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1)   En fait, 𝑇1 et 𝑇2 sont les deux centres des fentes … 𝛿𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐻2𝑇2 =
𝒂𝜶

𝟐
 

 

2)   𝒔𝟏(𝒕,𝑴) = 𝒔𝟎 𝐜𝐨𝐬(𝝎𝒕 − 𝒌(𝑺𝑨𝑻𝟏𝑴))   et  𝒔𝟐(𝒕,𝑴) = 𝒔𝟎 𝐜𝐨𝐬(𝝎𝒕 − 𝒌(𝑺𝑨𝑻𝟐𝑴)) 

 

3)   𝐼(𝑀) = 𝐾 〈(𝑠1(𝑡,𝑀) + 𝑠2(𝑡,𝑀))
2
〉 = 4𝐾𝑠0

2〈cos2(𝜔𝑡 − 𝑘((𝑆𝐴𝑇2𝑀) + (𝑆𝐴𝑇2𝑀)) 2⁄ )〉 cos
2(𝑘𝛿𝑡𝑜𝑡 2⁄ ) 

→  𝐼(𝛿) = 2𝐾𝑠0
2 cos2(𝑘𝛿𝑡𝑜𝑡 2⁄ ) = 𝐾𝑠0

2(1 + cos(𝑘𝛿𝑡𝑜𝑡)) = 𝟐𝑰𝟎(𝟏 + 𝐜𝐨𝐬(𝒌(𝜹 + 𝒂𝜶 𝟐⁄ ))) 

Avec 𝐼0 =
𝐾𝑠0
2

2
 , l’intensité de chacun des signaux 𝑠1 et 𝑠2. 

 

4-5)   Le signaux issus de 𝑆𝐴 n’interfèrent pas avec ceux issus de 𝑆𝐵 car il y a incohérence mutuelle.  

Les sources émettent des paquets d’ondes décorrélés, leur phase à l’origine sont des fonctions aléatoires 

dans le temps et différentes d’une source à l’autre. Si on note 𝑠𝐵1(𝑡,𝑀) et 𝑠𝐵2(𝑡, 𝑀) les signaux issus de 𝑆𝐵, 

𝐼𝑑(𝑀) = 𝐾 〈(𝑠1(𝑡,𝑀) + 𝑠2(𝑡, 𝑀) + 𝑠𝐵1(𝑡,𝑀) + 𝑠𝐵2(𝑡,𝑀))
2
〉                                                        

= 𝐾 〈(𝑠1(𝑡,𝑀) + 𝑠2(𝑡,𝑀))
2
〉 + 𝐾 〈(𝑠𝐵1(𝑡,𝑀) + 𝑠𝐵2(𝑡, 𝑀))

2
〉 = 𝑰(𝑴) + 𝑰𝑩(𝑴) 

Car  〈𝑠1(𝑡,𝑀)𝑠𝐵1(𝑡,𝑀)〉 = 〈𝑠2(𝑡,𝑀)𝑠𝐵1(𝑡, 𝑀)〉 = 〈𝑠1(𝑡,𝑀)𝑠𝐵2(𝑡, 𝑀)〉 = 〈𝑠2(𝑡,𝑀)𝑠𝐵2(𝑡,𝑀)〉 = 0 

Par analogie, 𝐼𝐵(𝛿) = 2𝐼0(1 + cos(𝑘(𝛿 − 𝑎𝛼 2⁄ )))  car  (𝑆𝑏𝑇2) − (𝑆𝑏𝑇1) = −𝑎𝛼 2⁄  

Ainsi,  𝐼𝑑(𝛿) = 2𝐼0(2 + cos(𝑘(𝛿 + 𝑎𝛼 2⁄ )) + cos(𝑘(𝛿 − 𝑎𝛼 2⁄ ))) = 𝟒𝑰𝟎(𝟏 + 𝐜𝐨𝐬(𝒌𝒂𝜶 𝟐⁄ ) 𝐜𝐨𝐬(𝒌𝜹)) 

