Mardi 14 Octobre 2025

DEVOIR SURVEILLE 2 : PB CCINP MP 2023 SOLUTION

N.B. Dans l’épreuve CCINP question ce pb était précédé de deux exercices et formé des Parties I
et II du sujet de ce DS. La Partie III ne figurait pas dans l’épreuve de concours : c’est un rajout pour
permettre de mieux comprendre lintérét des projecteurs spectraux. L’intérét des résultats générauz
des Q5 et Q6 est mieux compris avec cette partie II1.

a) (M1) On calcule x4(X) = X2-Tr(A)X +det(A) = X?>~6X+5= (X -1)(X-5). Ainsi la
matrice A a deux valeurs propres distinctes et est de taille 2, elle est donc diagonalisable.

(M2) La matrice A = ( 3 ; ) est symétrique réelle donc elle est diagonalisable.

1 1x1+(-1)x(-1) 1x(-1)+(-1)x1
b) On calcule 117 = 1 ( (“1) ) 1+1% (1) (=1)x (~1) + 1 x 1) =1II;.

Et de méme 1‘[% =TIl ainsi II; et II; sont des matrices de projecteur.
c) Par addition entrée par entrée, on voit que Iy + 5Ils = A, II; + I = I5.
Par produit II;II; =0

Q 2) (i) Soit z € Ker(P(u)) donc P(u)(z) =0 et (QP)(u) = Q(u) o P(u) donc

[(@P)(w)](z) = Q(u)(P(u)(x)) =0

ce qui donne z € Ker[(PQ)(u)], ainsi’ Ker(P(u)) c Ker[(PQ)(u)] ‘ (de méme, on a : Ker(Q(u)) c

Ker[(PQ)(w)] ).
(ii) On applique le théoréme de Bézout : comme P A Q = 1, il existe A, B € C[X] tels que
AP + B@ = 1. Ce qui donne, en évaluant en u :

ldp = (AP + BQ)(u) = A(u) o P(u) + B(u) 0 Q(u)
Donc si x € ker P(u) nker Q(u), on a :

z = (A(u) o P(u))(z) + (B(u) o Q(u))(z)
= A(u)(P(u)(x)) + B(u)(Q(u)(x))

=0 =0

=0

Ainsi ’ ker P(u) nker Q(u) = {0}. ‘
(iii) Avec le (i) et comme ker(PQ)(u) est un sous-espace vectoriel, on sait que
’ ker P(u) + ker Q(u) c ker(PQ)(u). ‘
(iv) Montrons I'inclusion réciproque : si z € ker(P.Q)(u), alors :
z = (A(u) o P(u))(z) + (B(u) e Q(u)) ().

eker Q(u) eker P(u)

En effet, Q(u)(P(u) o A(u)(2)) = (A(u) o (P.Q)(w))(x) = 0 et P(u)(Qu) o B(u)(x)) =
(B(u) o (P.Q)(u))(x) =0 . Donc
| Ker[(PQ) ()] € Kex(P(u)) + Ker(Q(u)) |

(v) Avec (ii), (iii), (iv) on a montré que

| Ker[(PQ)(u)] = Ker(P(u)) ® Ker(Q(u)). |




Q 3)

Q4)

Q 6)

a) On am, = Plk'lPQI”7 donc Q1 = P2k2 et Qg = Plkl.

Comme P; et P, sont premiers entre eux, on en déduit que @1 et ()2 sont premiers entre
eux, le théoreme de Bézout donne l'existence deux polynomes R; et Ry de C[X] tels que
R1Q1+ R2Q2 = 1.

b) N.B. Le résultat de ce b) état admis dans le sujet CCINP mais elle n’est pas beaucoup

plus difficile! On applique encore théoreme de Bézout car les Q; =T, Pfj sont premiers

entre euz dans leur ensemble (il n’y a pas de facteur irréductible commun a tous les Q;) ce
qui est bien I’hypotheése du théoreme de Bézout.

