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DEVOIR SURVEILLE 3 : SOLUTION

PROBLEME (SUJET DE 2H EPITA MP MPI 2025)

N.B. Le sujet est donné quasiment sans modification, j’ai rajouté seulement la Q13 bonus,
parce que c’est joli et pour rallonger un peu sur notre format de 3h pour ne pas laisser 1h sur
Pexercice d’analyse (hum) !

Q 1) Si A =)\I, alors pour tout P € GL,(K), PAP™! = A et donc .%(A) = {A}.

Q 2) PourtoutkeK,onposeEk=((1) llg)etsz(llf (1))

Q 3)

a)

Les matrices E}, et F} sont inversibles puisqu’elles sont de déterminant 1. Par exemple

avec la formule sur la comatrice en taille 2x2 : E,;l = ( 10 _1k) et Fk‘1 = ( —1k (1))

Soit A:( .« )e.//lg(K).

La multiplication a gauche par Ej agit sur A comme 'opération Ly <« L1 + kLs.

1 k\fa b a+kc b+kd
ma- (o 5)(e 0)-(1n )
La multiplication a droite par F_j agit comme l'opération Co « Cs — kC

ELAE; =

a+kc b+kd\(1 -k\ [a+kc b—ka+kd-k%c
d 0o 1) c d-kc )

De méme :

1 0\fa b a b
FkA:(k 1)(0 d):(ka+c kb+d)'

L ( a b \(1 o) a-kb b
FrAF) _(lm+c kzb+d)(—k: 1)‘(c+k(a—d)—k;2b d+k;b)'

Soit A = i Z . Comme toutes les normes sur M>(K) sont équivalentes, le caractere
borné d’un ensemble est indépendant du choix de la norme. Considérons la norme infinie
[[Alee = max({al, o], |c], |d]).
e Si b # 0, alors la suite (FAF; ') n'est pas bornée puisque ||[FyAF || > |d + kb| >
|kb| - |d] — +oo.

k—+o00
e Si ¢ # 0 alors la suite (EyAE;!') n'est pas bornée puisque ||ExAE; |0 > |a + k| >
|kc| —a] — +oo.

k—+o0
Donc déja il est nécessaire, pour que .#(A) soit bornée que b=d = 0.
Mais avec cette condition on a encore ||[FyAF; ! ||o > |c+ k(a—d) + 0| > |k(a - d)| - |c|.
Donc si a —d # 0, #(A) est non bornée.
Donc il est nécessaire que b =d =0 et a = ¢ autrement dit que A = AI pour que .7 (A)
soit bornée.
Réciproquement si A = A\, on a vu que .(A) est un singleton, donc elle est bornée.
D’ou I’équivalence.
On sait que le déterminant est continu car c¢’est une fonction polynomiale en les entrées
de la matrice, on sait que (det (M}, — A;12)) s det (B — A\;Iz). Comme toutes les ma-

trices My, sont semblables & A, elles ont les mémes v.p. que A. Donc (det (Mg — M\ 1)) =
0. Par passage a la limite, on conclut bien que det (B - \;I2) = 0.



Q4)

b)

Par a) B admet deux v.p. distinctes A; et Ay donc B est diagonalisable et semblable a
diag(A1, A2). Cest aussi le cas de A. Donc A et B sont semblables entre elles car toutes
les deux semblables & diag(A1, Az2).

On vient de vérifier la caractérisation séquentielle des parties fermées : pour toute suite
(M) € #(A) qui converge vers une matrice B € M(K), on a montré que B € .7 (A).
Comme x4 est un polynéme unitaire du second degré, avec une seule racine A € K, on
sait que xa = (X - \)%

Ainsi x4 est scindé dans K[X] et A est trigonalisable dans M, (K). Ainsi il existe un

a € K tel que A soit semblable & T, := (8\ C;)

Mais on est str que a # 0 car sinon A = AI et on suppose que A n’est pas une matrice
scalaire.

Montrons maintenant que T, est semblable a T; et donc que toutes ces matrices sont
semblables entre elles.

Soit a € Z(K?) tel que Matg(a) = T, avec B = (e1,e3) une base de K2

Alors dans la base B’ = (aey,ez), on a Matg/(a) = T1 et donc T, est semblable & T)
pour tout a # 0.