 

𝑇2 
 

𝑇1 
 

𝑀(𝑥) 

𝑥 

Ecran 

𝛼 2⁄  
 

𝑓2
′ 

𝐻2 

𝛿 = 𝑎𝛽 = 𝑎𝑥 𝑓2
′⁄   𝛿𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑎𝛼 2⁄   

𝐻1 

𝑆𝐴 
  

𝑓1
′ 

𝛽 

𝐼𝑑(𝛿) 

δ(𝑀) 0 

𝐼𝑚𝑎𝑥 = 2𝐼𝑑,0 

𝜆0 2⁄  −𝜆0 
 

𝜆0 

𝐼𝑑,0 

𝐼𝑚𝑖𝑛 = 0 

𝐼𝑑(𝛿) 

δ(𝑀) 0 

Γ(𝑎, 𝛼) = 1  Contraste maximal – Franges nettes   Γ(𝑎, 𝛼) = 0 Plus de franges 



6-7)   
𝑘𝑎

2
=
𝜋𝑎

𝜆0
= 𝟗𝟔𝟔  

𝑢(𝑘𝑎 2⁄ )

𝑘𝑎 2⁄
=
𝑢(𝜆0)

𝜆0
 →  𝑢(𝑘𝑎 2⁄ ) = 𝟒𝟓  𝑢(𝑎) a été négligée. 

 

8-9)   Si on respecte le programme en suivant scrupuleusement la consigne de l’énoncé, c’est-à-dire en  

ne prenant en compte que le maximum principal et les deux minima qui l’encadrent, sans se demander 

pourquoi les intensités maximales et minimales varient  :  𝐶 =
110 − 50

110 + 50
= 𝟎, 𝟑𝟖 

 

[En fait, la figure d’interférences est modulée par le phénomène de diffraction dû aux fentes de largeur 𝑙. 

𝐼𝑑
∗(𝛿) = 4𝐼0 sinc

2 (
𝜋𝑙𝑥

𝑓2
′𝜆0
) (1 + cos(𝛼 𝑘𝑎 2⁄ ) cos (

2𝜋𝛿

𝜆0
)) = 4𝐼0 sinc

2 (
𝜋𝑙𝛿

𝑎𝜆0
) (1 + cos(𝛼 𝑘𝑎 2⁄ ) cos (

2𝜋𝛿

𝜆0
))

 

La valeur 𝐼𝑚𝑖𝑛 lue sur la figure 4 n’est pas  4𝐼0(1 − cos(𝛼 𝑘𝑎 2⁄ )) mais 4𝐼0 sinc
2 (
𝜋𝑙

2𝑎
) (1 − cos(𝛼 𝑘𝑎 2⁄ )). 

Or d’après la largeur de la tache de diffraction, toujours sur la figure 4, 𝑎 = 3𝑙 . 

Ainsi,  4𝐼0 sinc
2 (
𝜋

6
) (1 − cos(𝛼 𝑘𝑎 2⁄ )) = 50 →  4𝐼0(1 − cos(𝛼 𝑘𝑎 2⁄ )) ~ 55  →  𝐶

∗ =
110 − 55

110 + 55
= 0,33 ] 

  

Mesure brute sans tenir compte 
de la diffraction (𝐶) 
 
Mesure corrigée en tenant 
compte de la diffraction (𝐶∗) 

4𝐼0(1 + cos(𝑘𝑎𝛼 2⁄ )) 

4𝐼0 sinc
2 ൬
𝜋𝑙

2𝑎
൰ (1 − cos(𝛼𝑘𝑎 2⁄ )) 

4𝐼0 sinc
2 ൬
𝜋𝑙

𝑎
൰ (1 + cos(𝛼𝑘𝑎 2⁄ )) 

sinc2 ൬
3𝜋𝑙

𝑎
൰ = 0 → 𝑎 = 3𝑙 



10)   On peut répondre de deux façons différentes à cette question très riche. 

