MP Samedi 27 Septembre 2025

DEVOIR SURVEILLE 1 : SOLUTION

EXERCICE
a) Cf cours : ne pas oublier d’initialiser la récurrence. Si vous initialiser pour n = 2, la propriété
sera montrée pour tout n > 2.
b) (i) Avec I =[1,n]? on a :

M, (C)

Vect(Ei’j, (Zj) € I}

= Vect(Eij, (4,5) € U I}
k=1

VeCt(Ei,j7 (Zv.j) € Ik}
Ex

T
k=1
T
k=1

Reste a montrer que la somme est directe
(M1) Avec le critére de concaténation des bases : on sait que la somme des &, est directe
si, et seulement si concaténation des bases (Ej ;) (; jyer, des & est libre, or cette concaténation ici

donne la famille des (Ej ;) ; jyes entiere sans répétition puisque I'union des .J;, est disjointe. Donc

cette famille est libre. i

(M2) Avec le critére sur la somme des dimensions : il suffit de montrer que Z dim &, =
k=1

n2

Or comme la famille des (Ej ;). jye[1,n]2 est libre, pour chaque &, dim & = Card(Jy).

Et comme [I}_; J = [1,n]?, on sait que ). Card(J;) = n?.
T T k=l
On conclut bien que ) dimé&j, = ) Card(Ji) = n?.
k=1 k=1
(M3) Avec les sommes de vecteurs donnant le vecteur nul :

T
Soit (A1,...,A;) €& x---x &, tels que Z A, =0.
k=1
Pour chaque k =1,...,r il existe ay; ; pour (i,7) € Ji tels que Ay = Z agiiEi ;.

(4,5)eJk
I

T
Alors Z Ak = Z Z ak7i7jE7;7j =0.
k=1 k=1 (i,5)eJy
Mais dans cette somme chaque terme est un vecteur E; ; distincts de la base canonique, donc
tous les coefficients ay; ; sont nuls et donc tous les Ay sont nuls. Ce qui prouve que la somme est
directe.
(Non Méthode!) Graou :

[NON LES INTERSECTIONS DEUX a DEUX de & NE SUFFISENT PAS! !]

c) (i) Soit E = C™ et f : E - E l'endomorphisme canoniquement associé & B. En notant
(e1,--.,€n) la base canonique. On convient pour tout 7 € Z de noter e; = €;9,, ot i%n désigne
le reste de la division euclidienne de i par n. Autrement dit on prolonge la famille (e;) par n
périodicité : eg = e, et e,,1 =e1. et aussi e_1 = e,_1 etc...

Alors par définition de f pour tout j € [1,n], f(e;) =e€;-1.

Mais alors pour tout k € N, et tout j € [1,n], f¥(e;) = €.

Matriciellement en prolongeant aussi les deux indices par n périodicité, pour tout (i,7), on a
(B*)ij = 8i,j-k-



0 0 1 0 0

0 1 0

: 0

Ainsi pour k€ [1,n] B¥=|0 1
1 0

o ... 1.0 ... ... 0

ol,e 1 de la premiere ligne se situe colonne k + 1 et le 1 de la premiere colonne est a la ligne
l1-k=n+1-k[n].

[En pensant géométriquement i.e. & ’endomorphisme, on voit la bijectivité !j

Cela évite les erreurs des personnes qui n’ont pas percu la diagonale du bas et on pensait que la
matrice était nilpotente.

Une fagon plus agréable d’écrire la matrice : par blocs Vk € [0,n], Bk = (2C I%—k)
(ii) Notons D = diag(dy,...,d,) avec d; € M,,(C).

Alors pour toute matrice M € M, (C), et tout (4,5) € [1,n]?, DM (i, j) = dym;;

Soit k € [0,n — 1]. On sait déja par le a) que B* € &y.

On veut montrer que si (DB*)(i,5) # 0 alors B*(i, ) # 0, ce qui montrera bien que DB* € &.

Mais c’est évident puisque (DB*)(i, ) = d; B* (i, 5).

(iii) Comme la famille est formée de n? éléments de M,, (K) et qu’on sait que dim (M, (K)) = n?,
il sufffit de montrer qu’elle est libre.

