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1) Enfait, T} et T, sont les deux centres des fentes ... §gpyrce = Ha Ty = >

2
5source - aa/z 6= a,B = ax/le

2) s1(t, M) = sg cos(wt — k(S,T{M)) et s,(t, M) = s cos(wt — k(S,T,M))

3) I(M) = K{(s:(t, M) + s, (¢, M))Z) = 4K s3(cos?(wt — k((S4TuM) + (SaTo2M))/2)) cos?(kSo¢/2)

- 1(8) = 2Ks§ cos?(k8yo/2) = Ks§(1 + cos(k8,0)) = 21o(1 + cos(k(8 + aa/2)))

Ks¢ . y .
Avec [, = 70 , 'intensité de chacun des signaux s; et s,.

4-5) Le signaux issus de S, n’interférent pas avec ceux issus de Sg car il y a incohérence mutuelle.
Les sources émettent des paquets d’ondes décorrélés, leur phase a l'origine sont des fonctions aléatoires

dans le temps et différentes d’une source a I'autre. Si on note sz, (t, M) et sz, (t, M) les signaux issus de Sg,
2
I;(M) = K{(51(t, M) + s,(t, M) + sp1(t, M) + s, (t, M))")
2 2
= K{((51(t, M) + s5,(t, M))") + K (551 (t, M) + 52 (t, M))") = I(M) + Ig(M)
Car (s1(t,M)sp,(t, M)) = (s5(t, M)sg,(t, M)) = (s1(t, M)sp,(t, M)} = (s,(t, M)sp,(t,M)) =0

Par analogie, I5(6) = 210(1 + cos(k(6 — aa/Z))) car (§,T,) — (§Ty) = —aa/2
Ainsi, 13(8) = 215(2 + cos(k(6 + aa/2)) + cos(k(6 — aa/2))) = 41y(1 + cos(kaa/2) cos(kd))

I;8)%
""""""""""" Imax - 2IdO
Igo
Ay =09 a2 2 (M) 0 §(M)

I'(a,a) =1 Contraste maximal — Franges nettes I['(a,a) =0 Plusdefranges



6-7) "2_“ = 7;_: =966 M:a_a//ZZ) = %ﬁ'ﬂ - u(ka/2) =45 u(a) a été négligée.

8-9) Sion respecte le programme en suivant scrupuleusement la consigne de I’énoncé, c’est-a-dire en

ne prenant en compte que le maximum principal et les deux minima qui I'encadrent, sans se demander

S o . - . 110 — 50
pourquoi les intensités maximales et minimales varient : C = Toico 0,38
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[En fait, la figure d’interférences est modulée par le phénomene de diffraction di aux fentes de largeur L.

1;(8) = 4l, sinc? (:l;) (1 + cos(a ka/2) cos (%)) = 4], sinc? (Z—/I{z) (1 + cos(a ka/2) cos (%))
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La valeur I,,,;,, lue sur la figure 4 n’est pas 41,(1 — cos(a ka/2)) mais 41, sinc? (:—;) (1 —cos(aka/2)).

Or d’apres la largeur de la tache de diffraction, toujours sur la figure 4, a = 31..

_ 110-55
" 110+ 55

Ainsi, 41, sinc? (%) (1 —cos(aka/2)) =50 - 4I,(1 —cos(aka/2))~55 - C* =0,33]



10) On peut répondre de deux facons différentes a cette question tres riche.

Ajustement unique : Avec les 9 valeurs mesurées de C (0.38,0.30,0.26,0.24,0.15,0.08,0.03,0.13,0.25)

et de kz—a (966,1210,1400,1450,1820,2100,2420,3030,3510), on ne procéde qu’a un seul ajustement

. k k n . _— .
de la fonction contraste f (7‘1) = Cy |cos (a 7a)| grace au module scipy. optimize. curve_fit.

Cette fonction renvoie sous forme de tableaux, les valeurs optimales des parametres « et C ainsi que

la matrice de covariance associée dont la diagonale est constituée des variances u?(a) et u?(C,).

