MP Mardi 14 Octobre 2025

DEVOIR SURVEILLE 2 (4H)
Dans ce probleme, F est un C-espace vectoriel de dimension finie.

Partie I : définition des projecteurs spectraux
Q 1) Un exemple

a) Vérifier que la matrice A = ( g g ) est diagonalisable.

1 -1
-1 1
c) calculer Iy + 511,113 + 11 et II;115.

b) Démontrer que II; = % ( ) et Iy = % ( 1 1 ) sont des matrices de projecteur.

On rappelle le lemme de décomposition des noyaux : Si P;, Ps,..., P. sont des éléments de
C[X] deux & deux premiers entre eux de produit égal & T', si u est un endomorphisme de E alors :

Ker[T(u)] = Ker (Py(u)) ® Ker (Py(u)) @ ... ® Ker (P (u)) .

Q 2) L’objet de cette question est de démontrer le cas particulier r = 2. Soit « un endomorphisme de
E et soit P et @ deux polyndmes premiers entre eux. Justifier que Ker(P(u)) c Ker[(PQ)(u)]
(de méme, on a : Ker(Q(u)) c Ker[(PQ)(uw)] ).

Démontrer que : Ker[(PQ)(u)] =Ker(P(u)) ® Ker(Q(u)).
Dans la suite du probleme, on pourra utiliser librement le lemme de décomposition des noyaux.
Q 3) Soit w un endomorphisme de E et soit 7, son polynéme minimal.
a) On suppose que T, = Pfle’€2 ou les polynomes P; et P, sont premiers entre eux. On
pose, pour tout entier i € {1,2},Q; = ;—g Justifier qu’il existe deux polynoémes R et
Ry de C[X] tels que B1Q + RoQo =1.
b) Pour la suite de cette partie, on notera m, = P¥1P*2 .. P, Fm la décomposition en

facteurs premiers du polyndéme minimal. Ainsi P; = X —\; ou Aq,..., A, sont les valeurs
propres de u. Montrer que, si pour tout entier i € {1,2,...,m}, on note Q; = P’fxi , alors

H(Rl, .. .,R,n) [S (C[X]m, RlQl + R2Q2 + ... +RQO =1.

Q 4) On pose alors pour tout entier ¢ € {1,2,...,m},p; = R;(u) o Q;(u). Démontrer que pour tout

couple (7,7) d’entiers distincts de {1,2,...,m}, on a les trois résultats suivants :
piop; =0, Y pi=idg et chaque p; est un projecteur de E.
Les p; seront appelés projecteurs spectraux associés a u.

Q 5) Soit u un endomorphisme de E et soit x,, son polynéme caractéristique : x,, = [Titq (X = X;)™
(avec les \; deux & deux distincts et les «; des entiers naturels non nuls) et pour tout entier
ie{1,2,...,m},N; = Ker (u- \jidg)™. Justifier que E= N, ® No ®...® N,,.

Q 6) a) Démontrer que £ =Imp; @ Imps @ ... ® Im p,y,.

b) Démontrer que : Vi€ {1,2,...,m},lmp; = Ker (u— \;idg)™" = Ker (u - /\iidE)ki et donc
que les p; sont aussi les projecteurs associés a la décomposition de la Q5.

Partie II : étude du cas particulier ou u est diagonalisable

Dans ce II, on suppose que u est diagonalisable et on note A1, Aa, ..., A, ses valeurs propres.
Q 7) Quel est alors le polynéme minimal 7, de v ?

Q 8) On note toujours, pour tout entier i € {1,2,...,m},Q; = F ot P; = X - \;, et on pose
0; = ﬁ Donner la décomposition en éléments simples de T% puis démontrer que les

u

projecteurs spectraux associés a u sont, pour tout entier ¢ € {1,2,...,m},p; = gi’((;)).



Q 9) Démontrer que X = 37 )‘QQ(i)g) puis que u = Y11 A\;p; (décomposition spectrale de u ).

Retrouver cette derniére égalité & ’aide de la question 6) b).

1 1 1 1

L 1s . 1 1 -1 -1

Q 10) Exemple : on considere la matrice A = 121 1 -1
1 -1 -1 1

a) Calculer la matrice A2.

b) En déduire le polynéome minimal w4 de la matrice A puis les matrices II; et Iy des
projecteurs spectraux associés a A.

c¢) Calculer, pour tout entier naturel ¢, A? en fonction des matrices II; et IIs.

Q 11) On note C[v] lalgebre des polynémes d’un endomorphisme v d’'un C-espace vectoriel de
dimension finie. Démontrer que la dimension de I’espace vectoriel C[v] est égal au degré du
polynéme minimal 7, de I’endomorphisme v.

Q 12) Onrevient au cas u diagonalisable avec 7, = [Ti2; (X — ;). Démontrer que la famille (py, po, . .
des projecteurs spectraux associés a u est une base de I’espace vectoriel C[u].

Q 13) Dans le cas d’'un endomorphisme u non diagonalisable, la famille (p1,p2,...,pm) des projec-
teurs spectraux associés & u est-elle toujours une base de I’espace vectoriel C[u]?

Q 14) Nous avons vu que si u est un endomorphisme de F diagonalisable, il existe m endomor-
phismes non nuls p; de FE, tels que pour tout entier ¢ on ait u? = Y77y A;%p;. Nous allons
étudier une < réciproque». Soit u un endomorphisme de E. On suppose qu’il existe m en-
domorphismes non nuls f; de E et m complexes A1, Az, ..., A\, distincts, tels que pour tout
entier naturel ¢ on ait u? = Y;°; AY. f;. Démontrer que u est diagonalisable.

Partie III : étude dans le cas général

m

On considere u € Z(E) quelconque et comme au § I, son polyndome minimal 7, = [ (X - POL
i=1

On note alors comme au § I, P; = (X - \;), et Q; = ;—Z pouri=1,...,m.

?

1 m
Q 15) A partir de la décomposition en éléments simples de 1/7, qu’on note : — = Z

m
donner une formule explicite pour des polynomes R; tels que Z R;Q; =1.
i=1
On définit alors les projecteurs spectrauz par Vie [1,m ]|, p; = Ri(u) o Q;(u) comme a la Q4.

m
Q 16) On note alors d := Z Aip; et n:=u—d. Montrer que d est diagonalisable et n est nilpotent et
i=1
que don=nod.
Cette décomposition u = d + n, tres utile, s’appelle décomposition de Dunford et son existence est
aussi une conséquence directe du cours du R3. Mais l'intérét du point de vue des Q15 et Q16) est
d’avoir une méthode de calcul effectif de cette décomposition comme le montre ’exemple suivant :

1 0 -1 1
Q 17) Soit E = C* et u € Z(F) de matrice canoniquement associée : A = 8 (1) 1 8 e M4(C)
00 10

a) Calculer le polynéme caractéristique x4 et le polynéme minimal 4.

b) A laide de la décomposition en éléments simples de 1/m4 calculer les matrices des
projecteurs spectraux de A.

c) En déduire les matrices D et N donnant la décomposition de Dunford de A (associées
aux endomorphismes d et n donnant la décomposition de Dunford de ).

d) En déduire le calcul de A* pour tout k € N* & partir de (D + N)*.
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