
MP Samedi 22 Novembre 2025

Devoir surveillé 3 : solution

Problème (sujet de 2h EPITA MP MPI 2025)
N.B. Le sujet est donné quasiment sans modification, j’ai rajouté seulement la Q13 bonus,

parce que c’est joli et pour rallonger un peu sur notre format de 3h pour ne pas laisser 1h sur
l’exercice d’analyse (hum) !

Q 1) Si A = λIn alors pour tout P ∈ GLn(K), PAP −1 = A et donc S (A) = {A}.

Q 2) Pour tout k ∈ K, on pose Ek = (
1 k
0 1

) et Fk = (
1 0
k 1

).

a) Les matrices Ek et Fk sont inversibles puisqu’elles sont de déterminant 1. Par exemple

avec la formule sur la comatrice en taille 2×2 : E−1k = (
1 −k
0 1

) et F −1k = (
1 0
−k 1

).

b) Soit A = ( a b
c d

) ∈M2(K).

La multiplication à gauche par Ek agit sur A comme l’opération L1 ← L1 + kL2.

EkA = (
1 k
0 1

)(a b
c d

) = (a + kc b + kd
c d

) .

La multiplication à droite par E−k agit comme l’opération C2 ← C2 − kC1

EkAE−1k = (
a + kc b + kd

c d
)(1 −k

0 1
) = (a + kc b − ka + kd − k2c

c d − kc ) .

De même :

FkA = (
1 0
k 1

)(a b
c d

) = ( a b
ka + c kb + d) .

FkAF −1k = (
a b

ka + c kb + d)(
1 0
−k 1

) = ( a − kb b
c + k(a − d) − k2b d + kb) .

c) Soit A = (a b
c d

). Comme toutes les normes sur M2(K) sont équivalentes, le caractère

borné d’un ensemble est indépendant du choix de la norme. Considérons la norme infinie
∣∣A∣∣∞ =max(∣a∣, ∣b∣, ∣c∣, ∣d∣).
● Si b ≠ 0, alors la suite (FkAF −1k ) n’est pas bornée puisque ∣∣FkAF −1k ∣∣∞ ≥ ∣d + kb∣ ≥
∣kb∣ − ∣d∣ Ð→

k→+∞
+∞.

● Si c ≠ 0 alors la suite (EkAE−1k ) n’est pas bornée puisque ∣∣EkAE−1k ∣∣∞ ≥ ∣a + kc∣ ≥
∣kc∣ − ∣a∣ Ð→

k→+∞
+∞.

Donc déjà il est nécessaire, pour que S (A) soit bornée que b = d = 0.
Mais avec cette condition on a encore ∣∣FkAF −1k ∣∣∞ ≥ ∣c + k(a − d) + 0∣ ≥ ∣k(a − d)∣ − ∣c∣.
Donc si a − d ≠ 0, S (A) est non bornée.

Donc il est nécessaire que b = d = 0 et a = c autrement dit que A = λI pour que S (A)
soit bornée.

Réciproquement si A = λI, on a vu que S (A) est un singleton, donc elle est bornée.
D’où l’équivalence.

Q 3) a) On sait que le déterminant est continu car c’est une fonction polynomiale en les entrées
de la matrice, on sait que (det (Mk − λiI2)) Ð→

k→+∞
det (B − λiI2). Comme toutes les ma-

trices Mk sont semblables à A, elles ont les mêmes v.p. que A. Donc (det (Mk − λiI2)) =
0. Par passage à la limite, on conclut bien que det (B − λiI2) = 0.
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b) Par a) B admet deux v.p. distinctes λ1 et λ2 donc B est diagonalisable et semblable à
diag(λ1, λ2). C’est aussi le cas de A. Donc A et B sont semblables entre elles car toutes
les deux semblables à diag(λ1, λ2).
On vient de vérifier la caractérisation séquentielle des parties fermées : pour toute suite
(Mk) ∈S (A) qui converge vers une matrice B ∈M2(K), on a montré que B ∈S (A).

