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Devoir surveillé 1 : solution

Exercice
a) Cf cours : ne pas oublier d’initialiser la récurrence. Si vous initialiser pour n = 2, la propriété

sera montrée pour tout n ≥ 2.
b) (i) Avec I = ⟦1, n⟧2, on a :

Mn(C) = Vect(Ei,j , (ij) ∈ I}

= Vect(Ei,j , (i, j) ∈
r

⋃
k=1

Ik}

=
r

∑
k=1

Vect(Ei,j , (i, j) ∈ Ik}

=
r

∑
k=1

Ek

Reste à montrer que la somme est directe
(M1) Avec le critère de concaténation des bases : on sait que la somme des Ek est directe

si, et seulement si concaténation des bases (Ei,j)(i,j)∈Ik des Ek est libre, or cette concaténation ici
donne la famille des (Ei,j)(i,j)∈I entière sans répétition puisque l’union des Jk est disjointe. Donc
cette famille est libre.

(M2) Avec le critère sur la somme des dimensions : il suffit de montrer que
r

∑
k=1

dimEk =

n2.
Or comme la famille des (Ei,j)(i,j)∈⟦1,n⟧2 est libre, pour chaque k, dimEk = Card(Jk).

Et comme ∐
r
k=1 Jk = ⟦1, n⟧

2, on sait que
r

∑
k=1

Card(Jk) = n
2.

On conclut bien que
r

∑
k=1

dimEk =
r

∑
k=1

Card(Jk) = n
2.

(M3) Avec les sommes de vecteurs donnant le vecteur nul :

Soit (A1, . . . ,Ar) ∈ E1 × ⋅ ⋅ ⋅ × Er tels que
r

∑
k=1

Ak = 0.

Pour chaque k = 1, . . . , r il existe αk,i,j pour (i, j) ∈ Jk tels que Ak = ∑
(i,j)∈Jk

αk,i,jEi,j .

Alors
r

∑
k=1

Ak =
r

∑
k=1

∑
(i,j)∈Jk

αk,i,jEi,j = 0.

Mais dans cette somme chaque terme est un vecteur Ei,j distincts de la base canonique, donc
tous les coefficients αk,i,j sont nuls et donc tous les Ak sont nuls. Ce qui prouve que la somme est
directe.

(Non Méthode !) Graou :�� ��NON LES INTERSECTIONS DEUX à DEUX de Ek NE SUFFISENT PAS ! !

c) (i) Soit E = Cn et f ∶ E → E l’endomorphisme canoniquement associé à B. En notant
(e1, . . . , en) la base canonique. On convient pour tout i ∈ Z de noter ei = ei%n où i%n désigne
le reste de la division euclidienne de i par n. Autrement dit on prolonge la famille (ei) par n
périodicité : e0 = en et en+1 = e1. et aussi e−1 = en−1 etc...

Alors par définition de f pour tout j ∈ ⟦1, n⟧, f(ej) = ej−1.
Mais alors pour tout k ∈ N, et tout j ∈ ⟦1, n⟧, fk(ej) = ej−k.
Matriciellement en prolongeant aussi les deux indices par n périodicité, pour tout (i, j), on a

(Bk)i,j = δi,j−k.
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Ainsi pour k ∈ ⟦1, n⟧ Bk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 . . . 0 1 0 . . . 0
⋮ ⋱ 0 1 ⋱ 0
⋮ ⋱ ⋱ ⋱ 0
0 ⋱ 1
1 ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋮

0 . . . 1 0 . . . . . . 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

où,e 1 de la première ligne se situe colonne k + 1 et le 1 de la première colonne est à la ligne
1 − k ≡ n + 1 − k [n].�� ��En pensant géométriquement i.e. à l’endomorphisme, on voit la bijectivité !

Cela évite les erreurs des personnes qui n’ont pas perçu la diagonale du bas et on pensait que la
matrice était nilpotente.

