
2/5 
 

EXERCICE 1 
 
 
On note [ ]= 2E X . 
 
Dans cet exercice, on pourra utiliser sans démonstration que pour tout entier naturel n, la fonction 

− n xx x e  est intégrable sur [ [+∞0,  et 
+∞ − =∫ 0

d !n xx e x n . 

 
 
Q1. Démontrer que l’on définit un produit scalaire sur E en posant, pour tout couple ( ),P Q  de 

polynômes de E, 
+∞ −= ∫ 0

( ) ( ) dxP Q P x Q x e x . On notera  la norme euclidienne associée. 

 
 
Q2. Déterminer le projeté orthogonal de 2X  sur [ ]= 1F X  noté 2( )FP X . 
 
 

Q3. Justifier que − = −
2 2 22 2 2 2( ) ( )F FX P X X P X  puis calculer le réel :  

+∞ −

∈
− −∫2

2
0( , )

inf ( )² dx

a b
x ax b e x . 

 
 
 
 

EXERCICE 2 
 
 
Soit ] [∈ 0,1p , = −1q p . Soit X et Y deux variables aléatoires indépendantes à valeurs dans   
définies sur un même espace probabilisé et suivant la même loi définie par : 

∀ ∈ = = = =, P( ) P( ) kk X k Y k pq . 
 
On considère les variables aléatoires Z et T définies par = sup( , )Z X Y  et = inf( , )T X Y . 
 
Q4. Pour tout couple ( ),m n  d’entiers naturels, déterminer ( ) ( )( )= ∩ =P Z m T n  en distinguant 

trois cas : >m n , <m n  et =m n .  
 
 
Q5. En déduire la loi de la variable aléatoire Z. 
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PROBLÈME 
 
 
Dans ce problème, E est un ^ -espace vectoriel de dimension finie. 
 
 

Partie I  
 
 
Q6. Un exemple 

Vérifier que la matrice § ·
= ¨ ¸
© ¹

3 2
2 3

A  est diagonalisable. 

Démontrer que les matrices 
−§ ·

3 = ¨ ¸−© ¹
1

1 11
1 12

 et § ·
3 = ¨ ¸

© ¹
2

1 11
1 12

 sont des matrices de projecteur 

puis calculer 3 + 31 25 , 3 + 31 2  et 3 31 2.  
 
 

Q7. On rappelle le lemme de décomposition des noyaux :  
Si 1 2, ,..., rP P P  sont des éléments de [ ]^ X  deux à deux premiers entre eux de produit égal à 
T, si u est un endomorphisme de E alors :  

[ ] ( ) ( ) ( )1 2Ker ( ) Ker ( ) Ker ( ) ... Ker ( )rT u P u P u P u= � � � . 
 

L'objet de cette question est de démontrer le cas particulier = 2r . 
 

Soit u un endomorphisme de E et soit P et Q deux polynômes premiers entre eux. 
 Justifier que ( )( ) ( )ª º� ¬ ¼Ker Ker ( )P u PQ u  (de même, on a : ( ) ( ) ( )ª º� ¬ ¼Ker ( ) KerQ u PQ u ). 
 
 Démontrer que : ( ) ( ) ( )ª º = �¬ ¼Ker ( ) Ker ( ) Ker ( ) .PQ u P u Q u   
 
 
Dans la suite du problème, on pourra utiliser librement le lemme de décomposition des noyaux. 
 
Q8. Soit u un endomorphisme de E et soit Su  son polynôme minimal. 

On suppose que S = 1 21 2
k k

u P P  où les polynômes 1P  et 2P  sont premiers entre eux. On pose, 

pour tout entier ^ `∈ 1,2i , S
=

i
u

i k
i

Q
P

.  

Justifier qu’il existe deux polynômes 1R  et 2R  de [ ]^ X  tels que + =1 1 2 2 1R Q R Q . 
 
 
Pour la suite de cette partie, on notera S = 1 21 2 ... mk k k

u mP P P  la décomposition en facteurs premiers 

du polynôme minimal et on admettra que, si pour tout entier ^ `∈ 1,2,...,i m , S
=

i
u

i k
i

Q
P

, il existe des 

polynômes de [ ]^ X  tels que + + + =1 1 2 2 ... 1m mR Q R Q R Q . 
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Q9. On pose alors pour tout entier ^ `∈ 1,2,...,i m , = D( ) ( )i i ip R u Q u . 
Démontrer que pour tout couple ( , )i j  d’entiers distincts de ^ `1,2,...,m , on a les trois résultats 
suivants : 

=D 0i jp p ,  
 

=

=¦
1

m

i E
i

p id ,  

 

et chaque ip  est un projecteur de E. 
Les ip  seront appelés projecteurs associés à u. 
 