Q 4) a) Comme χA est un polynôme unitaire du second degré, avec une seule racine λ ∈ K, on
sait que χA = (X − λ)2.
Ainsi χA est scindé dans K[X] et A est trigonalisable dans Mn(K). Ainsi il existe un

α ∈ K tel que A soit semblable à Tα ∶= (
λ α
0 λ

).

Mais on est sûr que α ≠ 0 car sinon A = λI et on suppose que A n’est pas une matrice
scalaire.

Montrons maintenant que Tα est semblable à T1 et donc que toutes ces matrices sont
semblables entre elles.

Soit a ∈L (K2) tel que MatB(a) = Tα avec B = (e1, e2) une base de K2.

Alors dans la base B′ = (αe1, e2), on a MatB′(a) = T1 et donc Tα est semblable à T1

pour tout α ≠ 0.

b) Dans S (A) on a toutes les matrices T1/n ∶= (
λ 1/n
0 λ

).

Or T1/n Ð→
n→+∞

λI et λI /∈S (A) puisque λI n’est semblable qu’à elle-même.

Donc S (A) n’est pas fermée par la caractérisation séquentielle des fermés.

Q 5) Dans M2(C) on sait que toute matrice A ∈M2(C) non scalaire est soit dans la situation de
la Q3 ou bien dans celle de la Q4.

Donc par ces deux questions , pour A non scalaire, S (A) est fermée ssi A admet deux v.p.
distinctes dans C ssi A est dz.

Or dans M2(C) une matrice est dz ssi elle a deux v.p. distinctes ou bien c’est une matrice
scalaire.

Avec la Q1, on conclut que pour tout A ∈M2(C), S (A) est fermée ssi A est dz

Q 6) a) On sait que SpR(A) = ZR(χA) où χA =X2 −Tr(A)X + det(A).
Et on sait donc que ZR(χA) = ∅ ssi ∆(χA) < 0 ssi Tr(A)2 − 4det(A) < 0.

b) Pour montrer que C = (e1, u(e1)) est une base de R2, il suffit de montrer qu’elle est libre
puisque c’est une famille de deux vecteurs dans un espace de dimension deux.

Or si on avait u(e1) = λe1 avec un λ ∈ R alors λ serait une valeur propre réelle de u, ce
qui n’existe pas ici.

Dans cette base C par définition de la représentation matricielle, l’égalité u(e1) = u(e1)

dit que la première colonne de B =MatC(u) est (
0
1
).

Donc B = (0 e
1 f

).

Mais alors Tr(B) = f or Tr(B) = Tr(A) car A et B sont semblables donc f = Tr(A).
De même det(B) = −e et det(B) = det(A) donc e = −det(A).
D’où la forme annoncée pour B.

c) Par continuité de la trace (forme linéaire) et du déterminant (fonction polynomiale)
on sait que Tr(Mk) Ð→

k→+∞
Tr(B) et de même pour le déterminant.

Or Tr(Mk) = Tr(A) pour tout k puisque les Mk sont semblables à A et donc Tr(A) =
Tr(B) par la limite ci-dessus.

De même det(A) = det(B).
Mais alors Tr(B)2 − 4det(B) < 0 et donc B est une matrice n’ayant aucune v.p.

réelle et donc le b) s’applique pour montrer que B est semblable à ( 0 −det(B)
1 tr(B) ) =
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( 0 −det(A)
1 tr(A) ) et donc B est semblable à A, donc B ∈S (A).

On vient donc de vérifier la caractérisation séquentielle des parties fermées : (A) est
fermée.

Q 7) Pour A ∈ M2(R) non scalaire, on vient de montrer que si ∆(χA) < 0, S (A) est fermée, à
la Q4, on a vu que c’est le cas aussi si ∆(χA) > 0 et à la Q5, on a vu que si ∆(χA) = 0 en
revanche S (A) est non fermée.