Soit (/\k,f)(kl)sﬂo,n—l]]Q telle que Z )\thkBe =0 (>(-)

(k,2)e[0,n-1]2

Avec le b), comme la famille des Jy = {(i,) € [1,n]?, i=j - ¢} pour £=0,1,...,n—1 est une

partition de [1,n]?, on sait que M, (K) = @}, &.

n-1
Or avec le (ii) pour chaque £=0,1,...,n—-1, Z )\k’lAsz €&y.
=0

Donc par caractérisation de la somme directe, on déduit de (*) que pour tout £=0,...,n-1,

n-1
Z )\kJAkBZ =0 (x**)
=0

n-1
Or comme B est inversible (d’inverse B"!) on en déduit que Z )\;MAI" =0.
k=0
n-1 .
Or cette condition s’écrit pour chaque j=0,...,n—1, Z )\k,g.wjk =0.
k=0

On peut, pour chaque £ € [0,n — 1] réécrire ces conditions sous la forme :

1 1 ... 1 Ao,e 0
1 w .. Wl Al :
wn—l (wn—l)Q o (wnfl)n—l )\n—l,f 0

2 ...,w" ) dont le déterminant est non

On reconnait la matrice de Vandermonde de (1,w,w
nul puisque ces n nombres complexes sont distincts.

On conclut pour chaque £ € [0,n - 1], et chaque k € [0,n - 1], Ak ¢ = 0. La famille est bien libre.

PROBLEME

Q 1) (i) Le théoreme de Cesaro (au programme, et aussi conséquence immédiate du théoreme de
sommation des relation de comparaisons) dit que (E,C) vérifie Paxiome de prolongement :

n—1
en effet siueC, ona U, — [(eC etlethéoreme de Cesaro dit alors que — Z U, — /.
n—+00 n 5=0 n—+00

Ainsi, on a montré que C c C’



Q2)

Q 3)

Q4)

(ii) Montrons que C’ est un s.e.v. de CY : o on sait déja que C’' 5 C, donc C’ est non vide,

n—1 n-1
esiuu €l et U, =) uyet U, =) uj tendent respectivement vers ¢ et ¢ dans C, alors
k=0 k=0

n-1
pour tout A€ C, on a Y (Auy +uy) = AU, + U,,.
k=0
1 "= 1
Et — Z()\Uk Up) = )\ ZUk+f Z U, — )\£+€ ce qui montre bien que Au+u’ €C’ ce

ngo et
qui montre bien que C’ est un s.e.v. de CY
(iii) En outre le passage a la limite dans la derniere égalité du (ii) dit que C(Au+u') =
AC(u) + C(u") ce qui montre que 'application C' est linéaire.

1 sinest impai
(M1) Pour u, =(-1)",ona U, = 1 ' p .
0 sin est pair

Donc en notant M,, = % Z Uk, sin =2p est pair M,, = 1/nxnf/2=1/2 et sin=2p+1 est
k=1
impair, Mape1 =1/(2p+1) x (p+1) — 1/2.
p—>+oo
Ceci montre que M,, — 1/2 et donc que (u,) € C et que C(u) =1/2.
n—>+oo

(M2) Avec la formule sur les sommes géométriques :

12 k—l 1 no1— ( 1)14:
nEa e:o o k=1 +
1&1

L e,
njz12 on k=1

~ 1 i 1= (_1)n+1

2 2 2

IR N (-1)+t 1

2 4 4n notoo 2

On note encore M,, = Z , on distingue le comportement de Ms,,, M3,.1 et Mszy,42.
k:

Eneffet U, =1sik=1[3],Ur=0sik=20uk=0[3]

Donc si n =0 [3], M,, = (Uy + -+ Uy) se découpe parfaitement en n/3 paquets de trois
termes consécutifs qui valent 1 donc M, = 1/n (n/3)=1/3.

Sin=1[3],n=3p+1et Mapi1 = 53 (Ur+-+Usp + Usps) = 5550 + 1) — 1/

De méme Msp.o = D+ 1) - 1/3

3p+2 (
La convergence de ces trois sultes extraites vers la méme limite montre que u € C et que
C(u)=1/3.