Dans .#'(A) on a toutes les matrices T}, := (())\ 1&”)

Or Ty, - A et M ¢ #(A) puisque AI n’est semblable qu’a elle-méme.

Donc .7 (A) n’est pas fermée par la caractérisation séquentielle des fermés.

Q 5) Dans M5(C) on sait que toute matrice A € M5(C) non scalaire est soit dans la situation de
la Q3 ou bien dans celle de la Q4.

Donc par ces deux questions , pour A non scalaire, . (A) est fermée ssi A admet deux v.p.
distinctes dans C ssi A est dz.

Or dans M>(C) une matrice est dz ssi elle a deux v.p. distinctes ou bien c¢’est une matrice
scalaire.

Q 6)

Avec la Q1, on conclut que pour tout A € Ms(C),

a)

b)

S (A) est fermée ssi A est dz ‘
On sait que Spy(A) = Zr(xa) ot xa = X2 -Tr(A)X +det(A).
Et on sait donc que Zg(x4) = @ ssi A(xa) <0 ssi Tr(A)? —4det(A) <0.

Pour montrer que C = (e1,u(e;)) est une base de R?, il suffit de montrer qu’elle est libre
puisque c¢’est une famille de deux vecteurs dans un espace de dimension deux.

Or si on avait u(er) = Ae; avec un X € R alors A serait une valeur propre réelle de u, ce
qui n’existe pas ici.
Dans cette base C par définition de la représentation matricielle, I’égalité u(e1) = u(ey)

dit que la premiere colonne de B = Mat¢(u) est (2)

Donc B = ((1) ;)

Mais alors Tr(B) = f or Tr(B) = Tr(A) car A et B sont semblables donc f = Tr(A).
De méme det(B) = —¢ et det(B) = det(A) donc e = —det(A).
D’ou la forme annoncée pour B.

c¢) Par continuité de la trace (forme linéaire) et du déterminant (fonction polynomiale)
on sait que Tr(My) o Tr(B) et de méme pour le déterminant.
—+00

Or Tr(My) = Tr(A) pour tout k puisque les M}, sont semblables & A et donc Tr(A) =
Tr(B) par la limite ci-dessus.

De méme det(A) = det(B).

Mais alors Tr(B)? - 4det(B) < 0 et donc B est une matrice n’ayant aucune v.p.
0 —det(B) ) -

réelle et donc le b) s’applique pour montrer que B est semblable & ( 1 tr(B)



Q7)

Q 8)

Q9)

Q 10)

Q 11)

Q 12)

0 —det(A)

1 tr(A)
On vient donc de vérifier la caractérisation séquentielle des parties fermées : (A) est
fermée.

) et donc B est semblable & A, donc B € . (A).

Pour A € M5(R) non scalaire, on vient de montrer que si A(xa) <0, #(A) est fermée, a
la Q4, on a vu que c’est le cas aussi si A(xa) >0 et ala Q5, on a vu que si A(xa) =0 en
revanche .7 (A) est non fermée.

Conclusion : . (A) est fermée dans M3(R) si et seulement si A(xa) # 0 ou bien A est une
matrice scalaire.

C’est le <« miracle des homothéties » Je donne ici une démonstration qui n’utilise pas
une base et est valable méme en dim. infinie. L’énoncé original proposait de prendre une base.
C’est la seule question du probléme que j’ai modifié en enlevant cette indication

soit u € Z(F) telle que pour tout x € E, (x,u(x)) lide.
Autrement dit, pour tout x € E \ {0}, il existe un A, € K, tel que u(z) = A\ 2.
Soit x,y dans E \ {0}, on va montrer que Ay = \,,.

e leére cas : x et y sont linédairement indépendants. Dans ce cas, on considere z = x + y.
Alors on a un A, € K tel que

u(z) =Xz =2+ Ay (1)
Mais d’autre part par linéarité de u, on a aussi :
w(z) =u(z) +u(y) = Az + Ay (2)

>\z:/\z
A=,

En comparant (1) avec (2), comme (z,y) est libre, on conclut que { et donc

que Ay = Ay.
o Siy=px. Alors u(y) = u(pz) = pu(z) = prex = Ax(pax) = Azy. Ainsi Ay = Ay
Ainsi on a montré que tous les A, pour x € F sont égaux et que u est bien une homothétie.
Par contraposée de la question précédente si u n’est pas une homothétie, il existe un x € E tel

que u(z) n’est pas de la forme Az et ce x est donc forcément non nul. Donc (z,u(x)) libre.