Conclusion : S (A) est fermée dans M2(R) si et seulement si ∆(χA) ≠ 0 ou bien A est une
matrice scalaire.

Q 8) C’est le ≪ miracle des homothéties ≫ Je donne ici une démonstration qui n’utilise pas
une base et est valable même en dim. infinie. L’énoncé original proposait de prendre une base.
C’est la seule question du problème que j’ai modifié en enlevant cette indication

soit u ∈L (E) telle que pour tout x ∈ E, (x,u(x)) liée.
Autrement dit, pour tout x ∈ E ∖ {0}, il existe un λx ∈ K, tel que u(x) = λxx.

Soit x, y dans E ∖ {0}, on va montrer que λx = λy.

● 1ère cas : x et y sont linéairement indépendants. Dans ce cas, on considère z = x + y.
Alors on a un λz ∈ K tel que

u(z) = λz.z = λzx + λzy (1)

Mais d’autre part par linéarité de u, on a aussi :

u(z) = u(x) + u(y) = λxx + λy.y (2)

En comparant (1) avec (2), comme (x, y) est libre, on conclut que

⎧⎪⎪⎨⎪⎪⎩

λz = λx

λz = λy

et donc

que λx = λy.

● Si y = µx. Alors u(y) = u(µx) = µu(x) = µλxx = λx(µx) = λxy. Ainsi λx = λy.

Ainsi on a montré que tous les λx pour x ∈ E sont égaux et que u est bien une homothétie.

Q 9) Par contraposée de la question précédente si u n’est pas une homothétie, il existe un x ∈ E tel
que u(x) n’est pas de la forme λx et ce x est donc forcément non nul. Donc (x,u(x)) libre.
Par théorème de la base incomplète, on peut alors fabriquer une base (x,u(x), e3, . . . , en) de
E et dans cette base la matrice de u a pour première colonne (010 . . .0)⊺.
Mais alors pour tout α ≠ 0, dans la base (αx,u(x), e3, . . . , en) comme u(αx) = αu(x) la
première colonne devient bien (0α0 . . .0)⊺ comme demandé.

Q 10) Si A n’est pas une matrice scalaire, la question précédente montre que la classe de similitude
de A contient des matrices Mα de première colonne (0α0 . . .0)⊺ pour α ∈ K∗.
Mais alors ∣∣Mα∣∣∞ ≥ ∣α∣. Donc pour α = n ∈ N, ∣∣Mn∣∣∞ Ð→

n→+∞
+∞ et donc S (A) est non

bornée.

D’autre part si A = λI, alors S (A) est un singleton donc bornée.

Conclusion : S (A) est bornée si, et seulement si, A est une matrice scalaire.

Q 11) Par l’absurde soit ∥ ∥ une telle norme. Comme Mn(K) est de dim. finie elle est équivalente à
la norme infinie.

Donc si on fixe une matrice non scalaire A, il existe une suite (Pk) ∈ GLn(K) telle que
∣∣PkAP −1k ∣∣ Ð→

k→+∞
+∞, en prenant les PkAP −1k =Mk de la question précédente.

Or par hyp ∥PkAP −1k ∥ = ∥A∥, contradiction.
Q 12) a) (i) Méthode assez élégante, plus simple à justifier qu’avec les fonctions com-

posantes dans la base canonique : On écrit χA dans la base (L0, . . . , Ln) associée à
l’interpolation de lagrange aux points 0,1, . . . , n.

Alors pour tout P ∈ Kn[X], P =
n

∑
k=0

P (k)Lk. En particulier χA =
n

∑
k=0

χA(k)Lk
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Prouver la continuité de A↦ χA revient alors à prouver la continuité des applications compo-
santes A ↦ χA(k) = det(kI −A). Mais là il s’agit seulement de la continuité du déterminant
car l’application A↦ kI −A est bien sûr continue (c’est juste une translation).