Comme les U; sont positifs, on sait que

U1+"'+U2n Un+1+"'+U2n

> 1
2n 2n (1)

Comme les u; sont positifs, la suite (U;) est croissante donc

Un+1 teet U2n nUn+1 Un+1

> = 2
2n 2n 2 (2)

U, . . .
Avec (1) et (2) on a My, > T;l et donc par minoration M,, — +o0o ce qui prouve que

n—+oo

la série n’est pas convergente au sens de Cesaro.
Remarque : si on ne suit pas 'indication proposée par ’énoncé, on peut aussi utiliser le
théoreme de Cesaro pour les suites qui tendent vers +oco. Comme U,, —> +o00, ce théoreme

n—+oo

dit directement que M,, — +oo.

n—>+oco



Q 5) a) Soit ¢ la limite de (Uy,),, au sens de Cesaro, c’est-a-dire la limite de la suite (M), N

Q 6)

des moyennes de Cesaro. Alors, il existe une suite (e,,),,. de limite nulle telle que pour tout
neN:
M, =C+e, (*)

Puis, pour n € N*, suivant 'indication, on exprime U, en fonction des moyennes de Cesaro :
nM, =U; +--+U,

donc nM,, - (n—1)M,,_1 = U, et donc en divisant par n et avec (*) :

; -1 -1
Un pgym " rre) - P (0 e )
n n n

U, { n-1

— =Egpt—~— En-1 — 0

n n n—+oo

ce qui montre bien que U, = o(n).

b) (i) D’abord vérifions que H,, = o(n).

(M1) On sait (par exemple par encadrement par des intégrales) que H, ~ In(n) donc
n—>+00

H,, =o(n) (cet argument reste moins cher que le D.A. H,, =In(n) +v + o(1).

(M2) Avec le théoreme de Cesaro : comme 1/k - 0, on sait que 1/n » 1/k — 0.

k=1 n—>+oo

1 n

(ii) en notant M, = — Z Hy, montrons que M,, — +oo.

n -] n—+oo

(M1) cohérente avec la (M1) du (i) Par théoréeme de sommation des équivalents pour
n

n
les séries a termes positifs, dans le cas divergent : Z H, ~ Z In(k)
s A Y

n

D’autre part, par encadrement par des intégrales, Z In(k) ~ nln(n). (refaire ici, cf.
k:l n—+oo

cours).

Donc M,, ~ In(n)et M,, — +oo.
n—+o0o n—>+oo
(M2) plus rapide ici Avec la Q5 on sait qu’une série & termes positifs divergente, ce qui
est le cas de la série harmonique, n’est jamais convergente au sens de Cesaro.
¢) Pour u, = (-1)""1n, on a
2n-1
U=y (-1)" T k=(-0+1)+(-2+3) + -+ (-(2n-2) + (2n-1)) =n
k=0
et Uspi1 = Usp + Uz =n—2n = -n.
On a U, /(2n) =1/2 et Uzps1/(2n+1) — -1/2. En tous cas (U,/n) ne tend pas vers 0.

n—+o0o

On considere donc (u,,) € C et (v,) la suite translatée définie par v, = u,4+1 pour tout n > 0.

n-1 n-1 n-1
En notant V,, = Z v, on a pour tout n>1, V, = Z Vg = Z Ugr1 = Uny1 — Ug-
k=0 k=0 k=0

Ainsi la n-ieme somme de Cesaro de (V) s’écrit
1iV 1i(U ) (1%1[])
- k= K+l —Uo) = | — i | —uo
=1 = ni=2

apres avoir séparé la somme en deux et fait un changement d’indice ¢ = k + 1.
On en déduit encore que :



Q7)

Or d’apres la question 5) a) si Z uy, converge au sens de Cesaro, Up,1/(n + 1) — 0 donc
n>0 too
dans (*), tous les termes du membre de droite sont convergents.

Cela montre bien qualors Y v,, converge au sens de Cesaro et que C(v) = C(u) - ug, ce qui
n>0
acheve la vérification demandée.

2)

n i—-1 n-1 n n-1
” u n-k)u
U1+-~~+Un_i;k:o k_kZ::Oi:%rl k_kz:%( )k_n11 1
n o oon n - n Z( _7)uk_z( _7)uk

car le terme d’indice k = n est toujours nul. L’égalité ci-dessus donne 1’équivalence entre les
deux convergences demandées et 1’égalité des limites dans le cas convergent.
b) Avec I'égalité du a), et en séparant la somme du membre de droite en deux, on a :

e 3 tue (0)

k=0

Ui +

Alors si Z u, est convergente au sens usuel, le membre de gauche de () est convergent
n>0

par théoreme de Cesaro, et le premier terme du membre de droite aussi, donc par théoreme
n

d’opération, Z —uy, converge, ce qui est la conclusion voulue.
n
k=0
c¢) (i) On reprend ’égalité (1) du b) et encore une fois sur les trois termes qui apparaissent
dans la formule, deux convergent, donc le troisieme aussi.