 

Ajustement unique : Avec les 9 valeurs mesurées de 𝐶 (0.38, 0.30, 0.26, 0.24, 0.15, 0.08, 0.03, 0.13, 0.25) 

et de  
𝑘𝑎

2
  (966, 1210, 1400, 1450, 1820, 2100, 2420, 3030, 3510), on ne procède qu’à un seul ajustement 

de la fonction contraste 𝑓 (
𝑘𝑎

2
) = 𝐶0 |cos (𝛼

𝑘𝑎

2
)|  grâce au module 𝐬𝐜𝐢𝐩𝐲. 𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐞. 𝐜𝐮𝐫𝐯𝐞_𝐟𝐢𝐭.  

Cette fonction renvoie sous forme de tableaux, les valeurs optimales des paramètres 𝛼 et 𝐶0 ainsi que  

la matrice de covariance associée dont la diagonale est constituée des variances 𝑢2(𝛼) et 𝑢2(𝐶0). 

Par défaut, les paramètres sont ajustés à partir de la valeur 1. A cause de la périodicité de 𝑓, il faut préciser 

ici l’intervalle dans lequel on effectue la recherche (entre 0 et 10−3 pour 𝛼 → bounds = (0, [1e − 3,1])). 

 

 

Ajustements multiples : 

La méthode de Monte-Carlo consiste à simuler 𝑁 ajustements en créant 2𝑁 listes de valeurs simulées 

(𝐶𝑠𝑖𝑚  et (
𝑘𝑎

2
)
𝑠𝑖𝑚
) . Pour cela, à partir des incertitudes-types 𝑢(𝐶) et 𝑢 (

𝑘𝑎

2
), on utilise la fonction 

numpy.random.uniform qui place de façon aléatoire chaque terme 𝑖 des listes simulées dans les intervalles 

[𝐶𝑖 − √3 𝑢(𝐶) ; 𝐶𝑖 + √3 𝑢(𝐶)]  et  [(
𝑘𝑎

2
)
𝑖
− √3 𝑢 (

𝑘𝑎

2
) ; (

𝑘𝑎

2
)
𝑖
+ √3 𝑢 (

𝑘𝑎

2
)] avec 𝐶𝑖 et (

𝑘𝑎

2
)
𝑖
, les termes 

de rang 𝑖 des listes mesures. Après 𝑁 ajustements, on obtient deux listes de 𝑁 valeurs de 𝐶0,𝑠𝑖𝑚 et de 𝛼𝑠𝑖𝑚.  

Les moyennes (𝐶0 et 𝛼) et les écarts-types expérimentaux (𝑢(𝐶0) et  𝑢(𝛼)) sont les résultats recherchés. 

   



 

 

11)   𝒅 = 𝜶𝒇𝟏
′ = 𝟓𝟎𝟗 𝝁𝒎             𝒖(𝒅) = 𝟗 𝝁𝒎  𝑢(𝑓1

′) a été négligée. 

 

12)   La lecture s’opère sur un axe gradué tous les 4 𝜇𝑚 →  𝑢𝑙𝑒𝑐𝑡(𝑥) =
4

2√3
 𝜇𝑚. 

Les points de mesure sont espacés également de 4 𝜇𝑚 →  𝑢𝑝𝑜𝑖𝑛𝑡(𝑥) = 𝑢𝑙𝑒𝑐𝑡(𝑥)  → 𝑢(𝑥) = √2 𝑢𝑙𝑒𝑐𝑡(𝑥) 

L’écart ∆𝑥 entre les deux pics vaut 32 𝜇𝑚   avec  𝑢(∆𝑥) = 𝑢(𝑥2 − 𝑥1) = √2𝑢(𝑥) = 2,3 𝜇𝑚 .  