Par théoreme de la base incompléte, on peut alors fabriquer une base (z,u(x),es,...,e,) de
E et dans cette base la matrice de u a pour premiére colonne (010...0)".

Mais alors pour tout « # 0, dans la base (ax,u(x),es,...,e,) comme u(azx) = au(x) la
premiére colonne devient bien (0a0...0)" comme demandé.
Si A n’est pas une matrice scalaire, la question précédente montre que la classe de similitude
de A contient des matrices M, de premiére colonne (0a0...0)" pour o € K*.
Mais alors ||Myl|e > |@]- Donc pour o = n € N, || M|l —> +00 et donc #(A) est non
n—+oo

bornée.
D’autre part si A =\, alors . (A) est un singleton donc bornée.
Conclusion : . (A) est bornée si, et seulement si, A est une matrice scalaire.
Par Uabsurde soit | | une telle norme. Comme M, (K) est de dim. finie elle est équivalente &
la norme infinie.
Donc si on fixe une matrice non scalaire A, il existe une suite (Py) € GL,(K) telle que
| P AP oo, T en prenant les P, AP, = My, de la question précédente.

—+00

Or par hyp |PyAP'| = |A|, contradiction.

a) (i) Méthode assez élégante, plus simple a justifier qu’avec les fonctions com-

posantes dans la base canonique : On écrit x4 dans la base (Lo,...,L,) associée a
Iinterpolation de lagrange aux points 0,1,... n.

n n
Alors pour tout P € K,[X], P =) P(k)Ly. En particulier x4 = »_ xa(k)Ly

k=0 k=0



Prouver la continuité de A — x 4 revient alors a prouver la continuité des applications compo-
santes A — x 4(k) = det(kI — A). Mais la il s’agit seulement de la continuité du déterminant
car Papplication A — kI — A est bien siir continue (c’est juste une translation).

(ii) Méthode plus brutale avec les composantes dans la base canonique de K,,[ X]
Si on éerit A = (Cy...Cy) ou les C; sont les vecteurs colonnes de A, et (E;),_; , la base
canonique de M, 1 ( K) Alors : x4 =det (XE; -Ch,...,XE, - C,) qui apres développement
est égal a :

n—2 n

Xa=X"-Tr(A)X" "+ S (1) PN XF + (1) X Y det (Cy,y...,Cict, By, Ci+ 1,0, Cp) + (=1)" det(A)
=2 i=1

Ofl)\kz Z det(C’l,...,EiN ...... ,Eik,...,C’n)

1<iy<...<i<n

Et 1a on voit bien que chaque Ag est un polynéme en des entrées de A.

b- Attention, cette question n’utilise pas la précédente!

(i) Soit @ un polynéome annulateur de A. Alors pour My, = Py AP, ona Q(My) = PyQ(A) Pt
donc pour tout ke N, Q(M) =0 (1).

T T
D’autre part en notant @ = ZaiXi, ona Q(My) =) a; M| e Q(B) (2) par opération
sur les limites. = =
Donc avec (1) et (2), on a bien Q(B) =0 comme demandé.
(ii) Application & la dz de B : par (i), avec Q = pa, on a pua(B) = 0 et comme 4 est
simplement scindé, on conclut que B est dz.
c¢) L&, on utilise les deux questions précédentes. Soit B € .#(A). On a un suite (M}, ) d’éléments
de #(A) qui converge vers B.
Comme d’un coté xar, = xa pour tout A, et d’autre part, xar, o XB par la question a)
on sait que x4 = XB-
Mais par la b) on sait que B est dz et A est dz et comme elles ont le méme polyndéme
caractéristique, elles sont semblable & la méme matrice diagonale (ou les v.p. sont répétées
autant de fois que leur multiplicité algébrique) et donc A et B sont semblables entre elles.
Donc B € S(A).
On a donc bien montré I'égalité .7 (A) = 7 (A) ie S (A) est fermée.

Q 13) a) Pour toute parties I et J de [1,n] ayant le méme nombre k& d’éléments, notons Ay j(A)
le déterminant de la matrice obtenue en ne gardant que les lignes de A dont les indices sont
dans I et les colonnes dont les indices sont dans J (mineur d’indice k de A).

