
MP Mardi 14 Octobre 2025

Devoir surveillé 2 : Pb CCINP MP 2023 solution

N.B. Dans l’épreuve CCINP question ce pb était précédé de deux exercices et formé des Parties I
et II du sujet de ce DS. La Partie III ne figurait pas dans l’épreuve de concours : c’est un rajout pour
permettre de mieux comprendre l’intérêt des projecteurs spectraux. L’intérêt des résultats généraux
des Q5 et Q6 est mieux compris avec cette partie III.

Q 1) a) (M1) On calcule χA(X) =X2−Tr(A)X+det(A) =X2−6X+5 = (X−1)(X−5). Ainsi la
matrice A a deux valeurs propres distinctes et est de taille 2, elle est donc diagonalisable.

(M2) La matrice A = ( 3 2
2 3

) est symétrique réelle donc elle est diagonalisable.

b) On calcule Π2
1 =

1

4
( 1 × 1 + (−1) × (−1) 1 × (−1) + (−1) × 1
(−1) × 1 + 1 × (−1) (−1) × (−1) + 1 × 1) = Π1.

Et de même Π2
2 = Π2 ainsi Π1 et Π2 sont des matrices de projecteur.

c) Par addition entrée par entrée, on voit que Π1 + 5Π2 = A,Π1 +Π2 = I2.
Par produit Π1Π2 = 0

Q 2) (i) Soit x ∈ Ker(P (u)) donc P (u)(x) = 0 et (QP )(u) = Q(u) ○ P (u) donc

[(QP )(u)](x) = Q(u)(P (u)(x)) = 0

ce qui donne x ∈ Ker[(PQ)(u)], ainsi Ker(P (u)) ⊂ Ker[(PQ)(u)] (de même, on a : Ker(Q(u)) ⊂
Ker[(PQ)(u)] ).
(ii) On applique le théorème de Bézout : comme P ∧Q = 1, il existe A,B ∈ C[X] tels que
AP +BQ = 1. Ce qui donne, en évaluant en u :

IdE = (AP +BQ)(u) = A(u) ○ P (u) +B(u) ○Q(u)

Donc si x ∈ kerP (u) ∩ kerQ(u), on a :

x = (A(u) ○ P (u))(x) + (B(u) ○Q(u))(x)
= A(u)(P (u)(x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+B(u)(Q(u)(x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= 0

Ainsi ker P (u) ∩ kerQ(u) = {0}.
(iii) Avec le (i) et comme ker(PQ)(u) est un sous-espace vectoriel, on sait que

kerP (u) + kerQ(u) ⊂ ker(PQ)(u).
(iv) Montrons l’inclusion réciproque : si x ∈ ker(P.Q)(u), alors :

x = (A(u) ○ P (u))(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈kerQ(u)

+(B(u) ○Q(u))(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈kerP (u)

.

En effet, Q(u)(P (u) ○ A(u)(x)) = (A(u) ○ (P.Q)(u))(x) = 0 et P (u)(Q(u) ○ B(u)(x)) =
(B(u) ○ (P.Q)(u))(x) = 0 . Donc

Ker[(PQ)(u)] ⊂ Ker(P (u)) +Ker(Q(u))
(v) Avec (ii), (iii), (iv) on a montré que

Ker[(PQ)(u)] = Ker(P (u)) ⊕Ker(Q(u)).
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Q 3) a) On a πu = P k1

1 P k2

2 , donc Q1 = P k2

2 et Q2 = P k1

1 .

Comme P1 et P2 sont premiers entre eux, on en déduit que Q1 et Q2 sont premiers entre
eux, le théorème de Bézout donne l’existence deux polynômes R1 et R2 de C[X] tels que
R1Q1 +R2Q2 = 1.
b) N.B. Le résultat de ce b) état admis dans le sujet CCINP mais elle n’est pas beaucoup

plus difficile ! On applique encore théorème de Bézout car les Qi = ∏j≠i P
kj

j sont premiers
entre eux dans leur ensemble (il n’y a pas de facteur irréductible commun à tous les Qi) ce
qui est bien l’hypothèse du théorème de Bézout.

Q 4) (i) Il existe des polynômes de C[X] tels que R1Q1 + R2Q2 + . . . + RmQm = 1 et pour tout
i ∈ {1,2, . . . ,m}, pi = Ri(u) ○Qi(u) donc

R1(u) ○Q1(u) + . . . +Rm(u) ○Qm(u) = idE

par suite ∑m
i=1 pi = idE .