(ii) Méthode plus brutale avec les composantes dans la base canonique de Kn[X]
Si on écrit A = (C1 . . .Cn) où les Ci sont les vecteurs colonnes de A, et (Ei)i=1,...,n la base
canonique de Mn,1( K) Alors : χA = det (XE1 −C1, . . . ,XEn −Cn) qui après développement
est égal à :

χA =Xn −Tr(A)Xn−1 +
n−2

∑
i=2

(−1)n+kλkX
k + (−1)n+1X

n

∑
i=1

det (C1, . . . ,Ci−1,Ei,Ci + 1, . . . ,Cn) + (−1)n det(A)

où λk =
n

∑
1≤i1≺...≺ik≤n

det (C1, . . . ,Ei1 , . . . . . . ,Eik , . . . ,Cn)

Et là on voit bien que chaque λk est un polynôme en des entrées de A.

b- Attention, cette question n’utilise pas la précédente !

(i) SoitQ un polynôme annulateur de A. Alors pourMk = PkAP −1k , on aQ(Mk) = PkQ(A)P −1k

donc pour tout k ∈ N, Q(Mk) = 0 (1).

D’autre part en notant Q =
r

∑
i=0

αiX
i, on a Q(Mk) =

r

∑
i=0

αiM
i
k Ð→

k→+∞
Q(B) (2) par opération

sur les limites.

Donc avec (1) et (2), on a bien Q(B) = 0 comme demandé.

(ii) Application à la dz de B : par (i), avec Q = µA, on a µA(B) = 0 et comme µA est
simplement scindé, on conclut que B est dz.

c) Là, on utilise les deux questions précédentes. SoitB ∈S (A). On a un suite (Mk) d’éléments
de S (A) qui converge vers B.

Comme d’un côté χMk
= χA pour tout A, et d’autre part, χMk

Ð→
k→+∞

χB par la question a)

on sait que χA = χB .

Mais par la b) on sait que B est dz et A est dz et comme elles ont le même polynôme
caractéristique, elles sont semblable à la même matrice diagonale (où les v.p. sont répétées
autant de fois que leur multiplicité algébrique) et donc A et B sont semblables entre elles.

Donc B ∈S (A).
On a donc bien montré l’égalité S (A) =S (A) ie S (A) est fermée.

Q 13) a) Pour toute parties I et J de ⟦1, n⟧ ayant le même nombre k d’éléments, notons ∆I,J(A)
le déterminant de la matrice obtenue en ne gardant que les lignes de A dont les indices sont
dans I et les colonnes dont les indices sont dans J (mineur d’indice k de A).

Soit r ≤ n − 1. Alors M ∈ Rr ssi pour toutes les parties I et J à r + 1 éléments de ⟦1, n⟧,
∆I,J(M) = 0.
Donc Rr est l’intersection des ensembles ∆−1I,J({0} qui sont tous fermés par continuité de ces
déterminants.

Si r = b, Rr =Mn(C) qui est fermé dans lui-même.

b) Comme dit par l’énoncé FA est un fermé de Mn(C), car FA = χ−1({χA}) où χ est la
fonction continue définie au 12 a).

Sens ⇒ : si B est semblable à A, alors elles représentent le même endomorphisme u dans des
bases différentes et dimker(B − λI) = dimker(u − λ id) = dimker(A − λ id).
Sens ⇐ : si B ∈ F(A), vérifie la conditon rg(B − λIn) ≤ rg(A − λIn) alors cette condition
équivaut à dimker(B − λIn) ≥ ker(A − λIn) et comme la somme des s.e.v. propres de A fait
E, celle des ker(B − λIn) aussi, ce qui montre que ces inégalités. sont égalités donc B est
aussi diagonalisable avec les même v.p. et les mêmes dimensions de s.e.v. propres donc A et
B sont semblables à la même matrice diagonale, donc A et B sont semblables.

c) Par la question question b), S (A) = FA ∩ ⋂λ∈Sp(A){B ∈ Mn(C), rg(B − λIn) ≤ rg(A −
λIn)}. Par la question a) (et compte tenu du fait que B ↦ B − λI est un homéomorphisme),
chaque ensemble {B ∈ Mn(C), rg(B − λIn) ≤ rg(A − λIn)} est un fermé de Mn(C). On
conclut bien que S(A) est un fermé de Mn(C).
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Remarque : l’intérêt de cette démonstration est qu’elle dit en plus que S (A) est définie
par des équations polynomiales.