(i) I existe des polynomes de C[X] tels que R1Qq + RoQ2 + ... + RpnQ., = 1 et pour tout
i€ {1721 s 7m}7pi = Rl(u) ° Ql(u) donc

Ri(u)oQr(u)+...+ Rp(u) o Qm(u) =idg
(ii) Soit 4,7 des entiers distincts de {1,2,...,m}, on a

pi o pj = Riu) o Qi(u) o Ry(r) o Q;(u)
= Riu) o R;(u) o Qi) o Q; (u)
= (RiRy) ()0 (QiQ)) (1) (¥)

O = Fu Tu _ o Tu ki pki divi
et Q;Q; = P.;;i P,g‘j =Ty Piki;jkj ,or ;" P;"%i divise m,, donc

Ty

Ainsi 7, divise Q;Q;, donc Q;Q; est donc annulateur de v d’ou avec (*) : .

(iii) Soit ¢ dans {1,2,...,m}, on a

Q:Q; =m,S avecS:= e C[X].

Di =D oldp
m
=pio ij
i

m
2
=pi+ Y. piop;
i
VE)

orsii#jonap;op;=0donc , et p; est un projecteur .

Il s’agit du question de cours (cours du chap. R3) et par ailleurs application immédiate de
Cayley-Hamilton et du théoréme de décomposition des noyauz
Onax, =[17 (X -X)" et pour tout i € {1,2,...,m}, N; = ker (u — \jidg)™". Les polynomes
(X =)™ sont deux & deux premiers entre eux, le théoréme de décomposition des noyaux
donne

m

ker xy, (u) = @ ker (u - Niidg)™*
i=1

d’apres le théoreme de Cayley-Hamilton on a y,(u) = 0 donc ker x,(u) = E d’ou

m
E=@N;
i=1
a) (i) Montrons que la somme Imp; + ...+ Imp,, est directe : Soit (y1,...,¥m) € Imp; x
. x Impy, tels que y1 + ...+ ym = 0, il existe z1,...,z,, dans E verifiant y; = p; (x;)
pour tout ¢ dans {1,...,m}. Soit 4, j distincts dans {1,...,m} alors

pi (y5) = (piop;) (x;) =0 et p; (y5) = (Piops) (@) = pi (x5) =y



ce qui donne
pi Y1)+ +pi (Ym) =y =0
donc (y1,--.,Ym) = (0,...,0), ce qui prouve que la somme Imp; +...+Imp,, est directe
(ii) Montrons que E=Imp; +...+Imp,,:
On a Imp; +...+Imp,, ¢ E et p1 +... + py = idg donc pour tout x dans E on a

x=p1(x)+...+pm(x) donc x € Imp; +...+Imp,, par suite E c Imp; +...+Imp,,, dou
E=Imp; +...+Imp,,.

Ainsi avec (i) et (ii) on a’E =Imp; ®...0Imp,, ‘

m

b) Remarque : D’apres le théoréme de Cayley-Hamilton on a ,, divise x,, = [T/t (X = X\;)™
et 7, et x, ont les mémes racines, donc 7, = [Ti%; (X - )\i)ki avec 0 < k; < ay.

ker(u — X\;id)% c ker(u — A\;id)® = N; (1) ‘

(i) En particulier, pour tout 7,

(ii) Soit i € {1,2,...,m}, montrons que Imp; c ker(u — \;id)* :

soit y; = p; (z;) € Imp;.

On veut montrer que y; € ker(u — \; id)*:.

Or comme y; = p; () = Ri(u) 0 Qi(u)(y:), on a P (y:) = (Ri x P x Q) (w)(y:)  (»).
Mais Pf" x (Q; = m, par déf. des Q.

Donc avec (#), on a : P (y;) = R;(u) (7. (u))(y:) = 0 puisque 7, (u) = 0.

Ainsi on a montré l'inclusion : ’Impi cker(u—X\;id)*  (2) ‘
(iii) Par Q6 a) et Q5, E=Imp; ®...®Imp,, = N1 &...® N,, donc

dim (Impy) @ ... ®dim (Imp,,) =dim (N1) & ... & dim (N,,)

Supposons qu’il existe i € {1,2,...,m} tel que Imp; # N; doncdim (Imp;) < dim (N;)
par suite
dim (Imp;) @ ... ® dim (Imp,,) <dim (N1) & ... ® dim (N,,)

ce qui est absurde donc i € {1,2,...,m} on a dim (Imp;) = dim (V;) et avec (1) et (2 on
conclut que pour tout i :

Imp; = ker(u — \;id)% = ker(u — \;id)® = Nj.

