𝒑

𝟐 − 𝝎𝟐

𝒄
    car ainsi, il y a bien amortissement selon l’axe 𝑂𝑧 vertical descendant. 

𝑬⃗⃗⃗ = 𝑬𝟎 𝐞𝐱𝐩 (−
𝒛 − 𝒛𝟎

𝜹
) 𝐜𝐨𝐬(𝝎𝒕) 𝒆⃗⃗𝒙  Avec    𝜹 =

𝒄

√𝝎𝒑
𝟐 − 𝝎𝟐

 

D’après l’équation de Maxwell-Faraday,  𝑩⃗⃗⃗ =
𝑬𝟎

𝜹𝝎
𝐞𝐱𝐩 (−

𝒛 − 𝒛𝟎

𝜹
) 𝐬𝐢𝐧(𝝎𝒕) 𝒆⃗⃗𝒚 

Le vecteur de Poynting   Π⃗⃗⃗ =
𝐸⃗⃗ ∧ 𝐵⃗⃗

𝜇0
  a une valeur moyenne nulle : Il n’y a pas de propagation de l’énergie. 

 

28-29)   A présent, l’onde est progressive,  𝒌 =
√𝝎𝟐 − 𝝎𝒑

𝟐

𝒄
   car ainsi, il y a bien propagation selon l’axe 𝑂𝑧. 

𝑬⃗⃗⃗ = 𝑬𝟎 𝐜𝐨𝐬(𝝎𝒕 − 𝒌(𝒛 − 𝒛𝟎)) 𝒆⃗⃗𝒙                 𝑩⃗⃗⃗ =
𝒌𝑬𝟎

𝝎
𝐜𝐨𝐬(𝝎𝒕 − 𝒌(𝒛 − 𝒛𝟎)) 𝒆⃗⃗𝒚 

Pour la propagation, le plasma se comporte comme un filtre passe-haut de pulsation de coupure 𝝎𝒑. 



30)   D’après la figure 9,  𝑛𝑚𝑎𝑥 = 1012 𝑚−3  →  𝒇𝒑
𝒎𝒂𝒙 = 𝟗 𝑴𝑯𝒛 

Aux fréquences utilisées, la propagation est assurée. En choisissant  𝑓0 ≫ 𝑓𝑝
𝑚𝑎𝑥, le signal est moins 

déformé car le phénomène de dispersion s’atténue à très haute fréquence (voir ci-dessous). 

 

31-32)   𝒗𝝋 =
𝝎

𝒌
=

𝒄

√𝟏 − 𝝎𝒑
𝟐 𝝎𝟐⁄

   2𝑘𝑑𝑘 =
2𝜔

𝑐2 𝑑𝜔 →  𝑣𝜑𝑣𝑔 = 𝑐2  →  𝒗𝒈 = 𝒄√𝟏 −  𝝎𝒑
𝟐 𝝎𝟐⁄  

 

33)   Les impulsions se déplacent à la vitesse de groupe :  ∆𝑡 =
2𝑙

𝑐
(

1

√1 − 𝜔𝑝
2 𝜔1

2⁄
−

1

√1 − 𝜔𝑝
2 𝜔0

2⁄
) ~ 

𝒍𝝎𝒑
𝟐(𝝎𝟎

𝟐 − 𝝎𝟏
𝟐)

𝒄𝝎𝟏
𝟐𝝎𝟎

𝟐  

 

34-35)   𝑡0 =
2(𝑑−𝑙)

𝑐
+

2𝑙

𝑐√1 − 𝜔𝑝
2 𝜔0

2⁄
 → 𝑑 =

𝑐𝑡0

2
+ 𝑙 (1 −

1

√1 − 𝜔𝑝
2 𝜔0

2⁄
) ~ 

𝑐𝑡0

2
−

𝑙𝜔𝑝
2

2𝜔0
2  → 𝜺 =

𝒄∆𝒕𝝎𝟏
𝟐

𝟐(𝝎𝟎
𝟐 − 𝝎𝟏

𝟐)
=

𝒍𝒏𝒆𝟐

𝟐𝝎𝟎
𝟐𝒎𝒆𝜺𝟎

 

→  𝜺 = 𝟓, 𝟒 𝒄𝒎 

Cela peut sembler dérisoire mais vue la précision exigée par l’enjeu de l’étude, l’erreur doit être corrigée. 