Q 14) a) Par définition, comme T est triangulaire supérieure, pour tout j ∈ ⟦1, n⟧,

u(bj) =
j

∑
i=1

ti,jbi

Donc aussi

u(bj) =
j

∑
i=1

ti,jk
i−1 bi

ki−1
.

et

u( bj

kj−1
) =

j

∑
i=1

ti,j
ki−1

kj−1
bi
ki−1

=
j

∑
i=1

ti,j

kj−i
( bi
ki−1
)

Donc en notant Tk la matrice de u dans la base Bk, on a encore Tk triangulaire et pour tout
i ≤ j,

Tk(i, j) =
ti,j

kj−i

b) Conséquence du a) pour i < j, Tk(i, j) Ð→
k→+∞

0.

Donc Tk Ð→
k→+∞

diag(t1,1, . . . , tn,n) = diag(λ1, . . . , λn) où χA(X) = ∏n
i=1(X − λi).

Or toutes les matrices Tk sont semblables à A, donc on vient de montrer que,pour toute
matrice complexe A, la matrice diag(λ1, . . . , λn) où les λi sont les v.p. de A répétées avec

leurs multiplicités algébriques, est dans S (A).
Si maintenant on suppose que S (A) est fermée, on conclut que diag(λ1, . . . , λn) est dans
S (A) donc que A est diagonalisable.

Q 15) a) (i) Soit H = {N ∈ Mn(K), Tr(N) = 0} = ker(Tr). On sait que H est un hyperplan
vectoriel de Mn(K) comme noyau d’une forme linéaire.

Ici toujours par linéarité de la trace, T = A +H ∶= {A +N, N ∈H }.
En effet M ∈ T ⇔ Tr(M −A) = 0⇔M −A ∈H ⇔M = A +H .

Ainsi, par définition, T est un sous-espace affine de direction vectorielle H (c’est un hy-
perplan affine de Mn(K).) Topologiquement c’est un fermé de Mn(K) comme préimage de
{Tr(A)} par l’application Tr qui est continue car linéaire.

(ii) Comme la translation τA ∶ Mn(K) → Mn(K), N ↦ A +N est un homéorphisme il est
équivalent de montrer que T est d’intérieur vide ou que H est d’intérieur vide. On fixe une
norme sur Mn(K).
Or par l’absurde, si on a une matrice N ∈H et un ε > 0 tel que la boule ouverte Bo(N,ε) soit
incluse dans H , alors comme H est stable par la soustraction par N , on a aussi B0(0, ε) ⊂H

Mais alors pour toute matrice A non nulle, la matrice εA/2∣∣A∣∣ est de norme ε/2 donc dans
H et comme H est stable par la loi externe, H contient A.

Conclusion H contient toutes les matrices non nulle de Mn(K), et bien sûr aussi la matrice
nulle donc H = Mn(K) Contradiction puisqu’il y a des matrices de trace non nulle . Donc
T est d’intérieur vide.

b) Pour tout M ∈S (A), on a Tr(M) = Tr(A) donc S (A) ⊂ T .

Donc Int(S (A)) ⊂ Int(T ) et donc par la question précédente T est d’intérieur vide donc
S (A) aussi .

Exercice
Q 16) a) On sait que Arctan(x) = x + O(x3) pour x → 0 donc Arctan( 1

n
) = 1

n
+ O( 1

n3 ). Donc

nArctan( 1
n
)) − 1 = −O(1/n2).