Par défaut, les parametres sont ajustés a partir de la valeur 1. A cause de la périodicité de f, il faut préciser
ici 'intervalle dans lequel on effectue la recherche (entre 0 et 10™2 pour @ — bounds = (0, [1e — 3,1])).

import numpy as np
from scipy.optimize import curve fit

Xm=[966,1210, 1400, 1450, 1820, 2100,2420,3030,3510] #ka/2 mesurés
Cm=[0.38,0.30,0.26,0.24,0.15,0.08,0.03,0.13,0.25] #Contrastes mesurés

m=Llen{Cm)

def f(x,a,b): #Fonction d'ajustement
return b*abs(np.cos(a*x))

para,cov=curve_fit(f,Xm,Cm,bounds=(0,[1le-3,1]))

alpha=paral0]
u_alpha=np.sqrt(cov[0][0])
CO=parall]
u_CO=np.sqrt(cov[1][1])

print("alpha={:.2e} +/- {:.0e} rad".format(alpha,u_alpha})
print("C0={:.2e} +/- {:.1le}".format(CO,u_CO))

alpha=6.33e-04 +/- 8e-06 rad
C0=4.18e-01 +/- 1.2e-02

Ajustements multiples :

La méthode de Monte-Carlo consiste a simuler N ajustements en créant 2N listes de valeurs simulées

ka

(Csim et (7) ' ) . Pour cela, a partir des incertitudes-types u(C) et u (7(1), on utilise la fonction
sim

numpy.random.uniform qui place de fagon aléatoire chaque terme i des listes simulées dans les intervalles

[C; —V3u(C); C; +V3u(C)] et [(kz—a) —\3u (k—a) ; (k—a)i ++3u (kz—a)] avec C; et (%), les termes

i 2 2 i
de rang i des listes mesures. Apres N ajustements, on obtient deux listes de N valeurs de Cy g, €t de agp,.

Les moyennes (C, et @) et les écarts-types expérimentaux (u(CO) et u(a)) sont les résultats recherchés.



N=1000

Xsim=[] #Liste de valeurs de ka/2 simulées

Csim=[] #Liste de valeurs de C simulées
liste_alpha=[] #Liste des parametres alpha obtenus
liste CO=[] #Liste des parametres CO obtenus

for i in range(N):
for j in range(m):
Xsim.append(Xm[j1+30/650*Xm[jI*np.sqrt(3)*np.random.uniform(-1,1})
Csim.append(Cm[j1+0.1*Cm[j]1*np.sqrt(3)*np.random.uniform(-1,1))
para_MC, cov_MC=curve_fit(f,Xsim,Csim, bounds=(0,[1le-3,1]1))
liste_alpha.append(para MC[O])
liste_CO.append(para_MC[1])

alpha_MC=np.mean(liste_alpha)
u_alpha_MC=np.std(liste_alpha,ddof=1)
CO_MC=np.mean(liste CO)
u_CO_MC=np.std(liste_CO,ddof=1)

print("alpha MC={:.2e} +/- {:.0e} rad".format(alpha_MC,u_alpha_MC))
print("CO0 MC={:.2e} +/- {:.0e}".format(CO _MC,u CO_MC))

alpha MC=6.36e-04 +/- le-06 rad
CO MC=4.15e-01 +/- 1e-03 Le gain en précision est conséquent.

11) d = af; = 509 um u(d) =9 um u(f]) a été négligée.

N , 4
12) La lecture s'opére sur un axe gradué tous les 4 um — U (x) = 275 bm

Les points de mesure sont espacés également de 4 um — Upoine (X) = Upeee (X) — ux) = V2 U (%)
L'écart Ax entre les deux pics vaut 32 um avec u(Ax) = u(x, — x;) = V2u(x) = 2,3 um.
! !
Ainsi d' = %Ax =457 um avec u(d’) = %u(Ax) =33 um
2 2
Le calcul de I’écart normalisé entre les deux mesures va nous permettre de savoir s’il y a accord ou non :
|d - d'| , . -
Ey = = 1,5<2 C’est limite mais il y a accord !
Juz(d) +uz(d")
13) &Y, = az—“ + 4, Nous retrouvons la méme situation que précédemment avec maintenant

une ligne a retard qui simule un balayage de I'écran.