 

36)   D’après la relation de passage en 𝑥 = 0,  𝐸0 exp(𝑖𝜔𝑡) 𝑒𝑧 + 𝐸0𝑦
′ exp(𝑖𝜔𝑡) 𝑒𝑦 + 𝐸0𝑧

′ exp(𝑖𝜔𝑡) 𝑒𝑧 = 0⃗⃗  ∀𝑡 

→  𝐸0𝑦
′ = 0   et   𝐸0𝑧

′ = −𝐸0    →  𝑬⃗⃗⃗𝒓(𝑴, 𝒕) = −𝑬𝟎 𝐞𝐱𝐩(𝒊(𝝎𝒕 + 𝒌𝒙)) 𝒆⃗⃗𝒛 

 

37)   𝐵⃗⃗𝑖(𝑀, 𝑡) =
𝑒𝑥 ∧ 𝐸⃗⃗𝑖

𝑐
= −

𝐸0

𝑐
exp(𝑖(𝜔𝑡 − 𝑘𝑥)) 𝑒𝑦   et    𝐵⃗⃗𝑟(𝑀, 𝑡) = −

𝑒𝑥 ∧ 𝐸⃗⃗𝑟

𝑐
= −

𝐸0

𝑐
exp(𝑖(𝜔𝑡 + 𝑘𝑥)) 𝑒𝑦 

Ainsi,   𝑩⃗⃗⃗(𝒙 = 𝟎−, 𝒕) = −
𝟐𝑬𝟎

𝒄
𝐞𝐱𝐩(𝒊𝝎𝒕) 𝒆⃗⃗𝒚  →  𝑗𝑠(𝑡) =

2𝐸0

𝜇0𝑐
exp(𝑖𝜔𝑡) 𝑒𝑧  →  𝒋𝒔(𝒕) =

𝟐𝑬𝟎

𝝁𝟎𝒄
𝐜𝐨𝐬(𝝎𝒕) 𝒆⃗⃗𝒛 

 

38)   𝛿𝐹⃗𝐿 = 𝑎𝑑𝑦 𝑗𝑠(𝑡) ∧ 𝐵⃗⃗𝑖(𝑥 = 0−, 𝑡)  →  𝑭⃗⃗⃗𝑳 = 𝒂𝟐 𝒋𝒔(𝒕) ∧ 𝑩⃗⃗⃗𝒊(𝒙 = 𝟎−, 𝒕) 

 

39-40)   𝐹⃗𝐿 =
2𝑎2𝐸0

2

𝜇0𝑐2 cos2(𝜔𝑡) 𝑒𝑥  →  𝑷𝒎 =
𝑬𝟎

𝟐

𝝁𝟎𝒄𝟐 =
𝟐𝑰

𝒄
 Car  𝐼 = 〈‖Π⃗⃗⃗𝑖‖〉 = 〈‖

𝐸⃗⃗𝑖 ∧ 𝐵⃗⃗𝑖

𝜇0
‖〉 =

𝐸0
2

2𝜇0𝑐
 

D’après la 2ème loi de Newton,  𝑃𝑚𝑆 =
𝑚𝑔

103  → 𝑆 =
𝑚𝑔𝑐

2.103 𝐼
= 𝟑. 𝟏𝟎𝟔 𝒎𝟐 = 300 ℎ𝑎 ~ 400 terrains de foot ! 

C’est énorme ! Cela soulève de grandes difficultés pour le déploiement et le contrôle d’orientation. 

1 

𝑣𝜑

𝑐
          

𝑣𝑔

𝑐
 

𝜔 
𝜔𝑝 

De façon générale, l’ionosphère est dispersive car 𝑣𝜑 dépend de 𝜔. 

A très haute fréquences, il n’y a presque plus de dispersion. 



41)   𝒓⃗⃗(𝑴) = 𝒓𝒆⃗⃗𝒓          𝒗⃗⃗⃗(𝑴) = 𝒓̇𝒆⃗⃗𝒓 + 𝒓𝜽̇𝒆⃗⃗𝜽          𝒂⃗⃗⃗(𝑴) = (𝒓̈ − 𝒓𝜽̇𝟐)𝒆⃗⃗𝒓 + (𝟐𝒓̇𝜽̇ + 𝒓𝜽̈)𝒆⃗⃗𝜽 

 

42)   La résultante des forces est composée de la force gravitationnelle (Q2)  𝐹⃗𝑔 = −
𝐺𝑀𝑇𝑚

𝑟2
𝑒𝑟  et de  𝐹⃗𝑝. 