Une façon plus agréable d’écrire la matrice : par blocs ∀k ∈ ⟦0, n⟧, Bk = (
0 In−k
Ik 0

)

(ii) Notons D = diag(d1, . . . , dn) avec di ∈Mn(C).
Alors pour toute matrice M ∈Mn(C), et tout (i, j) ∈ ⟦1, n⟧2, DM(i, j) = dimi,j

Soit k ∈ ⟦0, n − 1⟧. On sait déjà par le a) que Bk ∈ Ek.
On veut montrer que si (DBk)(i, j) ≠ 0 alors Bk(i, j) ≠ 0, ce qui montrera bien que DBk ∈ Ek.
Mais c’est évident puisque (DBk)(i, j) = diB

k(i, j).
(iii) Comme la famille est formée de n2 éléments de Mn(K) et qu’on sait que dim(Mn(K)) = n2,

il sufffit de montrer qu’elle est libre.
Soit (λk,ℓ)(k,ℓ)∈⟦0,n−1⟧2 telle que ∑

(k,ℓ)∈⟦0,n−1⟧2
λk,ℓA

kBℓ
= 0 (∗)

Avec le b), comme la famille des Jℓ = {(i, j) ∈ ⟦1, n⟧
2, i ≡ j − ℓ} pour ℓ = 0,1, . . . , n − 1 est une

partition de ⟦1, n⟧2, on sait que Mn(K) = ⊕n
ℓ=1Eℓ.

Or avec le (ii) pour chaque ℓ = 0,1, . . . , n − 1,
n−1

∑
k=0

λk,lA
kBℓ
∈ Eℓ.

Donc par caractérisation de la somme directe, on déduit de (∗) que pour tout ℓ = 0, . . . , n − 1,

n−1

∑
k=0

λk,lA
kBℓ
= 0 (∗∗)

Or comme B est inversible (d’inverse Bn−1) on en déduit que
n−1

∑
k=0

λk,ℓA
k
= 0.

Or cette condition s’écrit pour chaque j = 0, . . . , n − 1,
n−1

∑
k=0

λk,ℓ.ω
jk
= 0.

On peut, pour chaque ℓ ∈ ⟦0, n − 1⟧ réécrire ces conditions sous la forme :

⎛
⎜
⎜
⎜
⎝

1 1 . . . 1
1 ω . . . ωn−1

ωn−1 (ωn−1)2 . . . (ωn−1)n−1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

λ0,ℓ

λ1,ℓ

⋮

λn−1,ℓ

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

0
⋮

⋮

0

⎞
⎟
⎟
⎟
⎠

On reconnâıt la matrice de Vandermonde de (1, ω, ω2, . . . , ωn−1) dont le déterminant est non
nul puisque ces n nombres complexes sont distincts.

On conclut pour chaque ℓ ∈ ⟦0, n− 1⟧, et chaque k ∈ ⟦0, n− 1⟧, λk,ℓ = 0. La famille est bien libre.

Problème

Q 1) (i) Le théorème de Cesàro (au programme, et aussi conséquence immédiate du théorème de
sommation des relation de comparaisons) dit que (E,C) vérifie l’axiome de prolongement :

en effet si u ∈ C, on a Un Ð→
n→+∞

ℓ ∈ C et le théorème de Cesàro dit alors que
1

n

n−1

∑
k=0

Uk Ð→
n→+∞

ℓ.

Ainsi, on a montré que C ⊂ C′

2



(ii) Montrons que C′ est un s.e.v. de CN : ● on sait déjà que C′ ⊃ C, donc C′ est non vide,

● si u,u′ ∈ C′, et Un =
n−1

∑
k=0

uk et U ′n =
n−1

∑
k=0

u′k tendent respectivement vers ℓ et ℓ′ dans C, alors

pour tout λ ∈ C, on a
n−1

∑
k=0

(λuk + u
′
k) = λUn +U

′
n.

Et
1

n

n−1

∑
k=0

(λUk +U
′
k) = λ

1

n

n

∑
k=1

Uk +
1

n

n

∑
k=1

U ′k Ð→
n→+∞

λℓ+ ℓ′ ce qui montre bien que λu+u′ ∈ C′ ce

qui montre bien que C′ est un s.e.v. de CN

(iii) En outre le passage à la limite dans la dernière égalité du (ii) dit que C(λu + u′) =
λC(u) +C(u′) ce qui montre que l’application C est linéaire.