U +2Ug++NUy
n

—> (O et on

n—>+00

(ii) Avec u, = o(1/n), nu, — 0 donc par théoréme de Ceséaro
n—+oo

est donc ramené aux hypotheses du () et la conclusion du (i) s’applique donc ici aussi.

Notons pour tout N e N*, Sy (U) = Z ( )

Alors Papplication S : U ~ (SN(U))NeN est lindaire et pour une suite W telle que Vn € N*,
W, =, on a Sy(W) ¢ %(N) L@ -1) ‘
= n = —_— = > .
n ) N 2N = n

2N N—>oo
Pour une suite (U, ) quelconque qui converge vers une limite £ € C, en posant pour tout n € N,
Vi :=U, — £, on a pour tout N, Sy(V) = Sy(U) - Sy (W) et comme Sy (W) e £, 1l est
équivalent de montrer que Sy (U) e ¢ ou que Sy (V) e 0.

On considére donc désormais la suite (V) qui tend vers 0.
Soient € > 0 et M un majorant de (|V,]),,cn- 1l existe un entier Ny € N* tel que, pour tout
entier n > Ny, on ait |V;,| < e, d’ott pour N > N; Pencadrement :

w5 (Ml <ae 5 ()t g 5 (Ve

n=0 n=N1

Ni-1 N
<Mx = (N)+5XL (N)
n

ISn(V)] ==

La deuxiéme somme P5(N) est majorée par £ puisque les coefficients sont positifs (on peut
ainsi majorer et compléter le bindme). En revanche, la premiére somme P;(N) pose un
probléeme de croissances comparées. On le résout en remarquant que l'entier Ny étant fixé, le
numérateur de P;(N) est un polynéme de degré au plus N1 en N : il est donc négligeable a
linfini devant 2V. 1l existe donc un entier Ny > Ny tel que pour tout entier N > N5 on ait
Pi(N) <¢, et la conclusion suit puisque l'on a alors

VNeN, NzNy;=|Sn(V)|<2



Q 9) a) Soit £ = CN. Pour T ¢ Z(F) et N € N*, on a, par télescopage, la formule des sommes
géométriques :

(id-T) o (Nf ") =id -7V
n=0

+7 id-7

id
En appliquant cette formule & T' = ! , alors id =T =

et en échangeant les signes, la

formule devient :

r—id NI (id+m)" 1
[0 =

2

5 . o Z—N((id+7)N—2Nid) (%)

Or par la formule du binéme dans .Z(F) avec id et 7 qui commutent, on sait que :
N (N

(id +T)N = Z ( )'r"

n=0 \T

N (N
En écrivant 2V = Z ( ) on peut alors écrire :
n=0 \ 1

((Gd+7)™ -2Vid)

1}
™
—
3 =
g
\‘

3
|
E
I
M=

(e

puisque 7° =id.
Ainsi (*) devient :

r—id L (id+) 1 X (N
= —_— n - .d
5 °L o 2NnZ=:1(n)(T i)
et en réappliquant la formule sur les sommes géométriques : (7" —id) = (7—id)o(id +7+---+7""1)
on obtient :
r—id NZb(id+7)"
— o0

2

. 1 XNy, _
= (r-id)o > ( )(1d+7’+---+7’" 1)
2 n=0 2n 2 n=1\1N
b) (i) Par définition, pour u e CY et v = (7 —id)(u), on a Yn e N, v, = U1 — Un,.
Soit v € CV quelconque, on cherche & définir u € CY telle que Yn e N, v, = Uni1 — Un.
On choisit ug = 0, alors on veut vy = uy —ug donc uy = vg, Puis vy = Ug—u1 doNc Ug = V1 + Uy =
vy + Up.
En fait en posant ug = 0 et pour tout n € N*, u, = ZZ;& vk, on a bien pour tout n € N,
Upy1 — Up = Vp.
(ii) Le fait que A := 7 —id (notation de la suite du sujet) soit surjective va permettre « sim-
plifier » par 7 —id dans la formule du a).
En effet d’une maniere générale :

Lemme : si f, g, h sont trois applications d’un ensemble F dans lui-méme telles que gof = hof
et que f est surjective alors g = h.