Ainsi  𝑑′ =
𝑓1
′

𝑓2
′ ∆𝑥 = 𝟒𝟓𝟕 𝝁𝒎   avec  𝑢(𝑑′) =

𝑓1
′

𝑓2
′ 𝑢(∆𝑥) = 𝟑𝟑 𝝁𝒎 

Le calcul de l’écart normalisé entre les deux mesures va nous permettre de savoir s’il y a accord ou non : 

𝐸𝑁 =
|𝑑 − 𝑑′|

√𝑢2(𝑑) + 𝑢2(𝑑′)
= 1,5 < 2 C’est limite mais il y a accord ! 

 

13)   𝜹𝒕𝒐𝒕
𝑰𝑰 =

𝒂𝜶

𝟐
+ 𝜹𝒓  Nous retrouvons la même situation que précédemment avec maintenant  

une ligne à retard qui simule un balayage de l’écran. 

 

14)   𝛼𝑟𝑒𝑠 =
𝜆0

2𝑎
= 𝟐, 𝟓. 𝟏𝟎−𝟗 𝒓𝒂𝒅 Ce qui correspond à une résolution spatiale de 𝟐, 𝟒. 𝟏𝟎𝟔 𝒌𝒎 ! 

Ce résultat décevant n’est pas surprenant : Les exoplanètes sont des objets tellement lointains que leur 

observation directe par des méthodes classiques est très difficile. Sans parler de leur très faible luminosité ! 

 

  

Le gain en précision est conséquent. 



15-17)   𝜒 ~ tan 𝜒 =
𝑏

𝑆𝐹𝑏
 →  𝑺𝑭𝒃 =

𝒃𝟐

𝟐𝒓𝒔𝒄𝒉
 𝑆𝐹0 =

𝑅𝑠
2

2𝑟𝑠𝑐ℎ
= 𝟓𝟒𝟕 𝒂𝒖 

 

Le point 𝐹0 est extérieur au système solaire et il n’est possible d’observer 𝐴0 qu’au-delà de ce point 𝐹0. 

 

Avec une lentille mince en verre, tous les rayons en provenance de 𝐴0 convergeraient en 𝑭’, le foyer image 

de la lentille (stigmatisme approché). Ce n’est pas le cas avec une lentille gravitationnelle, les rayons en 

provenance de 𝐴0 coupent l’axe optique en différents points (non stigmatisme).  

Cette différence provient de la dépendance en 𝑏 de 𝜒 : En optique traditionnelle, 𝜒 est proportionnel à 𝑏 

alors qu’en optique gravitationnelle, 𝜒 est inversement proportionnel à 𝑏. 

 

18-20)   D’après le théorème de Thalès,  𝑨𝟏𝑩𝟏 =
𝑨𝟎𝑩𝟎

𝑺𝑨𝟎
𝑺𝑨𝟏 

Si on applique le critère de Rayleigh (deux taches de diffraction sont séparées si l’écart entre leur centre est 

supérieur à leur demi-largeur), il faut que  𝑨𝟏𝑩𝟏 ≥ 𝝆𝒎𝒊𝒏 = 𝟓 𝒄𝒎 → (𝑨𝟎𝑩𝟎)𝒎𝒊𝒏 = 𝟓𝟐𝟔 𝒎 

C’est extrêmement petit devant les distances mises en jeu, la résolution est exceptionnelle. 

 

21)   Les rayons lumineux dont le paramètre d’impact varie entre 𝑏 et 𝑏 + 𝐷 ne sont pas déviés du même 

angle, leur inclinaison 𝜒 est comprise entre  
2𝑟𝑠𝑐ℎ

𝑏 + 𝐷
  et  

2𝑟𝑠𝑐ℎ

𝑏
 .  

Ces deux angles limites, 𝜒𝑚𝑖𝑛(𝑧) =
2𝑟𝑠𝑐ℎ

𝑏 + 𝐷
   et  𝜒𝑚𝑎𝑥(𝑧) =

2𝑟𝑠𝑐ℎ

𝑏
  définissent l’anneau d’Einstein en 𝑧. 