Q 2) (M1) Pour un = (−1)
n, on a Un =

⎧⎪⎪
⎨
⎪⎪⎩

1 si n est impair

0 si n est pair

Donc en notant Mn =
1
n

n

∑
k=1

Uk, si n = 2p est pair Mn = 1/n × n/2 = 1/2 et si n = 2p + 1 est

impair, M2p+1 = 1/(2p + 1) × (p + 1) Ð→
p→+∞

1/2.

Ceci montre que Mn Ð→
n→+∞

1/2 et donc que (un) ∈ C et que C(u) = 1/2.

(M2) Avec la formule sur les sommes géométriques :

Mn =
1

n

n

∑
k=1

k−1

∑
ℓ=0

(−1)ℓ =
1

n

n

∑
k=1

1 − (−1)k

1 + 1

=
1

n

n

∑
k=1

1

2
−

1

2n

n

∑
k=1

(−1)k

=
1

2
−

1

2n

1 − (−1)n+1

2

=
1

2
−

1

4n
+
(−1)n+1

4n
Ð→

n→+∞

1

2

Q 3) On note encore Mn =
1
n

n

∑
k=1

Uk, on distingue le comportement de M3n,M3n+1 et M3n+2.

En effet Uk = 1 si k ≡ 1 [3], Uk = 0 si k ≡ 2 ou k ≡ 0 [3].

Donc si n ≡ 0 [3], Mn =
1
n
(U1 + ⋯ + Un) se découpe parfaitement en n/3 paquets de trois

termes consécutifs qui valent 1 donc Mn = 1/n.(n/3) = 1/3.

Si n ≡ 1 [3], n = 3p + 1 et M3p+1 =
1

3p+1
(U1 +⋯ +U3p +U3p+1) =

1
3p+1

.(p + 1) Ð→
p→+∞

1/3.

De même M3p+2 =
1

3p+2
.(p + 1) Ð→

p→+∞
1/3.

La convergence de ces trois suites extraites vers la même limite montre que u ∈ C et que
C(u) = 1/3.

Q 4) Comme les Ui sont positifs, on sait que

U1 + ⋅ ⋅ ⋅ +U2n

2n
≥
Un+1 + ⋅ ⋅ ⋅ +U2n

2n
(1)

Comme les ui sont positifs, la suite (Ui) est croissante donc

Un+1 + ⋅ ⋅ ⋅ +U2n

2n
≥
nUn+1

2n
=
Un+1

2
(2)

Avec (1) et (2) on a M2n ≥
Un+1

2
et donc par minoration M2n Ð→

n→+∞
+∞ ce qui prouve que

la série n’est pas convergente au sens de Cesàro.

Remarque : si on ne suit pas l’indication proposée par l’énoncé, on peut aussi utiliser le
théorème de Cesaro pour les suites qui tendent vers +∞. Comme Un Ð→

n→+∞
+∞, ce théorème

dit directement que Mn Ð→
n→+∞

+∞.
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Q 5) a) Soit ℓ la limite de (Un)n∈N au sens de Cesàro, c’est-à-dire la limite de la suite (Mn)n∈N
des moyennes de Cesàro. Alors, il existe une suite (εn)n∈N de limite nulle telle que pour tout
n ∈ N :

Mn = ℓ + εn (∗)

Puis, pour n ∈N∗, suivant l’indication, on exprime Un en fonction des moyennes de Cesàro :

nMn = U1 +⋯ +Un

donc nMn − (n − 1)Mn−1 = Un et donc en divisant par n et avec (∗) :

Un

n
=Mn −

n − 1

n
Mn−1 = (ℓ + εn) −

n − 1

n
(ℓ + εn−1)

Un

n
= εn +

ℓ

n
−
n − 1

n
εn−1 Ð→

n→+∞
0

ce qui montre bien que Un = o(n).

b) (i) D’abord vérifions que Hn = o(n).

(M1) On sait (par exemple par encadrement par des intégrales) que Hn ∼
n→+∞

ln(n) donc

Hn = o(n) (cet argument reste moins cher que le D.A. Hn = ln(n) + γ + o(1).