14) a,.s = b _ 2,5.10°rad Ce qui correspond a une résolution spatiale de 2,4.10° km !
2a

Ce résultat décevant n’est pas surprenant : Les exoplanetes sont des objets tellement lointains que leur

observation directe par des méthodes classiques est tres difficile. Sans parler de leur tres faible luminosité !
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15-17) )(~tan)(=£—>SFb=2 = 547 au
b

Le point F,, est extérieur au systeme solaire et il n’est possible d’observer A, qu’au-dela de ce point F.

Avec une lentille mince en verre, tous les rayons en provenance de A, convergeraient en F’, le foyer image
de la lentille (stigmatisme approché). Ce n’est pas le cas avec une lentille gravitationnelle, les rayons en
provenance de A, coupent |'axe optique en différents points (non stigmatisme).

Cette différence provient de la dépendance en b de y : En optique traditionnelle, y est proportionnel a b

alors qu’en optique gravitationnelle, y est inversement proportionnel a b.

18-20) D’apres le théoreme de Thales, A{B4 = AS"_ABO SA4
0

Si on applique le critere de Rayleigh (deux taches de diffraction sont séparées si I'écart entre leur centre est
supérieur a leur demi-largeur), il faut que A{B1 = pmin = 5 cm = (AgBg)min = 526 m

C’est extrémement petit devant les distances mises en jeu, la résolution est exceptionnelle.

21) Les rayons lumineux dont le parametre d’impact varie entre b et b + D ne sont pas déviés du méme

. L . 2r 2r
angle, leur inclinaison y est comprise entre b%’; t #Ch.

2r 2r s . .
SR et ¥max(Z) = %Ch définissent I'anneau d’Einstein en z.

Ces deux angles limites, y,,i,(2) = P

Soleil

Anneau
d'Einstein

point Ay

Mais si le télescope se situe en z' > z, les rayons lumineux associés a 'anneau d’Einstein sont moins

. . 4 T . 2r 2r
inclinés, I'anneau est alors défini par le nouvel intervalle ﬁ <y < b—sfh avec b’ > b.

< et o5 <3
b"+D b+D b b"+D b b+D

On en déduit que I'anneau se rapproche du Soleil et s’"amincit ( ! L L L ! )

o1 s . . . . . 1
22) Soitl, I'intensité lumineuse (puissance surfacique) en provenance de A,. Malgré sa dépendance en —
"

on suppose que celle-ci ne varie pas entre le Soleil et le télescope (z < SA4,).
. , . N nD? , .
La puissance collectée sans la lentille gravitationnelle est [ — alors que celle collectée avec la lentille

gravitationnelle est Im((b + D)? — b?) = 2InbD (D <K b): pu = %’ =5,6.10° > 1

C’est phénoménal mais il ne faut pas oublier qu’on part de presque rien !



23-24) &€ = % et p= % Les N photons en question sont contenus dans le cylindre oblique

dessiné en pointillés ci-dessous. Ce cylindre a pour volume S ¢ cos 8 8t. Il est intéressant de remarquer que

ce cylindre a le méme volume que le cylindre droit grisé. lls permettent tous les deux un décompte correct.

En raisonnant avec le cylindre droit,

c cos B 6t la prise en compte du photon du haut

<>

- !
S 8, compense celui du bas qui a été oublié !
AT cu
I
e IRy
Cyllndres / = E‘

de méme volume
Sccospf bt

I AS cosB ot

Or I; = nc€ avecn, le nombre de photons par unité de volume. Ainsi, SN = n Sc cos 8 6t = o

25) Limpulsion de chacun des 6N photons varie de —Z)L—hcosﬁ €, . On applique la 2°™ loi de Newton aux

. 2h SN - = = __2IgScos?p __ 2I5cos? B
6N photons . _TCOS.B Eex - Fvoile—mhotons - photons—voile — c €x = Pr = c
21 —
26) pr_—s_9110 Pa py P = =6,5.106Pa<pr

Environ un tiers des photons sont absorbés et non réfléchis.

27) On applique la 2¢™¢ |oi de Newton & M sur sa trajectoire circulaire (uniforme) :

- GMem —) . 2 . GM
—mRrw? é, = ? — R3w? = GM, On reconnait la 3*™ |oi de Kepler. vr = Rrwr = RT‘

28) Tant que la force }_7; est radiale, son moment en O est nul. D’aprés le T.M.C. appliqué a M, L, = cste.

