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Les calculatrices et autres appareils électroniques (téléphones etc.), l’usage de stylo à encre
effaçable et des blancs de correction sont interdits. Les couleurs autorisées sont le bleu, le noir
et le rouge est toléré pour les encadrés. Encadrez ou soulignez vos résultats, séparez claire-
ment vos questions, la clarté de votre présentation est un élément important d’appréciation.

Exercice

a) Donner la définition du déterminant de Vandermonde V (x1, . . . , xn) pour une famille x1, . . . , xn

de nombres complexes et démontrer une formule explicite pour V (x1, . . . , xn).

b) On note (Ei,j)(i,j)∈⟦1,n⟧2 la base canonique de Mn(C).
Soit I = ⟦1, n⟧2 soit r ∈ N et soit (Jk)k=1,...,r une partition de I c’est-à-dire que les ensembles
J1, . . . , Jr sont deux à deux disjoints et I = ⋃r

k=1 Jk
(Par exemple si n = 2, avec J1 = {(1,1), (1,2)} et J2 = {(2,1), (2,2)} la famille (J1, J2) réalise
une partition de I = ⟦1,2⟧2, puisque I = J1 ∪ J2 avec J1 ∩ J2 = ∅).

En revenant au cas général d’une partition (Jk)k=1,...,r de I = ⟦1, n⟧2, pour chaque k ∈ ⟦1, r⟧,
on note Ek = Vect({Ei,j , (i, j) ∈ Jk}). Montrer que

Mn(C) = ⊕r
k=1Ek.

c) Soit n ∈ N∗ et ω = exp(2iπ/n). Soit A = diag(1, ω, . . . , ωn−1) et B =

⎛
⎜
⎜
⎜
⎝

0 1 . . . 0
0 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 1
1 0 . . . 0

⎞
⎟
⎟
⎟
⎠

.

i) Calculer les différentes matrices Bℓ pour ℓ ∈ N : on donnera l’expression de Bℓ(i, j) pour
tout (i, j) ∈ ⟦1, n⟧2.

ii) Pour tout ℓ ∈ ⟦0, n − 1⟧, on note Eℓ = Vect({Ei,j , i ≡ j − ℓ [n]})

Montrer que pour tout (k, ℓ) ∈ ⟦0, n − 1⟧2, AkBℓ ∈ Ek.

iii) Conclure que la famille des (AkBℓ)(k,ℓ)∈⟦0,n−1⟧2 est une base de Mn(C).

Problème

Notations et définitions

On note CN l’ensemble des suites à coefficients complexes.
On note C l’ensemble des suites u = (un)n∈N ∈ C

N telles que la série ∑n⩾0 un converge.

Définition 1 : On appelle procédé sommatoire tout couple (C′, S), dans lequel C′ est une partie
de CN et S ∶ C′ → C est une application, vérifiant les deux propriétés suivantes :

(i) Axiome de prolongement : C ⊂ C′ et pour tout u ∈ C, S(u) = ∑
+∞
n=0 un.

Autrement dit S est un prolongement de la sommation habituelle des séries convergentes.

(ii) Axiome de linéarité : C′ est un sous-espace vectoriel de CN et S est linéaire.

Définition 2 : On dit qu’un procédé sommatoire est stable par translation si, en outre, il vérifie
l’axiome (iii) suivant :

(iii) Pour toute suite u = (un)n∈N de C′, si on appelle v = τu la suite translatée définie par ∀n ∈ N,
vn = un+1, alors on a v ∈ C′ et S(u) = u0 + S(v).

Si (C′, S) est un procédé sommatoire, alors une série ∑n⩾0 un pour laquelle u ∈ E sera appelée
une série convergente au sens de S, ou encore S-convergente. On notera aussi S(u) = S+∞n=0 un.

Q 0) Excursion préliminaire : Montrer par la méthode de votre choix que
+∞

∑
n=0

(−1)n

n + 1
= ln(2).
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I L’exemple de la sommation de Cesàro

Soit (un) ∈ CN. Pour n ∈ N∗, on note dans ce problème Un = ∑
n−1
k=0 uk et U0 = 0.

On dit que ∑n⩾0 un est convergente au sens de Cesàro si, et seulement si, Mn ∶=
1
n ∑

n
k=1Uk

converge quand n→ +∞. Dans ce cas, on pose :

C(u) = C+∞n=0un ∶= lim
n→+∞

1

n

n

∑
k=1

Uk.

Dans ce I, on note C′ l’ensemble des suites u telles que ∑n⩾0 un soit convergente au sens de Cesàro.

Q 1) Montrer que le couple (C′,C) est un procédé sommatoire au sens de la définition 1 ci-dessus.

Q 2) Montrer que ∑n⩾0(−1)
n est convergente au sens de Cesàro et préciser la valeur de C+∞n=0(−1)

n.

Q 3) On pose pour tout n ∈ N, un =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 si n ≡ 0 [3],

−1 si n ≡ 1 [3]

0 si n ≡ 2 [3].