(M2) Avec le théorème de Cesàro : comme 1/k Ð→
n→+∞

0, on sait que 1/n
n

∑
k=1

1/k Ð→
n→+∞

0.

(ii) en notant Mn =
1

n

n

∑
k=1

Hk montrons que Mn Ð→
n→+∞

+∞.

(M1) cohérente avec la (M1) du (i) Par théorème de sommation des équivalents pour

les séries à termes positifs, dans le cas divergent :
n

∑
k=1

Hk ∼
n→+∞

n

∑
k=1

ln(k)

D’autre part, par encadrement par des intégrales,
n

∑
k=1

ln(k) ∼
n→+∞

n ln(n). (refaire ici, cf.

cours).

Donc Mn ∼
n→+∞

ln(n) et Mn Ð→
n→+∞

+∞.

(M2) plus rapide ici Avec la Q5 on sait qu’une série à termes positifs divergente, ce qui
est le cas de la série harmonique, n’est jamais convergente au sens de Cesàro.

c) Pour un = (−1)
n−1n, on a

U2n =
2n−1

∑
k=0

(−1)k−1 k = (−0 + 1) + (−2 + 3) +⋯ + (−(2n − 2) + (2n − 1)) = n

et U2n+1 = U2n + u2n = n − 2n = −n.

On a U2n/(2n) = 1/2 et U2n+1/(2n + 1) Ð→
n→+∞

−1/2. En tous cas (Un/n) ne tend pas vers 0.

Q 6) On considère donc (un) ∈ C et (vn) la suite translatée définie par vn = un+1 pour tout n ≥ 0.

En notant Vn =
n−1

∑
k=0

vk, on a pour tout n ≥ 1, Vn =
n−1

∑
k=0

vk =
n−1

∑
k=0

uk+1 = Un+1 − u0.

Ainsi la n-ième somme de Cesàro de (Vn) s’écrit

1

n

n

∑
k=1

Vk =
1

n

n

∑
k=1

(Uk+1 − u0) = (
1

n

n+1

∑
i=2

Ui) − u0

après avoir séparé la somme en deux et fait un changement d’indice i = k + 1.

On en déduit encore que :

1

n

n

∑
k=1

Vk = (
1

n

n

∑
i=1

Ui) +
Un+1

n
−
U1

n
− u0 (∗)
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Or d’après la question 5) a) si ∑
n≥0

un converge au sens de Cesàro, Un+1/(n + 1) Ð→
n→+∞

0 donc

dans (∗), tous les termes du membre de droite sont convergents.

Cela montre bien qu’alors ∑
n≥0

vn converge au sens de Cesàro et que C(v) = C(u) − u0, ce qui

achève la vérification demandée.

Q 7) a)

U1 +⋯ +Un

n
=

n

∑
i=1

i−1

∑
k=0

uk

n
=

n−1

∑
k=0

n

∑
i=k+1

uk

n
=

n−1

∑
k=0

(n − k)uk

n
=

n−1

∑
k=0

(1 −
k

n
)uk =

n

∑
k=0

(1 −
k

n
)uk

car le terme d’indice k = n est toujours nul. L’égalité ci-dessus donne l’équivalence entre les
deux convergences demandées et l’égalité des limites dans le cas convergent.

b) Avec l’égalité du a), et en séparant la somme du membre de droite en deux, on a :

U1 +⋯ +Un

n
=

n

∑
k=0

uk −
n

∑
k=0

k

n
uk (†)

Alors si ∑
n⩾0

un est convergente au sens usuel, le membre de gauche de (†) est convergent

par théorème de Cesàro, et le premier terme du membre de droite aussi, donc par théorème

d’opération,
n

∑
k=0

k

n
uk converge, ce qui est la conclusion voulue.

c) (i) On reprend l’égalité (†) du b) et encore une fois sur les trois termes qui apparaissent
dans la formule, deux convergent, donc le troisième aussi.