Application du lemme :

avec f =7 —1d la formule du a) ne semble pas étre « dans le bon sens », car elle s’écrit plutot
fog=foh! Mais ici toutes ces applications linéaires commutent (ce sont des polynémes en
7) donc la formule du a) s’écrit aussi :

(Nz_l(id;)n) o(r-id) = 2N1_1 (]EV: (JZ) (id+7+...+Tn1)) o (7 —id)

n=0 n=1

et 14 on peut bien simplifier a droite par 7 —id pour obtenir la formule demandée.



Démonstration du lemme : Soit x € E. On veut montrer que g(x) = h(z).

Or comme f est surjective, on a un y € E tel que x = f(y) et on sait que g(f(v)) = h(f(y)).
Donc g(x) = h(zx). O
¢) Par la formule du binéme dans I'algebre .2 (CY) avec id et 7 qui commutent, on sait que :

(id+7)" = i (Z)Tk

k=0

En appliquant cette formule & une suite u = (uy,) et en considérant I’égalité des termes d’indice
0, on obtient :

(s o= 3 (7 )

k=0

puisque (7%u)g = up pour tout k € N. Donc par définition, pour tout n € N,

~ . n
Un = oy ((id+7)"u)o

Donc en ajoutant ces égalités :

D’apres la formule du b) (multipliée par %), on en déduit que :

Ny .. n—
(n)(1d+7+ et T 1)u)o,

= QLN % (]X) ((d+7+-+7"Nu),
1

N—1~ 1 N
DEARED
n=0

n=1

[u

n=

_ %(Z)Un

n=1

[\)

d) L’égalité du ¢) montre que la convergence au sens d’Euler de la série () u,) est bien
n>0
équivalente & la convergence au sens usuel de ( Z Up).
n20

Elle montre aussi, en cas de convergence au sens d’Euler, que :
+o00

~ +00
Z Up = B, 2gun,.
n=0

Dans le cas ol en outre la série ( Z u,) converge au sens usuel, on sait alors par axiome de

n>0

prolongement vérifié par E (cf. Q8) que :
+00 +0o
2. o =) tn
n=0 n=0
ce qui, par la définition de & donne :

1

+00 noin +00o
> gt 2o () = 35 n
n=0 2 k=0 k n=0

Q 10) (a) (i) On sait (série géométrique de raison (-z)) que Y (-z)" est convergente au sens usuel
si, et seulement si, |z| < 1.

Et dans ce cas, sa somme vaut .
+z



Q11)

Q 12)

(ii) En revanche pour la convergence au sens d’Euler, on considére la série (Z E,) ou:
n>0

1 & (n 1 & (n (1-2)" 1(1-z\"
En = = —_— — k = — = = ( )
gn+l ,;0(1@)“’“ gn+l ;)(k)( TR

On a encore une série géométrique : donc on sait que Z E,, converge au sens usuel si, et
nz0

seulement si,

1-
TZ‘ <1 done ssi z € D,(1,2) (disque ouvert de centre 1 et de rayon 2).

(Remarquons que D,(1,2) contient bien D,(0,1) qui lui est tangent intérieurement en 0 :
c’est nécessaire puisque la convergence usuelle entraine la convergence au sens d’Euler).

1 1
Pour z € D(1,2), E(u) = 5 T =" 11 (ce qui donne la méme formule qu’au (i)).
+z
b) Par ce qui précede, la questlon équivaut a montrer que (Z u,) est divergente au sens

n>0

tn = gna Z( ) ST ,;)( )k;+1

On utilise alors la formule dite « du capitaine » (qui n’est rien d’autre que la relation de

usuel, ou ici :

. - - . . n\ 1 n+1) 1
récurrence ici explicite entre les deux binomiaux ) : ( ) = ( )—
EJk+1 \k+1/n+1
Alors :
Z(n+1) 1 1 ’f(rwl)_ 2vt-1 1 1
n = onet k+1)n+1  (n+1)2n+ i ) (n+1)2n*1 n+1  (n+1)2nL

Comme ( ) est terme général de série convergente alors que (1/(n+1)) est terme

1
(n+1)2n+t
général de série divergente, on conclut que par somme, (T, ) est aussi terme général de série
divergente.

Ainsi la série harmonique diverge au sens d’Euler.