 

Mais si le télescope se situe en 𝑧′ > 𝑧, les rayons lumineux associés à l’anneau d’Einstein sont moins 

inclinés, l’anneau est alors défini par le nouvel intervalle   
2𝑟𝑠𝑐ℎ

𝑏′ + 𝐷
< 𝜒′ <

2𝑟𝑠𝑐ℎ

𝑏′
   avec  𝑏’ > 𝑏. 

 

On en déduit que l’anneau se rapproche du Soleil et s’amincit  (
1

𝑏′ + 𝐷
<

1

𝑏 + 𝐷
  et  

1

𝑏′
−

1

𝑏′ + 𝐷
<
1

𝑏
−

1

𝑏 + 𝐷
). 

 

22)   Soit 𝐼, l’intensité lumineuse (puissance surfacique) en provenance de 𝐴0. Malgré sa dépendance en  
1

𝑟2
 

on suppose que celle-ci ne varie pas entre le Soleil et le télescope (𝑧 ≪ 𝑆𝐴0). 

La puissance collectée sans la lentille gravitationnelle est  𝐼
𝜋𝐷2

4
  alors que celle collectée avec la lentille 

gravitationnelle est  𝐼𝜋((𝑏 + 𝐷)2 − 𝑏2) = 2𝐼𝜋𝑏𝐷   (𝐷 ≪ 𝑏) :  𝝁 =
𝟖𝒃

𝑫
= 𝟓, 𝟔. 𝟏𝟎𝟗 ≫ 𝟏 

C’est phénoménal mais il ne faut pas oublier qu’on part de presque rien ! 

 𝜒𝑚𝑖𝑛(𝑧) 

 𝜒𝑚𝑎𝑥(𝑧) 



23-24)   𝓔 =
𝒉𝒄

𝝀
   et   𝒑 =

𝒉

𝝀
  Les 𝛿𝑁 photons en question sont contenus dans le cylindre oblique 

dessiné en pointillés ci-dessous. Ce cylindre a pour volume 𝑆 𝑐 cos 𝛽 𝛿𝑡. Il est intéressant de remarquer que 

ce cylindre a le même volume que le cylindre droit grisé. Ils permettent tous les deux un décompte correct. 

 

Or  𝐼𝑠 = 𝑛𝑐ℰ  avec 𝑛, le nombre de photons par unité de volume. Ainsi, 𝛿𝑁 = 𝑛 𝑆𝑐 cos 𝛽 𝛿𝑡 =
𝑰𝒔 𝝀 𝑺 𝐜𝐨𝐬𝜷 𝜹𝒕

𝒉𝒄
 . 

 

25)   L’impulsion de chacun des 𝛿𝑁 photons varie de  −
2ℎ

𝜆
cos 𝛽  𝑒𝑥 . On applique la 2ème loi de Newton aux 

𝛿𝑁 photons :  −
2ℎ

𝜆
cos 𝛽  

𝛿𝑁

𝛿𝑡
𝑒𝑥 = 𝐹⃗𝑣𝑜𝑖𝑙𝑒→𝑝ℎ𝑜𝑡𝑜𝑛𝑠  →  𝐹⃗𝑝ℎ𝑜𝑡𝑜𝑛𝑠→𝑣𝑜𝑖𝑙𝑒 =

2𝐼𝑠 𝑆 cos
2𝛽

𝑐
𝑒𝑥  →  𝒑𝒓 =

𝟐𝑰𝒔 𝐜𝐨𝐬
𝟐 𝜷

𝒄
 

 

26)   𝑝𝑟 =
2𝐼𝑠

𝑐
= 𝟗, 𝟏. 𝟏𝟎−𝟔 𝑷𝒂 𝑝𝑟

𝑒𝑥𝑝 =
𝐹

𝑆
= 𝟔, 𝟓. 𝟏𝟎−𝟔 𝑷𝒂 < 𝒑𝒓 

Environ un tiers des photons sont absorbés et non réfléchis. 