(ii) Avec un = o(1/n), nun Ð→
n→+∞

0 donc par théorème de Cesàro u1+2u2+⋯+nun

n
Ð→

n→+∞
0 et on

est donc ramené aux hypothèses du (i) et la conclusion du (i) s’applique donc ici aussi.

Q 8) Notons pour tout N ∈ N∗, SN(U) =
1

2N

N

∑
n=1

(
N

n
)Un .

Alors l’application S ∶ U ↦ (SN(U))N∈N est linéaire et pour une suite W telle que ∀n ∈ N∗,

Wn = ℓ, on a SN(W ) =
ℓ

2N

N

∑
n=1

(
N

n
) =

ℓ.(2N − 1)

2N
Ð→
N→∞

ℓ.

Pour une suite (Un) quelconque qui converge vers une limite ℓ ∈ C, en posant pour tout n ∈ N,
Vn ∶= Un − ℓ, on a pour tout N , SN(V ) = SN(U) − SN(W ) et comme SN(W ) Ð→

N→∞
ℓ, il est

équivalent de montrer que SN(U) Ð→
N→∞

ℓ ou que SN(V ) Ð→
N→∞

0.

On considère donc désormais la suite (Vn) qui tend vers 0.

Soient ε > 0 et M un majorant de (∣Vn∣)n∈N′ . Il existe un entier N1 ∈ N
∗ tel que, pour tout

entier n ⩾ N1, on ait ∣Vn∣ ⩽ ε, d’où pour N ⩾ N1 l’encadrement :

∣SN(V )∣ ∶= ∣
1

2N

N

∑
n=1

(
N

n
)Vn∣ ⩽

1

2N

N1−1

∑
n=0

(
N

n
) ∣Vn∣ +

1

2N

N

∑
n=N1

(
N

n
) ∣Vn∣

⩽M ×
1

2N

N1−1

∑
n=1

(
N

n
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=P1(N)

+ ε ×
1

2N

N

∑
n=N1

(
N

n
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶P2(N)

La deuxième somme P2(N) est majorée par ε puisque les coefficients sont positifs (on peut
ainsi majorer et compléter le binôme). En revanche, la première somme P1(N) pose un
problème de croissances comparées. On le résout en remarquant que l’entier N1 étant fixé, le
numérateur de P1(N) est un polynôme de degré au plus N1 en N : il est donc négligeable à
l’infini devant 2N . Il existe donc un entier N2 > N1 tel que pour tout entier N ⩾ N2 on ait
P1(N) ⩽ ε, et la conclusion suit puisque l’on a alors

∀N ∈N, N ⩾ N2 ⇒ ∣SN(V )∣ ⩽ 2ε.
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Q 9) a) Soit E = CN. Pour T ∈ L (E) et N ∈ N∗, on a, par télescopage, la formule des sommes
géométriques :

(id−T ) ○ (
N−1

∑
n=0

Tn
) = id−TN

En appliquant cette formule à T =
id+τ

2
, alors id−T =

id−τ

2
et en échangeant les signes, la

formule devient :

τ − id

2
○
N−1

∑
n=0

(id+τ)n

2n
=

1

2N
((id+τ)N − 2N id) (∗)

Or par la formule du binôme dans L (E) avec id et τ qui commutent, on sait que :

(id+τ)N =
N

∑
n=0

(
N

n
)τn

En écrivant 2N =
N

∑
n=0

(
N

n
) on peut alors écrire :

((id+τ)N − 2N id) =
N

∑
n=0

(
N

n
)(τn − id) =

N

∑
n=1

(
N

n
)(τn − id)

puisque τ0 = id.

Ainsi (∗) devient :

τ − id

2
○
N−1

∑
n=0

(id+τ)n

2n
=

1

2N

N

∑
n=1

(
N

n
)(τn − id)

et en réappliquant la formule sur les sommes géométriques : (τn−id) = (τ−id)○(id+τ+⋯+τn−1)
on obtient :

τ − id

2
○
N−1

∑
n=0

(id+τ)n

2n
= (τ − id) ○

1

2N

N

∑
n=1

(
N

n
)(id+τ +⋯ + τn−1)

b) (i) Par définition, pour u ∈ CN et v = (τ − id)(u), on a ∀n ∈ N, vn = un+1 − un.