Avec les notations de la définition 2, on suppose que (Z uy,) est Buler-convergente et on

nz0
veut montrer que( Z vp,) est aussi Euler convergente, de méme somme au sens d’Euler, ot
n>0
Up = Up41 pour tout n e N.
Or V,, =uqg +-+uy =u, + U, — ug-
N (N
Donc en sommant ces égalités, et compte-tenu toujours du fait que Z (n) =2V _1, ona:
n=1

ENUORE-Do 4 [ORF- oY () IIRENTH R TCARR AN S

=WN

Or dans le second membre de (*), on remarque que wy = o Z: (n )un =2(uy - %)

Et par le théoréme de E-convergence de la Q9 d), on sait que ’hypothese d’Euler convergence

d tral 0 0.
e (T;) u,) entraine que iy ol

Ainsi ici wy NoT 0, ce qui avec (*) prouve la convergence de Sy (V') et par passage a la
—+0o

limite on a bien I'égalité E(v) = E(u) — up.

La sommation d’Euler est donc bien stable par translation.

Comme A" = (7-1d)" et que 7 et id commutent, d’apres la formule du binéme dans ’anneau

(Z(CY),+,0) on a :

38 ()

k=0



En appliquant cette formule & une suite w et en évaluant en 0, on a bien

(A"w)o = (Z)(—l)”_k(rkw)o -y (Z)(-m-kwk

k=0

Q 13) Par théoréeme du produit de Cauchy, pour les séries absolument convergentes, on sait donc
que :

(Ee) - (B 5)ET)

m=0

- Y )
n=0

. ( 1)n k Pk k l’k n _k(n)xn
ou pour tout n €N, ¢, = W — = -1)" —w
P n,;)(nk)' ’“k!kgo()kn!k
x’ﬂ
Et d’aprés la question précédente, on a bien ¢, = (A”w)o—' ce qui dans (*) donne la
n!
conclusion.
Q 14) 1l suffit d’appliquer le théoréeme de E-convergence de la Q 9) avec la formule de la question
précédente.

En effet le théoreme de E-convergence dit que Z (-1)™w, est convergente au sens d’Euler si,
n=0

1)y »
( )( 1)*wy, converge au sens usuel donc ssi Z (2n+)1 ];) (Z)(—l)”_kwk
GN

gn+l
est exactement la question posée, ’égalité des sommes étant alors donnée par la seconde
partie du méme théoreme.

Q 15) a) Notons Ry = Yo n (- 1)n2n+1

En groupant les termes par paquets de deux, ce qui est possible dans une série a signe variable
dont le terme général tend vers zéro, on peut écrire :

n

) 1
et seulement si, Z Jnel Z
n>0 k=0

converge au sens usuel donc ssi par la Q12, Z

(A™w)o converge au sens usuel ce qui

1 1 1 1

Ry = (-1)N - -
= ( )[(2N+1 2N+3)+(2N+5 IN+T

ou toutes les parentheses contiennent un nombre positif.

1 1 1 1
D R — cee| > —
one |Rnl= G577 - 2N+3) (2N+5 DA T Ry

Enfin en posant f(z) =1/(2z+1) par T.A.F. f(N) - f(N+1)=-f"(c) avec ce]N,N + 1]
2

Donc L1 = 2 > .
2N+1 2N +3 (2c+1)2 (2N +1)2
a
D’ot la conclusion |Ry| >
(N +b)’

N.B. A la place du groupement des termes par deux, qu’on a ici utilisé tres grossierement
en ne gardant que le premier paquet, on peut aussi utiliser I’écriture intégrale de Ry avec la
méme méthode qu’au b) ci-dessous au départ.

b) Posons
- :f 2rdt (%)
2n+1 0

On sait par Q12 que :

(A" w)o = z 0"



Donc avec (*) :

Ao :é(—l)”‘k(Z)folt% dt - folé(—l)"‘k(Z)t%dt.

Par la formule du bindéme :

M:

() = -

k=0

et donc :

1
A = f (2 - 1)"dt = I,
0

c¢) Comme rappelé en préambule & cette Q15, grace & la Q14, on sait qu’en cas de convergence
du membre de gauche, on a :

+o00 n +o00 (_1)n n
> (1) = 35 i (A

Donc ici avec la convergence vers /4 et 1’égalité du b),

Z: 2n+1 n

comme demandé.
Notons maintenant :

RN = Z QTLT
N

n=

Comme pour tout n € N,

(-1)"1, = (—1)”[01(t2—1)"dt: f01(1-t2)” dt > 0.

on en déduit que : Ry > 0.
Par ailleurs (1-¢2)" <1 sur [0,1], donc (-1)"1,, < 1. D’ot

Cela prouve les inégalités demandées :

()", 1
O<Z gt Sonc VN 2L
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