 

27)   On applique la 2ème loi de Newton à 𝑀 sur sa trajectoire circulaire (uniforme) :  

−𝑚𝑅𝑇𝜔𝑇
2  𝑒𝑟 = −

𝐺𝑀𝑠𝑚

𝑅𝑇
2 𝑒𝑟  →  𝑹𝑻

𝟑𝝎𝑻
𝟐 = 𝑮𝑴𝒔   On reconnait la 3ème loi de Kepler.            𝑣𝑇 = 𝑅𝑇𝜔𝑇 = √

𝑮𝑴𝒔

𝑹𝑻
 

 

28)   Tant que la force 𝐹⃗𝑟 est radiale, son moment en 𝑂 est nul. D’après le T.M.C. appliqué à 𝑀, 𝑳𝒛 = 𝒄𝒔𝒕𝒆. 

De plus,  𝐶 =
|𝐿𝑧|

𝑚
= ‖𝑟𝑒𝑟 ∧ (𝑟̇𝑒𝑟 + 𝑟𝜃̇𝑒𝜃)‖ = 𝒓

𝟐|𝜽̇| 

 

29)   𝑬𝒑(𝒓) =
𝟏

𝒓
(𝒑𝑻𝑹𝑻

𝟐𝑺 − 𝑮𝑴𝒔𝒎)  

 

30)   𝐸𝑚 =
𝑚

2
(𝑟̇2 + 𝑟2𝜃̇2) +

1

𝑟
(𝑝𝑇𝑅𝑇

2𝑆 − 𝐺𝑀𝑠𝑚)  →  𝑬𝒑,𝒆𝒇𝒇(𝒓) =
𝟏

𝒓
(𝒑𝑻𝑹𝑻

𝟐𝑺 − 𝑮𝑴𝒔𝒎) +
𝒎𝑪𝟐

𝟐𝒓𝟐
 

 

  

𝑒𝑥 

𝑣⃗ = 𝑐 𝑢ሬ⃗  

𝑆 𝑒𝑥 𝑆 

𝑐 𝛿𝑡 

Cylindres  
de même volume  

 𝑆 𝑐 cos 𝛽 𝛿𝑡 

𝑐 cos 𝛽 𝛿𝑡 

𝑆 

En raisonnant avec le cylindre droit,  
la prise en compte du photon du haut 
compense celui du bas qui a été oublié ! 

𝑐 𝑢ሬ⃗  

𝑐 𝑢ሬ⃗  

𝛽 



31)   
𝒅𝑬𝒑,𝒆𝒇𝒇

𝒅𝒓
=

𝟏

𝒓𝟐
(𝑮𝑴𝒔𝒎− 𝒑𝑻𝑹𝑻

𝟐𝑺 −
𝒎𝑪𝟐

𝒓
)  Cette dérivée s’annule ssi  𝑆 <

𝑮𝑴𝒔𝒎

𝒑𝑻𝑹𝑻
𝟐 = 𝑺𝒍𝒊𝒎 

 

 

32)   A l’ouverture de la voile, 𝑟̇ = 0  et  𝑟 = 𝑅𝑇  →  𝐸𝑚 = 𝑝𝑇𝑅𝑇𝑆 −
𝐺𝑀𝑠𝑚

𝑅𝑇
+
𝑚𝐶2

2𝑅𝑇
2 = 𝑝𝑇𝑅𝑇𝑆 −

𝐺𝑀𝑠𝑚

2𝑅𝑇
 

Comme on veut que  𝐸𝑚 > 0 →  𝑆 > 𝑺𝒍𝒊𝒎 𝟐⁄ = 𝟏, 𝟖𝟒. 𝟏𝟎𝟒 𝒎𝟐 = 𝟏, 𝟖𝟒 𝒉𝒂 

 