Soit v ∈ CN quelconque, on cherche à définir u ∈ CN telle que ∀n ∈ N, vn = un+1 − un.

On choisit u0 = 0, alors on veut v0 = u1−u0 donc u1 = v0, puis v1 = u2−u1 donc u2 = v1+u1 =

v1 + v0.

En fait en posant u0 = 0 et pour tout n ∈ N∗, un = ∑
n−1
k=0 vk, on a bien pour tout n ∈ N,

un+1 − un = vn.

(ii) Le fait que ∆ ∶= τ − id (notation de la suite du sujet) soit surjective va permettre ≪ sim-
plifier ≫ par τ − id dans la formule du a).

En effet d’une manière générale :

Lemme : si f, g, h sont trois applications d’un ensemble E dans lui-même telles que g○f = h○f
et que f est surjective alors g = h.

Application du lemme :

avec f = τ − id la formule du a) ne semble pas être ≪ dans le bon sens ≫, car elle s’écrit plutôt
f ○ g = f ○ h ! Mais ici toutes ces applications linéaires commutent (ce sont des polynômes en
τ) donc la formule du a) s’écrit aussi :

(
N−1

∑
n=0

(id+τ)n

2n
) ○ (τ − id) =

1

2N−1
(

N

∑
n=1

(
N

n
)(id+τ +⋯ + τn−1)) ○ (τ − id)

et là on peut bien simplifier à droite par τ − id pour obtenir la formule demandée.
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Démonstration du lemme : Soit x ∈ E. On veut montrer que g(x) = h(x).

Or comme f est surjective, on a un y ∈ E tel que x = f(y) et on sait que g(f(y)) = h(f(y)).
Donc g(x) = h(x).

c) Par la formule du binôme dans l’algèbre L (CN) avec id et τ qui commutent, on sait que :

(id+τ)n =
n

∑
k=0

(
n

k
)τk

En appliquant cette formule à une suite u = (un) et en considérant l’égalité des termes d’indice
0, on obtient :

((id+τ)nu)0 =
n

∑
k=0

(
n

k
)uk,

puisque (τku)0 = uk pour tout k ∈ N. Donc par définition, pour tout n ∈ N,

ũn =
1

2n+1
((id+τ)nu)0

Donc en ajoutant ces égalités :

N−1

∑
n=0

ũn = (
N−1

∑
n=0

(id+τ)n

2n+1
u)

0

D’après la formule du b) (multipliée par 1
2
), on en déduit que :

N−1

∑
n=0

ũn =
1

2N
(

N

∑
n=1

(
N

n
)(id+τ +⋯ + τn−1)u)

0

,

=
1

2N

N

∑
n=1

(
N

n
)((id+τ +⋯ + τn−1)u)

0
,

=
1

2N

N

∑
n=1

(
N

n
)Un

d) L’égalité du c) montre que la convergence au sens d’Euler de la série (∑
n≥0

un) est bien

équivalente à la convergence au sens usuel de (∑
n⩾0

ũn).

Elle montre aussi, en cas de convergence au sens d’Euler, que :

+∞

∑
n=0

ũn = E
+∞
n=0un.

Dans le cas où en outre la série (∑
n⩾0

un) converge au sens usuel, on sait alors par l’axiome de

prolongement vérifié par E (cf. Q8) que :

+∞

∑
n=0

ũn =
+∞

∑
n=0

un

ce qui, par la définition de ũ donne :

+∞

∑
n=0

1

2n+1

n

∑
k=0

(
n

k
)uk =

+∞

∑
n=0

un

Q 10) (a) (i) On sait (série géométrique de raison (−z)) que ∑(−z)
n est convergente au sens usuel

si, et seulement si, ∣z∣ < 1.