D’autre part exp(1/n) Ð→
n→+∞

1, donc an ∼
n→+∞

nArctan( 1
n
)) − 1 donc an = O(1/n2) donc par

théorème de comparaison (comparaison à l’exemple de Riemann), la série de terme général
(an) est absolument convergente
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b) Cette fois, on a besoin d’un équivalent de an, ce qui, comme vu à la question précédente,
se ramène à un équivalent nArctan( 1

n
)) − 1.

Or Arctan(x) = x − x3/3 +O(x5) donc Arctan( 1
n
) = 1

n
− 1

3n3 +O( 1
n5 ).

Donc nArctan(1/n) − 1 = − 1

3n2
+O( 1

n3
).

Ainsi an ∼
n→+∞

− 1

3n2
.

Par théorème de sommation des équivalents, pour les termes généraux de signe constant,
appliqué aux restes dans le cas convergent, on sait alors que

Rn =
+∞

∑
k=n+1

ak ∼
n→+∞

+∞

∑
k=n+1

− 1

3k2
.

Or par encadrement par des intégrales,

∫
k+1

k

dt

t2
≤ 1

k2
≤ ∫

k

k−1

dt

t2

donc
1

k
− 1

k + 1 ≤
1

k2
≤ 1

k − 1 −
1

k

donc
1

n + 1 ≤
+∞

∑
k=n+1

1

k2
≤ 1

n

On conclut par théorème des gendarmes que ;

+∞

∑
k=n+1

1

k2
∼

n→+∞

1

n

et ici ;

Rn ∼
n→+∞

− 1

3n

On a donc le développement asymptotique SN = ℓ −RN = ℓ +
1

3N
+ o( 1

N
).

Q 17) Pour gagner un terme supplémentaire : on pose vn = Rn +
1

3n
.

Alors vn − vn−1 = Rn −Rn−1 +
1

3n
− 1

3(n − 1) = −an +
1

3n
− 1

3n
(1 + 1

n
+ 1

n2
+ 1

n3
+ o( 1

n3
)).

Donc

vn − vn−1 = −an −
1

3n2
− 1

3n3
− 1

3n4
+ o( 1

n4
) (1)

Si on est allé aussi loin dans le D.L. c’est que d’autre part en faisant un DL de an :

D’un côté Arctan( 1
n
) = 1

n
− 1

3n3 + 1
5n5 ) +O( 1

n7 ).
Donc nArctan( 1

n
) − 1 = − 1

3n2 + 1
5n4 +O( 1

n6 ).
D’autre part exp( 1

n
) = 1 + 1

n
+ 1

2n2 + 1
6n3 + 1

24n4 +O( 1
n5 ).

On fait le produit des deux D.L :

an = −
1

3n2
− 1

3n3
− 1

6n4
+ 1

5n4
+O( 1

n5
) = − 1

3n2
− 1

3n3
+ 1

30n4
+O( 1

n4
) (2)

Avec (1) et (2) :
vn − vn−1 =

1

3n4
+ 1

30n4
+O( 1

n5
) = 11

30n4
+O( 1

n4
)

Ainsi vn − vn−1 ∼
n→+∞

11

30n4
.

On applique une nouvelle fois le théorème de sommation des équivalents pour les restes de
séries convergentes (t.g. de signe constant)
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Donc
+∞

∑
k=n

vk − vk−1 ∼
n→+∞

11

30

+∞

∑
k=n

1

k4
(∗∗)

La même technique d’encadrement par des intégrales montre que
+∞

∑
k=n

1

k4
∼

n→+∞

1

3n3
.

Ceci dans (∗∗) où le premier membre est télescopique donne :

vn−1 ∼
n→+∞

11

90n3

et donc aussi

vn ∼
n→+∞

11

90(n − 1)3 ∼
n→+∞

11

90n3

Autrement dit Rn +
1

3n
= 11

90n3 + o( 1
3n3 ).

Et avec les notations de l’énoncé :

SN = ℓ −RN = ℓ +
1

3N
− 11

90N3
+ o( 1

N3
)
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