Ainsi,  𝑭𝒓 = −
𝑮𝑴𝑻𝒎

𝒓𝟐 + 𝑳(𝒓, 𝜽)𝑷𝒎𝑺 𝐜𝐨𝐬𝟐(𝝋) 𝐜𝐨𝐬(𝝋 − 𝜽)  et  𝑭𝜽 = 𝑳(𝒓, 𝜽)𝑷𝒎𝑺 𝐜𝐨𝐬𝟐(𝝋) 𝐬𝐢𝐧(𝝋 − 𝜽) 

 

43)   D’après la 2ème loi de Newton,  𝑚(𝑟̈ − 𝑟𝜃̇2) = 𝐹𝑟  et  𝑚(2𝑟̇𝜃̇ + 𝑟𝜃̈) = 𝐹𝜃. 

Et en effet, puisque  𝑟̇ = 𝑣𝑟   et  𝜃̇ =
𝑣𝜃

𝑟
  →  𝑣̇𝑟 =

𝑭𝒓  

𝒎
+

𝒗𝜽
𝟐

𝒓
   et   𝑣̇𝜃 = 𝑟̇𝜃̇ + 𝑟𝜃̈ =

𝐹𝜃  

𝑚
− 𝑟̇𝜃̇ =

𝑭𝜽  

𝒎
−

𝒗𝒓𝒗𝜽

𝒓
 

 

44)   La seule énergie potentielle prise en compte dans ℰ𝑚 est gravitationnelle :  𝓔𝒎 =
𝒎

𝟐
(𝒗𝒓

𝟐 + 𝒗𝜽
𝟐) −

𝑮𝑴𝑻𝒎

𝒓
 

 

45)   
𝒅𝓔𝒎

𝒅𝒕
= 𝑭⃗⃗⃗𝒑. 𝒗⃗⃗⃗ = 𝑷𝒎𝑺⏟

𝑲𝒎

𝐿(𝑟, 𝜃) cos2(𝜑) (𝑣𝑟 cos(𝜑 − 𝜃) + 𝑣𝜃 sin(𝜑 − 𝜃)) 

 

46-49)   Instruction 1  𝐓 = 𝐧𝐩. 𝐚𝐫𝐚𝐧𝐠𝐞(𝟎, 𝐭𝐦𝐚𝐱, 𝐝𝐭)  𝑛 = ⌈
𝑡𝑚𝑎𝑥

𝑑𝑡
⌉ 

 

 

La fonction détermine l’angle 𝜑 optimal avec l’intervalle de confiance  ± 2. 10−3 𝑟𝑎𝑑. 

 

 
 

Instruction 2 

 



 

 

50)   Dans la situation 𝑥 ~ 0  et  𝑦 > 0, le vaisseau se dirige vers le Soleil, le rayonnement est de face !  

Pour éviter tout freinage, il faut aligner la voile dans le sens du déplacement pour que l’incidence soit 

rasante (𝛼 = 0, 𝜑 =
𝜋

2
). 

 

51)   La vitesse 𝑣𝑙𝑖𝑏 est la vitesse minimale permettant de se libérer de l’attraction terrestre dans le cadre 

d’étude d’un système conservatif. Or l’état libre correspond à une énergie mécanique positive ou nulle donc  

ℰ𝑚 =
𝑚

2
𝑣2(𝑟) −

𝐺𝑀𝑇𝑚

𝑟
≥ 0 →  𝒗𝒍𝒊𝒃(𝒓) = √

2𝐺𝑀𝑇

𝑟
 

 

52)   ℰ𝑚 =
𝑚

2
𝑣2(𝑟) −

𝑚

2
𝑣𝑙𝑖𝑏

2 (𝑟) < 0 →  
𝒗

𝒗𝒍𝒊𝒃
= √𝟏 +

𝓔𝒎𝒓

𝑮𝑴𝑻𝒎
= √𝟏 −

|𝓔𝒎|𝒓

𝑮𝑴𝑻𝒎
< 𝟏 

A ℰ𝑚 = 𝑐𝑠𝑡𝑒, ce rapport oscille, il est maximal au périgée (𝑟 minimal) et minimal à l’apogée (𝑟 maximal). 

 

Avec la voile on assiste à une augmentation de ℰ𝑚 (|ℰ𝑚 | ↘), ce qui rend à coup sûr le rapport  
𝑣

𝑣𝑙𝑖𝑏
  de plus 

en plus grand au « périgée » (𝑟𝑚𝑖𝑛 ~ 𝑐𝑠𝑡𝑒). Par contre, il n’est pas facile de prévoir que le rapport  
𝑣

𝑣𝑙𝑖𝑏
  est 

de plus en plus petit à « l’apogée » : l’augmentation de 𝑟𝑚𝑎𝑥 semble l’emporter. 

 