Partie 11

Q 7) u est diagonalisable donc son polyndéme minimal est scindé a racines simples, et 'ensemble
de ses racines est exactement le spectre de u d’ou :

nu:ﬁ(x-xi)

Q 8) (i) Comme 7, a toutes ses racines simples, on sait par théoreme de décomposition en éléments

simples qu’il existe des constantes aq,...,a,, € C telles que
1 i a;
Tu X -\

avec a; = [ézg\g)]()\l) = [Qi(lX)] (A;) =2 6; donc

(ii) Cette relation, multipliée par 7, donne la relation de Bézout suivante (un peu particuliere
car les 0; sont constants) :

_m . Tru :m . .
1_29,X_/\i 2. 0:Q

i=1 i=1



Q9)

donc suivant les notations données avant la Q4, avec les R; = 6; constants, on a pour tout
entier 1 € {1,2,... ,m},p; = H-Qi(u) = Qilw)

Qi(A)”
a) On considere la D.E.S. de— (X) qu’on écrit :

WuCX) EQ‘X Ai

avec ( )
X (X -\ X
c=\——")(N) = i
( Ty, ) () ((2 )) () = CQZ(A )
Donc \ (X) N
Qi(X)

TEQO) (XN ; i (i)

Alors en évaluant cette égalité en u, on obtient :

m Q(u) m
Z 0. 00 =2 Aipi-

i=1

b) Point n’est besoin de toutes ces manipulations pour arriver a cette derniére égalité géométriquement
évidente : ici les Im(p;) sont les ker(u — \;id) et les p; sont les projecteurs associés a la

m
décomposition de E en sous-espaces propres. L’égalité u = Z Aip; est alors immédiate. Elle

i=1

m m
dit juste que si x = le avec x; € By, alors u(x) = Z NiTi.
i=1 i=1

Q 10) .

a) On calcule : A% = 41,.
b) (i) Par a) X2 -4 est annulateur de A et 74 divise X2 -4, A n’est pas de la forme aly
donc forcement deg 4 > 2 par suite T4 = X2 -

(ii) Calcul des projecteurs associés (projecteurs spectraux) : avec les notations de la
Q3, comme X2 -4 = (X -2)(X +2) avec Pi(X) = (X -2) et Po(X)=X+2,0na
QR1(X)=X+2et Q2(X) =X -2. On note donc aussi A\; =2 et Ay = -2.

Alors par la derniere formule de la Q8,

Q1(4) _
Ql()\ ) Z(A 2.[) et HQ—

@2(4)

= Q2(X2)

- }4@4 _ar)

On trouve :

-1 -1 -1
1 1 1
3 -1 -1
-1 3 -1

c) On a les relations :
A = M1 + NIl
II; - o =1l - 113 =0
I} = 11;, 115 =TI, pour tout entier naturel & > 0.
On obtient pour tout entier naturel k£ >0 :

Ak = /\lfﬂl + )\]26]:[2

donc



Q 11)

Q 12)

Q 13)

Q 14)

AR = 2FTT; + (—=2)*11, = 27 (T + (-1)*11,).

Ces égalités sont aussi valables pour k = 0 puisque II; + 15 = 1.

Remarque; on retrouve ainsi aussi les égalités plus évidentes suivantes : pour tout

entier naturel k
A2k — 4k[4 et A2k+1 - 4kA

On a C[v] = {P(v),P e C[X]}, posons m,(X) = X¥ +ag_1 X% + .. + ap. Soit P € C[X] on
effectue la division euclidienne de P par 7, :

P=Qmn,+ R avec degR<d-1

par substitution on a

P(v) = Q(v) e my(v) + R(v) = R(v)
donc P(v) € vect {idp,v,...,v"} et C[v] c vect {idpg,v,...,v""'}. Par suite dimC[v] < d
Si on suppose que dimC[v] < d -1 alors la famille {idE,v, . ,vd‘2} est liée ainsi il existe
un polynoéme annulateur de v de degré inferieur a d — 1 ce qui contredit le fait que, m, est
annulateur de degré minimal égal & d. Donc dim C[v] = d.