33)   On applique la 2ème loi de Newton à 𝑀 sur sa nouvelle trajectoire : 

𝑚
𝑑2𝑂𝑀ሬሬሬሬሬሬ⃗

𝑑𝑡2
= −

𝐺𝑀𝑠𝑚

𝑟2
𝑒𝑟 + 𝑝𝑇𝑆

𝑅𝑇
2

𝑟2
cos2 𝛽 𝑢ሬ⃗  ⇔  𝑅𝑇𝜔𝑇

2⏟  
𝐺𝑀𝑠 𝑅𝑇

2⁄

𝑑2𝜌⃗

𝑑𝜏2
= − 

𝐺𝑀𝑠

𝑅𝑇
2

𝑒𝑟
𝜌2
+
𝑝𝑇𝑆

𝑚𝜌2
cos2 𝛽 𝑢ሬ⃗  

⇔ 
𝑑2𝜌⃗

𝑑𝜏2
= −

𝑒𝑟
𝜌2
+

𝑝𝑇𝑆

𝑚𝐺𝑀𝑠 𝑅𝑇
2⁄

cos2 𝛽

𝜌2
𝑢ሬ⃗  →  𝜼 =

𝒑𝑻𝑺

𝒎𝑮𝑴𝒔 𝑹𝑻
𝟐⁄
  

 

Le paramètre 𝜂 est le rapport, au niveau de l’orbite terrestre, entre la force radiative répulsive maximale 

(𝛽 = 0) et la force attractive gravitationnelle, ces deux forces étant exercées par le Soleil ! 

 

34)   Sur 𝑒𝑟  et  𝑒𝜃 , nous obtenons  
𝑑2𝜌

𝑑𝜏2
− 𝜌 (

𝑑𝜃

𝑑𝜏
)
2

= −
1

𝜌2
+
𝜂

𝜌2
cos3 𝛽   et  2

𝑑𝜌

𝑑𝜏

𝑑𝜃

𝑑𝜏
+ 𝜌

𝑑2𝜃

𝑑𝜏2
=

𝜂

𝜌2
cos2 𝛽 sin 𝛽 

Ainsi, en posant    𝐴(𝜏) = 𝜌(𝜏)        𝐵(𝜏) = 𝜃(𝜏)       𝐶(𝜏) =
𝑑𝜌

𝑑𝜏
        𝐷(𝜏) =

𝑑𝜃

𝑑𝜏
  ,  on est face au système  

{
 
 

 
 

𝑨′ = 𝑪

𝑩′ = 𝑫

𝑪′ = 𝑨𝑫𝟐 +
𝜼𝐜𝐨𝐬𝟑 𝜷 − 𝟏

𝑨𝟐

𝑫′ =
𝜼
𝑨𝟑
𝐜𝐨𝐬𝟐 𝜷𝐬𝐢𝐧𝜷 −

𝟐𝑪𝑫
𝑨

 

 

35)   𝝆(𝟎) = 𝟏       𝜽(𝟎) = 𝟎     
𝒅𝝆

𝒅𝝉
(𝟎) = 𝟎     

𝒅𝜽

𝒅𝝉
(𝟎) = 𝟏  𝐜𝐨𝐧𝐝_𝐢𝐧𝐢𝐭 = [𝟏, 𝟎, 𝟎, 𝟏] 

 

36)   𝐝𝐞𝐟  𝐯𝐨𝐢𝐥𝐞_𝐬𝐨𝐥𝐚𝐢𝐫𝐞_𝐛𝐞𝐭𝐚(𝐲, 𝐭𝐜, 𝐚, 𝐛) : 