(ii) Soit i, j des entiers distincts de {1,2, . . . ,m}, on a

pi ○ pj = Ri(u) ○Qi(u) ○Rj(u) ○Qj(u)
= Ri(u) ○Rj(u) ○Qi(u) ○Qj(u)
= (RiRj) (u) ○ (QiQj) (u) (∗)

et QiQj = πu

P
ki
i

πu

P
kj
j

= πu ⋅ πu

Pi
kiPj

kj
,orPi

kiPj
kj divise πu, donc

QiQj = πuS avec S ∶= πu

Pi
kiPj

kj
∈ C[X].

Ainsi πu divise QiQj , donc QiQj est donc annulateur de u d’où avec (∗) : pi ○ pj = 0 .

(iii) Soit i dans {1,2, . . . ,m}, on a

pi = pi ○ idE

= pi ○
m

∑
j=1

pj

= p2i +
m

∑
j=1
j≠i

pi ○ pj

or si i ≠ j on a pi ○ pj = 0 donc p2i = pi , et pi est un projecteur .

Q 5) Il s’agit du question de cours (cours du chap. R3) et par ailleurs application immédiate de
Cayley-Hamilton et du théorème de décomposition des noyaux

On a χu = ∏m
i=1 (X − λi)αi et pour tout i ∈ {1,2, . . . ,m},Ni = ker (u − λiidE)αi . Les polynômes

(X − λi)αi sont deux à deux premiers entre eux, le théorème de décomposition des noyaux
donne

kerχu(u) =
m

⊕
i=1

ker (u − λiidE)αi

d’après le théorème de Cayley-Hamilton on a χu(u) = 0 donc ker χu(u) = E d’où

E =
m

⊕
i=1

Ni

Q 6) a) (i) Montrons que la somme Imp1 + . . . + Impm est directe : Soit (y1, . . . , ym) ∈ Imp1 ×
. . . × Impm tels que y1 + . . . + ym = 0, il existe x1, . . . , xm dans E verifiant yi = pi (xi)
pour tout i dans {1, . . . ,m}. Soit i, j distincts dans {1, . . . ,m} alors

pi (yj) = (pi ○ pj) (xj) = 0 et pi (yi) = (pi ○ pi) (xi) = pi (xi) = yi
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ce qui donne
pi (y1) + . . . + pi (ym) = yi = 0

donc (y1, . . . , ym) = (0, . . . ,0), ce qui prouve que la somme Imp1 + . . .+ Impm est directe

(ii) Montrons que E = Imp1 + . . . + Impm ∶
On a Imp1 + . . . + Impm ⊂ E et p1 + . . . + pm = idE donc pour tout x dans E on a
x = p1(x)+ . . .+pm(x) donc x ∈ Imp1 + . . .+ Impm par suite E ⊂ Imp1 + . . .+ Impm, d’où
E = Imp1 + . . . + Impm.

Ainsi avec (i) et (ii) on a E = Imp1 ⊕ . . .⊕ Impm

b) Remarque :D’après le théorème de Cayley-Hamilton on a πu divise χu = ∏m
i=1 (X − λi)αi

et πu et χu ont les mêmes racines, donc πu = ∏m
i=1 (X − λi)ki avec 0 < ki ≤ αi.

(i) En particulier, pour tout i, ker(u − λi id)ki ⊂ ker(u − λi id)αi =∶ Ni (1)
(ii) Soit i ∈ {1,2, . . . ,m}, montrons que Impi ⊂ ker(u − λi id)ki :

soit yi = pi (xi) ∈ Impi.

On veut montrer que yi ∈ ker(u − λi id)ki .

Or comme yi = pi(yi) = Ri(u) ○Qi(u)(yi), on a P ki

i (yi) = (Ri × P ki

i ×Qi)(u)(yi) (∗).
Mais P ki

i ×Qi = πu par déf. des Qi.

Donc avec (∗), on a : P ki

i (yi) = Ri(u)(πu(u))(yi) = 0 puisque πu(u) = 0.
Ainsi on a montré l’inclusion : Impi ⊂ ker(u − λi id)ki (2)
(iii) Par Q6 a) et Q5, E = Imp1 ⊕ . . .⊕ Impm = N1 ⊕ . . .⊕Nm donc

dim (Imp1) ⊕ . . .⊕ dim (Impm) = dim (N1) ⊕ . . .⊕ dim (Nm)

Supposons qu’il existe i ∈ {1,2, . . . ,m} tel que Impi ≠ Ni doncdim (Impi) < dim (Ni)
par suite

dim (Imp1) ⊕ . . .⊕ dim (Impm) < dim (N1) ⊕ . . .⊕ dim (Nm)
ce qui est absurde donc i ∈ {1,2, . . . ,m} on a dim (Impi) = dim (Ni) et avec (1) et (2 on
conclut que pour tout i :

Impi = ker(u − λi id)ki = ker(u − λi id)αi =∶ Ni.