Soit r < m —1. Alors M € R, ssi pour toutes les parties I et J & r+ 1 éléments de [1,n],
Ar.s(M)=0.

Donc R, est 'intersection des ensembles A}}J({O} qui sont tous fermés par continuité de ces
déterminants.

Sir=b, R, = M,(C) qui est fermé dans lui-méme.

b) Comme dit par I’énoncé F4 est un fermé de M, (C), car Fa = x 1 ({xa}) ou x est la
fonction continue définie au 12 a).

Sens = : si B est semblable a A, alors elles représentent le méme endomorphisme v dans des
bases différentes et dimker(B — A\I) = dimker(u — Aid) = dimker(A — A\id).

Sens < : si B € F(A), vérifie la conditon rg(B - AI,) < rg(A - A\I,,) alors cette condition
équivaut & dimker(B — AI,,) > ker(A - AI,,) et comme la somme des s.e.v. propres de A fait
E, celle des ker(B - \I,,) aussi, ce qui montre que ces inégalités. sont égalités donc B est
aussi diagonalisable avec les méme v.p. et les mémes dimensions de s.e.v. propres donc A et
B sont semblables a la méme matrice diagonale, donc A et B sont semblables. O
¢) Par la question question b), (A) = Fan Naespa)ytB € M, (C), 1g(B - AI,,) <rg(A-
Al,)}. Par la question a) (et compte tenu du fait que B — B — AT est un homéomorphisme),
chaque ensemble {B € M, (C), rg(B - Al,) < rg(A-Al,)} est un fermé de M, (C). On
conclut bien que S(A) est un fermé de M, (C).



Q 14)

Q 15)

Q 16)

Remarque : U'intérét de cette démonstration est qu’elle dit en plus que .7 (A) est définie
par des équations polynomiales.

a) Par définition, comme T est triangulaire supérieure, pour tout j € [1,n],

j
u(by) = Y tijbi
i=1

Donc aussi _
i1 bi
u(b]) = ;ti,jk’ i1 .
b; J K0 by Lo tig o b
wg) = thfﬁﬁ ) Zl ki (k;i-l)

Donc en notant T} la matrice de u dans la base By, on a encore T}, triangulaire et pour tout
<7,

o L
Tk(laj) = kj_i
b) Conséquence du a) pour i< j, Tx(4,7) e 0.
—+00
Donc Ty, T diag(t1.1,- .-, tnn) =diag(A1, ..., An) olt xa(X) =TT (X = A).
—+00

Or toutes les matrices T} sont semblables & A, donc on vient de montrer que,pour toute
matrice complexe A, la matrice diag(A1,...,\,) ou les A; sont les v.p. de A répétées avec

leurs multiplicités algébriques, est dans 7/ (A).

Si maintenant on suppose que ¥ (A) est fermée, on conclut que diag(Ag,...,A,) est dans
#(A) donc que A est diagonalisable.

a) (i) Soit 57 = {N ¢ M,(K), Tr(N) = 0} = ker(Tr). On sait que S est un hyperplan
vectoriel de M, (K) comme noyau d’une forme linéaire.

Ici toujours par linéarité de la trace, 7 = A+ .5 := {A+ N, N e 5}.

Eneffet Me 7 o Tr(M-A) =0 M-Ac ¥ < M=A+ 7.

Ainsi, par définition, .7 est un sous-espace affine de direction vectorielle 5 (c’est un hy-
perplan affine de M, (K).) Topologiquement c’est un fermé de M, (K) comme préimage de
{Tr(A)} par lapplication Tr qui est continue car linéaire.

(ii)) Comme la translation 74 : M, (K) - M,(K), N —» A+ N est un homéorphisme il est
équivalent de montrer que 7 est d’intérieur vide ou que S est d’intérieur vide. On fixe une
norme sur M, (K).

Or par l'absurde, si on a une matrice N € 7 et un € > 0 tel que la boule ouverte B, (N, ) soit
incluse dans 7, alors comme H est stable par la soustraction par N, on a aussi Bg(0,¢) c 57
Mais alors pour toute matrice A non nulle, la matrice e A/2||A|| est de norme £/2 donc dans
JC et comme S est stable par la loi externe, s contient A.