Q10. Soit u un endomorphisme de E et soit Fu  son polynôme caractéristique : DF O
=

= −�
1

( ) i
m

u i
i

X  

(avec les Oi  deux à deux distincts et les Di  des entiers naturels non nuls) et pour tout entier 

^ `∈ 1,2,...,i m , DO= −Ker( ) ii i EN u id  le sous-espace caractéristique associé à Oi .  
Justifier que = � � �1 2 ... mE N N N . 

 
 
Q11. Démontrer que = � � �1 2Im Im ... Im mE p p p .  
 
 
Q12. Démontrer que pour tout entier ^ `∈ 1,2,...,i m , =Im i ip N . 
 
 
 

Partie II  
 
Dans toute cette partie, on suppose que l’endomorphisme u est diagonalisable et on note 
O O O1 2, ,..., m  ses valeurs propres distinctes. 

 
Q13. Quel est alors le polynôme minimal Su  de u ? 
 
 

Q14. On note toujours, pour tout entier ^ `∈ 1,2,...,i m , S
= u

i
i

Q
P

 où O= −i iP X , et on pose 

T
O

=
1
( )i

i iQ
. 

 Donner, sans détails, la décomposition en éléments simples de 
S
1
u

 puis démontrer que les 

projecteurs associés à u sont, pour tout entier ^ `∈ 1,2,...,i m , 
O

=
( )
( )
i

i
i i

Q u
p

Q
. 

 
 

Q15. Démontrer que O
O

=

=¦
1

( )
( )

m
i i

i ii

Q X
X

Q
 puis que O

=

=¦
1

m

i i
i

u p  (décomposition spectrale de u). 
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Q
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 où O= −i iP X , et on pose 
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O

=
1
( )i

i iQ
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S
1
u

 puis démontrer que les 

projecteurs associés à u sont, pour tout entier ^ `∈ 1,2,...,i m , 
O

=
( )
( )
i

i
i i

Q u
p

Q
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Q15. Démontrer que O
O

=

=¦
1

( )
( )

m
i i

i ii

Q X
X

Q
 puis que O

=

=¦
1

m

i i
i

u p  (décomposition spectrale de u). 
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Q16. Exemple : on considère la matrice 

§ ·
¨ ¸− −¨ ¸=
¨ ¸− −
¨ ¸

− −© ¹

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

A . 

a) Justifier que la matrice A est diagonalisable et calculer la matrice 2A . 
b) En déduire le polynôme minimal SA  de la matrice A puis la décomposition spectrale de la 

matrice A. On notera 31 et 32  les matrices des projecteurs associés. 

c) Calculer, pour tout entier naturel q, qA  en fonction des matrices 31 et 32 . 
 
 
Q17. On note [ ]^ v  l’algèbre des polynômes d’un endomorphisme v d’un ^ -espace vectoriel de 

dimension finie. 
 Démontrer que la dimension de l’espace vectoriel [ ]^ v  est égal au degré du polynôme 

minimal Sv  de l’endomorphisme v. 
 
 

Q18. On revient au cas u diagonalisable avec S O
=

= −�
1

( ).
m

u i
i

X  

 Démontrer que la famille ( )1 2, ,..., mp p p  des projecteurs associés à u est une base de l’espace 

vectoriel [ ]^ u . 
 

 
Q19. Dans le cas d’un endomorphisme u non diagonalisable, la famille ( )1 2, ,..., mp p p  des 

projecteurs associés à u est-elle toujours une base de l’espace vectoriel [ ]^ u  ? 
 
 
Q20. Nous avons vu que si u est un endomorphisme de E diagonalisable, il existe m 

endomorphismes non nuls ip  de E, tels que pour tout entier q on ait O
=

=¦
1

m
q q

i i
i

u p .  

Nous allons étudier une « réciproque ».  
 
Soit u un endomorphisme de E, ^ -espace vectoriel de dimension finie. On suppose qu’il existe 
m endomorphismes non nuls if  de E et m complexes O O O1 2, ,..., m  distincts, tels que pour tout 

entier naturel q on ait O
=

=¦
1

m
q q

i i
i

u f . 

Démontrer que u est diagonalisable. 
 
 
 

FIN 
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