Partie II

Q 7) u est diagonalisable donc son polynôme minimal est scindé à racines simples, et l’ensemble
de ses racines est exactement le spectre de u d’où :

πu =
m

∏
i=1

(X − λi)

Q 8) (i) Comme πu a toutes ses racines simples, on sait par théorème de décomposition en éléments
simples qu’il existe des constantes a1, . . . , am ∈ C telles que

1

πu
=

m

∑
i=1

ai
X − λi

avec ai =
̃[ X−λi

πu(X)
](λi) = [ 1

Qi(X)
] (λi) =∶ θi donc

1

πu
=

m

∑
i=1

θi
X − λi

(ii) Cette relation, multipliée par πu donne la relation de Bézout suivante (un peu particulière
car les θi sont constants) :

1 =
m

∑
i=1

θi
πu

X − λi
=

m

∑
i=1

θiQi
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donc suivant les notations données avant la Q4, avec les Ri = θi constants, on a pour tout

entier i ∈ {1,2, . . . ,m}, pi = θiQi(u) = Qi(u)
Qi(λi)

.

Q 9) a) On considère la D.E.S. de X
πu(X)

qu’on écrit :

X

πu(X)
=

m

∑
i=1

ci
X − λi

avec

ci = (
X (X − λi)

πu
)(λi) = (

X

Qi(X)
) (λi) =

λi

Qi (λi)
Donc

X =
m

∑
i=1

λi

Qi (λi)
πu(X)
(X − λi)

=
m

∑
i=1

λi

Qi (λi)
Qi(X)

Alors en évaluant cette égalité en u, on obtient :

u =
m

∑
i=1

λi
Qi(u)
Qi (λi)

=
m

∑
i=1

λipi.

b) Point n’est besoin de toutes ces manipulations pour arriver à cette dernière égalité géométriquement
évidente : ici les Im(pi) sont les ker(u − λi id) et les pi sont les projecteurs associés à la

décomposition de E en sous-espaces propres. L’égalité u =
m

∑
i=1

λipi est alors immédiate. Elle

dit juste que si x =
m

∑
i=1

xi avec xi ∈ Eλi alors u(x) =
m

∑
i=1

λixi.

Q 10) .

a) On calcule : A2 = 4I4.
b) (i) Par a) X2 − 4 est annulateur de A et πA divise X2 − 4,A n’est pas de la forme αI4

donc forcement degπA ≥ 2 par suite πA =X2 − 4.
(ii) Calcul des projecteurs associés (projecteurs spectraux) : avec les notations de la
Q3, comme X2 − 4 = (X − 2)(X + 2) avec P1(X) = (X − 2) et P2(X) = X + 2, on a
Q1(X) =X + 2 et Q2(X) =X − 2. On note donc aussi λ1 = 2 et λ2 = −2.
Alors par la dernière formule de la Q8,

Π1 =
Q1(A)
Q1(λ1)

= 1

4
(A + 2I) et Π2 =

Q2(A)
Q2(λ2)

= 1

−4(A − 2I)

On trouve :

Π2 =
1

4
(−A + 2I4) = −

1

4

⎛
⎜⎜⎜
⎝

−1 1 1 1
1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1

⎞
⎟⎟⎟
⎠

Π1 =
1

4
(A + 2I4) =

1

4

⎛
⎜⎜⎜
⎝

3 1 1 1
1 3 −1 −1
1 −1 3 −1
1 −1 −1 3

⎞
⎟⎟⎟
⎠

c) On a les relations :

A = λ1Π1 + λ2Π2

Π1 ⋅Π2 = Π2 ⋅Π1 = 0
Πk

1 = Π1,Π
k
2 = Π2 pour tout entier naturel k > 0.

On obtient pour tout entier naturel k > 0 :

Ak = λk
1Π1 + λk

2Π2

donc
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Ak = 2kΠ1 + (−2)kΠ2 = 2k (Π1 + (−1)kΠ2) .

Ces égalités sont aussi valables pour k = 0 puisque Π1 +Π2 = I.
Remarque ; on retrouve ainsi aussi les égalités plus évidentes suivantes : pour tout
entier naturel k

A2k = 4kI4 et A2k+1 = 4kA

Q 11) On a C[v] = {P (v), P ∈ C[X]}, posons πv(X) = Xd + ad−1Xd−1 + .. + a0. Soit P ∈ C[X] on
effectue la division euclidienne de P par πv :

P = Qπv +R avec degR ≤ d − 1

par substitution on a
P (v) = Q(v) ○ πv(v) +R(v) = R(v)

donc P (v) ∈ vect{idE , v, . . . , vd−1} et C[v] ⊂ vect{idE , v, . . . , vd−1}. Par suite dimC[v] ≤ d.
Si on suppose que dimC[v] ≤ d − 1 alors la famille {idE , v, . . . , vd−2} est liée ainsi il existe
un polynôme annulateur de v de degré inferieur à d − 1 ce qui contredit le fait que, πv est
annulateur de degré minimal égal à d. Donc dimC[v] = d.