Conclusion 42 contient toutes les matrices non nulle de M, (K), et bien slir aussi la matrice
nulle donc 2 = M,,(K) Contradiction puisqu’il y a des matrices de trace non nulle . Donc
Z est d’intérieur vide.

b) Pour tout M € . (A), on a Tr(M) = Tr(A) donc S (A) c .

Donc Int(.7(A)) c Int(.7) et donc par la question précédente 7 est d’intérieur vide donc

S (A) aussi . O
EXERCICE

a) On sait que Arctan(z) = = + O(z*) pour z —» 0 donc Arctan(%) = % + O(n—lg) Donc

nArctan(+)) - 1=-0(1/n?).

D’autre part exp(1/n) - 1, donc ay, ~ nArctan(1)) -1 donc a, = O(1/n?) donc par

théoréme de comparaison (comparaison & I’exemple de Riemann), la série de terme général
(ay) est absolument convergente



b) Cette fois, on a besoin d’'un équivalent de a,,, ce qui, comme vu & la question précédente,
se ramene a un équivalent nArctan(%)) -1
Or Arctan(z) = x — /3 + O(2°) donc Arctan(L) = £ - # +0(-5
1 1
).

3z P0G

Donc n Arctan(1/n) -1 = - 3

. 1
Ainsi a,, ~ -—.
n—+oo  3n2
Par théoreme de sommation des équivalents, pour les termes généraux de signe constant,

appliqué aux restes dans le cas convergent, on sait alors que

+o00 +o00 1

ISP Y
N 2

k=n+1 Nt fntl 3k

Or par encadrement par des intégrales,

fk+1 dt 1 /k dt
— < —< —
k t2 "~ k2 k-1 12

donc
1 1 1
R —_ < - —
k k -1 k
donc
+o00
LRt
n+l " L5 k2 T n
On conclut par théoreme des gendarmes que;
+o00 1 1

ZiNf

2 p—
k=n+1k noteo N

et ici;
1
™ potoo 3n
. . 1 1
On a donc le développement asymptotique Sy =€ - Ry = £+ IN + O(N).
1
Q 17) Pour gagner un terme supplémentaire : on pose v, = R, + 3
n
1 1 1 1 1 1 1 1
Al —Up1=Rp-Rp1i+—————=-ap+———1+—+—=+—<+0(—=)).
OF8 Un = tn-1 B ™ 3(n-1) T 30 Bn( n n? nd O(n3))
Donc ) 1 1 )
n~Un-1=—Qpn— -5~ - =2~ ;1 — 1
Un T Unm1 =T T 0 T 33 T 3 0(n4) (1)
Si on est allé aussi loin dans le D.L. c’est que d’autre part en faisant un DL de a,, :
D’un c6té Arctan(+) = L - 3? + 5?) +0(7).
Donc nArctan(f) -1= 3n2 + 5n4 + O(—
D’autre part exp(L) =1+ 1+ L+ Lov L4 O(L).
On fait le produit des deux D.L:
1 1 1 1 1 1 1 1 1
n=———————+—+0(—=)=——— - —— + +0(— 2
“ 3n2 3n® 6n* b5nt n5) 3n2 3n3 30nt (n4) 2)
Avec (1) et (2) :
1 1 11 1
n—Un-1=— + +0(—=) = +0(—
Un T Unm1 = 300 T 300t (n5) 30nt (n4)
11

Ainsi v, —vp-1 0~ .
" n-1 n—+oo 30n4
On applique une nouvelle fois le théoréme de sommation des équivalents pour les restes de

séries convergentes (t.g. de signe constant)



Donc

Jio 11 ¥ 1 ( )
Vg — Uk— ~ — — * %
b k k-1 n—+oo 3() Pl k4

+ 00 1 1
La méme technique d’encadrement par des intégrales montre que Z — o~ —.
k4 n—+oo 3n3

k=n
Ceci dans (*#) ou le premier membre est télescopique donne :

11
! noseo 90N3

U

et donc aussi
11 11
" notoo 90(n — 1)3 n-+eo 90n3

. 1
Autrement dit R,, + e 937113 + 0(3%).

Et avec les notations de 1’énoncé :

111 1
Sn=l—Ry=l+— — =
N N =l oy - gons T OolEE)