Et dans ce cas, sa somme vaut
1

1 + z
.
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(ii) En revanche pour la convergence au sens d’Euler, on considère la série (∑
n≥0

En) où :

En =
1

2n+1

n

∑
k=0

(
n

k
)uk =

1

2n+1

n

∑
k=0

(
n

k
)(−z)k =

(1 − z)n

2n+1
=
1

2
(
1 − z

2
)

n

On a encore une série géométrique : donc on sait que ∑
n⩾0

En converge au sens usuel si, et

seulement si, ∣
1 − z

2
∣ < 1 donc ssi z ∈Do(1,2) (disque ouvert de centre 1 et de rayon 2).

(Remarquons que Do(1,2) contient bien Do(0,1) qui lui est tangent intérieurement en 0 :
c’est nécessaire puisque la convergence usuelle entrâıne la convergence au sens d’Euler).

Pour z ∈D(1,2), E(u) =
1

2
⋅

1

1 − 1−z
2

=
1

1 + z
(ce qui donne la même formule qu’au (i)).

b) Par ce qui précède, la question équivaut à montrer que (∑
n⩾0

ũn) est divergente au sens

usuel, où ici :

ũn =
1

2n+1

n

∑
k=0

(
n

k
)uk =

1

2n+1

n

∑
k=0

(
n

k
)

1

k + 1

On utilise alors la formule dite ≪ du capitaine ≫ (qui n’est rien d’autre que la relation de

récurrence ici explicite entre les deux binomiaux ) : (
n

k
)

1

k + 1
= (

n + 1

k + 1
)

1

n + 1
.

Alors :

ũn =
1

2n+1

n

∑
k=0

(
n + 1

k + 1
)

1

n + 1
=

1

(n + 1)2n+1

n+1

∑
i=1

(
n + 1

i
) =

2n+1 − 1

(n + 1)2n+1
=

1

n + 1
−

1

(n + 1)2n+1

Comme (
1

(n + 1)2n+1
) est terme général de série convergente alors que (1/(n + 1)) est terme

général de série divergente, on conclut que par somme, (ũn) est aussi terme général de série
divergente.

Ainsi la série harmonique diverge au sens d’Euler.

Q 11) Avec les notations de la définition 2, on suppose que (∑
n⩾0

un) est Euler-convergente et on

veut montrer que(∑
n⩾0

vn) est aussi Euler convergente, de même somme au sens d’Euler, où

vn = un+1 pour tout n ∈ N.
Or Vn = u1 +⋯ + un = un +Un − u0.

Donc en sommant ces égalités, et compte-tenu toujours du fait que
N

∑
n=1

(
N

n
) = 2N − 1, on a :

SN(V ) =
1

2N

N

∑
n=1

(
N

n
)Vn =

1

2N

N

∑
n=1

(
N

n
)un

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=wN

+SN(U) −
1

2N
(2N − 1)u0 (∗)

Or dans le second membre de (∗), on remarque que wN =
1

2N

N

∑
n=1

(
N

n
)un = 2(ũN −

u0

2N+1
)

Et par le théorème de E-convergence de la Q9 d), on sait que l’hypothèse d’Euler convergence
de (∑

n≥0

un) entrâıne que ũN Ð→
N→+∞

0.

Ainsi ici wN Ð→
N→+∞

0, ce qui avec (∗) prouve la convergence de SN(V ) et par passage à la

limite on a bien l’égalité E(v) = E(u) − u0.

La sommation d’Euler est donc bien stable par translation.

Q 12) Comme ∆n = (τ − id)n et que τ et id commutent, d’après la formule du binôme dans l’anneau
(L (CN),+, ○) on a :

∆n
=

n

∑
k=0

(
n

k
)(−1)n−kτk
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En appliquant cette formule à une suite w et en évaluant en 0, on a bien

(∆nw)0 =
n

∑
k=0

(
n

k
)(−1)n−k(τkw)0 =

n

∑
k=0

(
n

k
)(−1)n−kwk.

Q 13) Par théorème du produit de Cauchy, pour les séries absolument convergentes, on sait donc
que :

e−x.(
+∞

∑
n=0

wn
xn

n!
) = (

+∞

∑
m=0

(−1)mxm

m!
)(
+∞

∑
n=0

wn
xn

n!
)

=
+∞

∑
n=0

cn (∗)

où pour tout n ∈ N, cn =
n

∑
k=0

(−1)n−kxn−k

(n − k)!
.wk

xk

k!
=

n

∑
k=0

(−1)n−k(
n

k
)
xn

n!
wk

Et d’après la question précédente, on a bien cn = (∆
nw)0

xn

n!
ce qui dans (∗) donne la

conclusion.