On a degm, = m puisque 7, = [Tj21 (X = X\;).

Donc par la question précédente, dim C[u] = m et la famille (p1,...,pm) a bien le bon nombre
de vecteurs pour étre une base.

11 suffit donc de montrer que la famille (pq,...,pm) est libre : Soit (aq,...,a;,) dans C™ tels
que oypy + ...+ mPm = 0, on compose par p;, sachant que p; op; =0si 7 # j et p; op; = py,
on obtient a; =0, ainsi (p1,...,Pm) est libre. (p1,...,pm) est libre de cardinal m donc c’est

une base de Clu].

Si u non diagonalisable alors m,, = [Ti~; (X -\;)"* avec au moins I'un des v; > 1 donc deg m,, > m.
Or C[u] est toujours de dimension deg(m,, ) donc la famille (py, ps, . .., pm ) nest pas génératrice
C[u]. A fortiori ce n’est pas une base de C[u].

On a m endomorphismes f; de E et m complexes A1, Ag, ..., A, distincts, tels que pour tout
entier naturel ¢ on ait u? = Y;"; A! f;. Donc par combinaison linéaire de ces égalités, pour
tout polynéme P on a P(u) = X721 P (\;) fi, en particulier le polyndéme P = []7%; (X = \;)
est annulateur de u a racines simples, donc u est diagonalisable.

Partie I11 :

Q 15)

Q 16)

On réécrit la D.E.S. de 1/m, en réduisant au méme dénominateur dans chaque somme

intérieure : .
1
g X )\)k (1)

avec pour chaque i =1,...,m,

kq

=Y (X =AM (2)

En multipliant (1) par m,, on obtient I'identité de Bézout :

i Ri(X) - 3 R(X)Qi(X)

(X )‘ )k =1

comme demandée, et la formule explicite sur les R; est donnée par (2).

Les résultats des Q5 et Q6 s’appliquent ici et chaque (p1, ..., pm ) sont les projecteurs associés
a la décomposition de E sur les sous-espaces caractéristiques INV;.

m

Pour d = Z Aipi on a pour chaque j =1,...,m, dy, = A;jid donc N; est les sev propre de d
i=1

pour la valeur propre A; et comme E = & IV}, on a bien d diagonalisable.



Pour n = u - d, montrons que n est nilpotent : ny, = (u - A;id)y, or N; = ker(u - A; id)*s
donc ny; est nilpotent d’indice au plus k;.
Au total n est nilpotent d’indice max(ky, ..., k).
Enfin n et d commutent parce que par construction des pi sont dans C[u] donc d et n sont
dans Clu].
Q 17) a) On calcule x4(X) = (X -1)3X. Donc p4(X) = (X -1)¥X. A la calculatrice on constate
que (X - 1)X n’annule pas A mais que (X - 1)2X oui donc pus(X) = (X - 1)%X.
b) On calcule la décomposition en éléments simples :

1 1 1 1
7rA<X>:X+(<X—1>2 ‘X—l)
qui donne la décomposition de Bézout :
1=(X-1)%+(2X - X?)
et les projecteurs spectraux :
I = (A-1,)°, Tl,=2A-A?

(onally +1Ip = Iy ).
¢) On obtient alors la décomposition A =D + N avec :

1 0 -1 1 00 0 O
01 0 O 00 1 0
D—0H1+H2— 00 1 0 y N=A-D-= 00 0 0
00 1 0 00 00

d) Pour r >0, on a par la formule du bindéme puisque D et N commutent
A"=D"+rD"'N

(car N2 =0 ) avec D" = 75 = w3 = D. Soit :

10 -1 1
Vr>2, A" =D(I4+7N)= 8 (1) 71“ 8
00 10