Q 12) On a degπu =m puisque πu = ∏m
i=1(X − λi).

Donc par la question précédente, dimC[u] =m et la famille (p1, . . . , pm) a bien le bon nombre
de vecteurs pour être une base.

Il suffit donc de montrer que la famille (p1, . . . , pm) est libre : Soit (α1, . . . , αm) dans Cm tels
que α1p1 + . . . + αmpm = 0, on compose par pj , sachant que pi ○ pj = 0 si i ≠ j et pi ○ pi = pi,
on obtient αj = 0, ainsi (p1, . . . , pm) est libre. (p1, . . . , pm) est libre de cardinal m donc c’est
une base de C[u].

Q 13) Si u non diagonalisable alors πu = ∏m
i=1(X−λi)νi avec au moins l’un des νi > 1 donc degπu >m.

Or C[u] est toujours de dimension deg(πu) donc la famille (p1, p2, . . . , pm) n’est pas génératrice
C[u]. A fortiori ce n’est pas une base de C[u].

Q 14) On a m endomorphismes fi de E et m complexes λ1, λ2, . . . , λm distincts, tels que pour tout
entier naturel q on ait uq = ∑m

i=1 λ
q
i fi. Donc par combinaison linéaire de ces égalités, pour

tout polynôme P on a P (u) = ∑m
i=1 P (λi) fi, en particulier le polynôme P = ∏m

i=1 (X − λi)
est annulateur de u à racines simples, donc u est diagonalisable.

Partie III :

Q 15) On réécrit la D.E.S. de 1/πu en réduisant au même dénominateur dans chaque somme
intérieure :

1

πu
=

m

∑
i=1

Ri(X)
(X − λi)ki

(1)

avec pour chaque i = 1, . . . ,m,

Ri =
ki

∑
j=1

ci,j(X − λi)ki−j (2)

En multipliant (1) par πu, on obtient l’identité de Bézout :

1 =
m

∑
i=1

Ri(X)
πu

(X − λi)ki
=

m

∑
i=1

Ri(X)Qi(X)

comme demandée, et la formule explicite sur les Ri est donnée par (2).
Q 16) Les résultats des Q5 et Q6 s’appliquent ici et chaque (p1, . . . , pm) sont les projecteurs associés

à la décomposition de E sur les sous-espaces caractéristiques Ni.

Pour d =
m

∑
i=1

λipi on a pour chaque j = 1, . . . ,m, d∣Nj
= λj id donc Nj est les sev propre de d

pour la valeur propre λj et comme E = ⊕m
i=1Nj , on a bien d diagonalisable.
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Pour n = u − d, montrons que n est nilpotent : n∣Nj
= (u − λj id)∣Nj

or Nj = ker(u − λj id)kj

donc n∣Nj
est nilpotent d’indice au plus kj .

Au total n est nilpotent d’indice max(k1, . . . , km).
Enfin n et d commutent parce que par construction des pk sont dans C[u] donc d et n sont
dans C[u].

Q 17) a) On calcule χA(X) = (X −1)3X. Donc µA(X) = (X −1)kX. A la calculatrice on constate
que (X − 1)X n’annule pas A mais que (X − 1)2X oui donc µA(X) = (X − 1)2X.

b) On calcule la décomposition en éléments simples :

1

πA(X)
= 1

X
+ ( 1

(X − 1)2 −
1

X − 1)

qui donne la décomposition de Bézout :

1 = (X − 1)2 + (2X −X2)

et les projecteurs spectraux :

Π1 = (A − I4)2 , Π2 = 2A −A2

(on a Π1 +Π2 = I4 ).

c) On obtient alors la décomposition A =D +N avec :

D = 0Π1 +Π2 =
⎛
⎜⎜⎜
⎝

1 0 −1 1
0 1 0 0
0 0 1 0
0 0 1 0

⎞
⎟⎟⎟
⎠
, N = A −D =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

d) Pour r > 0, on a par la formule du binôme puisque D et N commutent

Ar =Dr + rDr−1N

(car N2 = 0 ) avec Dr = πr
2 = π2 =D. Soit :

∀r ≥ 2, Ar =D (I4 + rN) =
⎛
⎜⎜⎜
⎝

1 0 −1 1
0 1 r 0
0 0 1 0
0 0 1 0

⎞
⎟⎟⎟
⎠
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