Q 14) Il suffit d’appliquer le théorème de E-convergence de la Q 9) avec la formule de la question
précédente.

En effet le théorème de E-convergence dit que ∑
n⩾0

(−1)nwn est convergente au sens d’Euler si,

et seulement si,∑
n⩾0

1

2n+1

n

∑
k=0

(
n

k
)(−1)kwk converge au sens usuel donc ssi ∑

n⩾0

(−1)n

2n+1

n

∑
k=0

(
n

k
)(−1)n−kwk

converge au sens usuel donc ssi par la Q12, ∑
n⩾0

(−1)n

2n+1
(∆nw)0 converge au sens usuel ce qui

est exactement la question posée, l’égalité des sommes étant alors donnée par la seconde
partie du même théorème.

Q 15) a) Notons RN = ∑
∞
n=N(−1)

n 1
2n+1

En groupant les termes par paquets de deux, ce qui est possible dans une série à signe variable
dont le terme général tend vers zéro, on peut écrire :

RN = (−1)
N
[(

1

2N + 1
−

1

2N + 3
) + (

1

2N + 5
−

1

2N + 7
+⋯]

où toutes les parenthèses contiennent un nombre positif.

Donc ∣RN ∣ = [(
1

2N + 1
−

1

2N + 3
) + (

1

2N + 5
−

1

2N + 7
+⋯] ≥

1

2N + 1
−

1

2N + 3
Enfin en posant f(x) = 1/(2x + 1) par T.A.F. f(N) − f(N + 1) = −f ′(c) avec c ∈]N,N + 1[

Donc
1

2N + 1
−

1

2N + 3
=

2

(2c + 1)2
≥

2

(2N + 1)2
.

D’où la conclusion ∣RN ∣ ≥
a

(N + b)2
.

N.B. A la place du groupement des termes par deux, qu’on a ici utilisé très grossièrement
en ne gardant que le premier paquet, on peut aussi utiliser l’écriture intégrale de RN avec la
même méthode qu’au b) ci-dessous au départ.

b) Posons

wn =
1

2n + 1
= ∫

1

0
t2n dt (∗)

On sait par Q12 que :

(∆nw)0 =
n

∑
k=0

(−1)n−k(
n

k
)wk.
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Donc avec (∗) :

(∆nw)0 =
n

∑
k=0

(−1)n−k(
n

k
)∫

1

0
t2k dt = ∫

1

0

n

∑
k=0

(−1)n−k(
n

k
)t2k dt.

Par la formule du binôme :

n

∑
k=0

(−1)n−k(
n

k
)t2k = (t2 − 1)n.

et donc :

(∆nw)0 = ∫
1

0
(t2 − 1)n dt =∶ In,

c) Comme rappelé en préambule à cette Q15, grâce à la Q14, on sait qu’en cas de convergence
du membre de gauche, on a :

+∞

∑
n=0

(−1)nwn =
+∞

∑
n=0

(−1)n

2n+1
(∆nw)0

Donc ici avec la convergence vers π/4 et l’égalité du b),

π

4
=
+∞

∑
n=0

(−1)n

2n+1
In

comme demandé.

Notons maintenant :

RN ∶=
∞

∑
n=N

(−1)nIn
2n+1

.

Comme pour tout n ∈ N,

(−1)nIn = (−1)
n
∫

1

0
(t2 − 1)n dt = ∫

1

0
(1 − t2)n dt ≥ 0.

on en déduit que : RN ≥ 0.

Par ailleurs (1 − t2)n ≤ 1 sur [0,1], donc (−1)nIn ≤ 1. D’où

0 ≤ RN ≤
∞

∑
n=N

1

2n+1
=

1

2N
.

Cela prouve les inégalités demandées :

0 ≤
∞

∑
n=N

(−1)nIn
2n+1

≤
1

2N
, ∀N ≥ 1.
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