Deplus, C =% = |[ré, A (7é, + 168y || = r2|6|
29) E,(r) = %(pTR%S — GMym)

. : 1 1 C
30) Ep == (/2 +7%6%) + = (prR}S — GMgm) — Epers(r) == (prRES — GMym) + 7



dE,, 2
31) #ﬁ = riz (GMsm — prR%S — %) Cette dérivée sannule ssi § < S5 >

Sachant que Ej, = E}, .¢¢(7), on en conclut que :

B
>
?m
©
=
=
~
=
—

Si E,, > 0, la trajectoire est hyperbolique

Si E,, = 0, la trajectoire est parabolique

min

Si Eperr < Em <0, latrajectoire est elliptique

Si Ep, = Ep.fy , la trajectoire est circulaire

2
32) Alouverturedelavoile,7 =0 et r =Ry = E,, = prR;S — GIZSm + % =prRrS — Gz{\fjm
T T T
Commeonveutque E,; >0 = S > S;m/2=1,84.10*m? = 1,84 ha
33) On applique la 2¢™¢ loi de Newton a M sur sa nouvelle trajectoire :
d20M  GM,m . SRZ 283 o K , d?p GMsér_l_pTS T
m = — e —cos“ fu & w? = — — cos“fu
dt? rz orTpr GT:S—//;TdTZ R2 p?  mp?
d’p ¢, prS  cos’f prS

S —=—-—=+ =
dtz - p? 'maM./RE pz ©

mGM,/R?
Le parametre 7 est le rapport, au niveau de l'orbite terrestre, entre la force radiative répulsive maximale
(B = 0) et la force attractive gravitationnelle, ces deux forces étant exercées par le Soleil !

2

d dae dp o dze
34) Suré, et €y, nous obtenons d—Tp—p( ) =——+ ~cos® B et 2— P d

hadi A/ 2 i
e e cos“ fsin 8

Ainsi, en posant A(1) = p(7) B(t) =06(t) C(1)= d—i D(7) = % , on est face au systéme

A=cC
B' =D
3
. ncos’>pf—1
¢ =ap? + 12—
7 2CD
D —Agcoszﬁsm[)’—T
35) p(0)=1 6(0)=0 %(0)=0 %(0)=1 cond_init = [1,0,0,1]

36) def voile_solaire_beta(y,tc,a,b):
return [y[2],y[3],y[0] * y[3] ** 2 + (a * np.cos(b) *+x 3 — 1) /y[0] == 2,
a * np.cos(b) *+ 2 x np.sin(b) /y[0] ++ 3 — 2 * y[2] * y[3]/y[0]]



37) Lorsque f = £ 90 °, la voile est paralléle aux rayons lumineux donc la force de pression radiative est

nulle : La sonde reste sur la trajectoire circulaire imposée par la force gravitationnelle.
38) Onlitsurlafigure13, B, =20°et B, =—-52°

39) Dans un premier temps, la sonde est « freinée » par le rayonnement (3, < 0) et s’approche du Soleil
tout en étant accélérée (sa vitesse augmente comme un satellite terrestre « freiné » par I'latmosphére).
Apreés le virement de bord (B, > 0), la sonde profite de 'augmentation de la pression de radiation et
s’éloigne du Soleil en maintenant sa vitesse a un niveau élevé. Lorsqu’elle se retrouve au niveau du cercle

de rayon R, son déplacement quasi radial est propice a son éloignement. Le bilan est positif.

40) On applique dans le référentiel de la sonde, le 1°" principe de la thermodynamique en termes de

puissances, a la voile de capacité thermique C. Celle-ci regoit la puissance P, et rayonne sur ses 2 faces.
ar RZ 4
Lors de la phase de rapprochement, CE = &g r—ZS cos f, — 2SeaT

Cherchons a présent a quelle distance rﬁq

max

, ’équilibre thermique atteindrait-il la température Ty, 05 ?

T,
max Thax

g R , I . o rvp ,
rd == % = 0,063 au Le virement de bord doit s’effectuer avant d’atteindre cette distance.

D’apres la figure 14, le temps minimal envisageable est de I'ordre de 38 années.