  𝐫𝐞𝐭𝐮𝐫𝐧 [𝐲[𝟐], 𝐲[𝟑], 𝐲[𝟎] ∗ 𝐲[𝟑] ∗∗ 𝟐 + (𝐚 ∗ 𝐧𝐩. 𝐜𝐨𝐬(𝐛) ∗∗ 𝟑 − 𝟏)/𝐲[𝟎] ∗∗ 𝟐, 

𝐚 ∗ 𝐧𝐩. 𝐜𝐨𝐬(𝐛) ∗∗ 𝟐 ∗ 𝐧𝐩. 𝐬𝐢𝐧(𝐛)/𝐲[𝟎] ∗∗ 𝟑 − 𝟐 ∗ 𝐲[𝟐] ∗ 𝐲[𝟑]/𝐲[𝟎]] 

 

𝐸𝑝,𝑒𝑓𝑓(𝑟) 

𝑟 

𝑦 = 𝐸𝑚,𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑒 

𝑦 = 𝐸𝑚,𝐸𝑙𝑙𝑖𝑝𝑠𝑒 
𝑦 = 𝐸𝑝,𝑒𝑓𝑓

𝑚𝑖𝑛  

0 

Sachant que 𝐸𝑚 ≥ 𝐸𝑝,𝑒𝑓𝑓(𝑟), on en conclut que : 

Si  𝐸𝑚 > 0 , la trajectoire est hyperbolique 

Si  𝐸𝑚 = 0 , la trajectoire est parabolique 

Si  𝐸𝑝,𝑒𝑓𝑓
𝑚𝑖𝑛 < 𝐸𝑚 < 0 , la trajectoire est elliptique 

Si  𝐸𝑚 = 𝐸𝑝,𝑒𝑓𝑓
𝑚𝑖𝑛  , la trajectoire est circulaire 



37)   Lorsque 𝛽 = ± 90 °, la voile est parallèle aux rayons lumineux donc la force de pression radiative est 

nulle : La sonde reste sur la trajectoire circulaire imposée par la force gravitationnelle. 

 

38)   On lit sur la figure 13,   𝜷𝒆 = 𝟐𝟎 °  et   𝜷𝒂 = −𝟓𝟐 ° 

 

39)   Dans un premier temps, la sonde est « freinée » par le rayonnement (𝛽𝑎 < 0) et s’approche du Soleil 

tout en étant accélérée (sa vitesse augmente comme un satellite terrestre « freiné » par l’atmosphère).  

Après le virement de bord (𝛽𝑒 > 0), la sonde profite de l’augmentation de la pression de radiation et 

s’éloigne du Soleil en maintenant sa vitesse à un niveau élevé. Lorsqu’elle se retrouve au niveau du cercle 

de rayon 𝑅𝑇, son déplacement quasi radial est propice à son éloignement. Le bilan est positif. 

 

40)   On applique dans le référentiel de la sonde, le 1er principe de la thermodynamique en termes de 

puissances, à la voile de capacité thermique 𝐶. Celle-ci reçoit la puissance 𝒫𝑎𝑏𝑠 et rayonne sur ses 2 faces. 

Lors de la phase de rapprochement, 𝐶
𝑑𝑇

𝑑𝑡
= 𝜉𝐼𝑠

𝑅𝑇
2

𝑟2
𝑆 cos 𝛽𝑎 − 2𝑆𝜀𝜎𝑇

4 

Cherchons à présent à quelle distance  𝑟𝑇𝑚𝑎𝑥
é𝑞  , l’équilibre thermique atteindrait-il la température 𝑇𝑚𝑎𝑥 ? 

𝑟𝑇𝑚𝑎𝑥
é𝑞

=
𝑅𝑇

𝑇𝑚𝑎𝑥
2 √

ξIs cos𝛽𝑎

2𝜀𝜎
= 𝟎, 𝟎𝟔𝟑 𝒂𝒖    Le virement de bord doit s’effectuer avant d’atteindre cette distance. 

D’après la figure 14, le temps minimal envisageable est de l’ordre de 𝟑𝟖 années. 