Montrer que ∑n⩾0 un est convergente au sens de Cesàro et préciser la valeur de C+∞n=0un.

Q 4) Cas particuliers des séries à termes positifs : Montrer que si ∑
n⩾0

un est une série à

termes positifs divergente alors ∀n ∈ N∗,
U1 + ⋅ ⋅ ⋅ +U2n

2n
≥
Un+1

2
. En déduire qu’une telle série

à termes positifs divergente n’est jamais convergente au sens de Cesàro.

Q 5) Une condition nécessaire :

a) Montrer que si ∑n⩾0 un est convergente au sens de Cesàro alors Un = o
n→+∞

(n).

Indication – On pourra écrire Un en fonction de Mn.

b) Montrer que la réciproque du a) est fausse. Indication –Considérer Hn = ∑
n−1
k=0

1
k+1

.

c) Montrer que la série (∑(−1)
n−1n) n’est pas convergente au sens de Cesàro.

Q 6) Montrer que le procédé de sommation de Cesàro est stable par translation au sens de la
définition 2 ci-dessus.

Q 7) Une autre forme de la convergence au sens de Cesàro et ses conséquences :

a) Soit (un) ∈ CN. Montrer que ∑n⩾0 un est convergente au sens de Cesàro si, et seulement
si, la suite (∑

n
k=0(1 −

k
n
)uk)n∈N est convergente.

Montrer aussi que dans ce cas, C(u) = lim
n→+∞

n

∑
k=0

(1 −
k

n
)uk.

b) En déduire le résultat suivant sur les séries convergentes : si ∑n⩾0 un est convergente au
sens usuel, alors :

u1 + 2u2 +⋯ + nun

n
Ð→

n→+∞
0

c) Application à deux théorèmes Taubériens (théorèmes dont l’hypothèse est la convergence
de Cesàro et une autre hypothèse et dont la conclusion est la convergence usuelle).

(1) Montrer que si ∑n⩾0 un est convergente au sens de Cesàro et si u1+2u2+⋯+nun

n
Ð→

n→+∞
0

alors ∑n⩾0 un est convergente au sens usuel.

(2) Montrer que si ∑n⩾0 un est convergente au sens de Cesàro et si un = o
n→+∞

( 1
n
) alors

∑n⩾0 un est convergente au sens usuel.

II L’exemple de la sommation d’Euler

Définition – Soit (un) ∈ CN et pour tout n ∈ N∗, Un =
n−1

∑
k=0

uk. On dit que la série ∑
n≥0

un est

Euler-convergente si, et seulement si,

1

2N

N

∑
n=1

(
N

n
)Un Ð→

N→+∞
ℓ ∈ C
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On notera alors, dans ce paragraphe II, C′ l’ensemble des suites (un) telle que ∑
n≥0

un est Euler-

convergente et pour une telle suite E(u) = E+∞n=0un ∶= ℓ.

Q 8) Montrer que (C′,E) est un procédé sommatoire au sens de la définition 1.

Q 9) Une autre expression de la sommation d’Euler :

a) Soit τ ∶ CN → CN, u ↦ τu où ∀n ∈ N, (τu)n = un+1, l’opérateur de translation à gauche
et id l’opérateur identité. Montrer l’égalité suivante dans l’algèbre (L (CN),+, ○, ⋅) :

∀N ∈ N, (
τ − id

2
) ○

N−1

∑
n=0

(
id+τ

2
)

n

= (τ − id) ○
1

2N
(

N

∑
n=1

(
N

n
)(id+τ +⋯ + τn−1)) .

b) Montrer que τ − id est surjective et en déduire que :

∀N ∈ N,
N−1

∑
n=0

(
id+τ

2
)

n

=
1

2N−1
(

N

∑
n=1

(
N

n
)(id+τ +⋯ + τn−1)) .

c) En déduire que pour toute suite (un) ∈ CN, en notant ∀n ∈ N, ũn ∶=
1

2n+1

n

∑
k=0

(
n

k
)uk :

∀N ∈ N∗,
1

2N

N

∑
n=1

(
N

n
)Un =

N−1

∑
n=0

ũn.

d) En déduire le théorème de E-convergence suivant : une série (∑
n⩾0

un) est Euler-

convergente si, et seulement si, (∑
n≥0

ũn) est convergente au sens usuel. Montrer aussi

que si (∑
n⩾0

un) est une série convergente au sens usuel, alors :

+∞

∑
n=0

1

2n+1

n

∑
k=0

(
n

k
)uk =

+∞

∑
n=0

un.

Q 10) Deux exemples :

a) Exemple 1 : déterminer pour quels z ∈ C la série ∑(−1)
nzn est convergente au sens

usuel, et pour quels z ∈ C elle est Euler-convergente.

Déterminer aussi sa somme dans chacun des deux cas.

b) Exemple 2 : montrer que la série harmonique ( ∑
n≥0

1

n + 1
) n’est pas Euler-convergente.

Q 11) Déduire du théorème de E-convergence de la question 9d) que le procédé (C′,E) de la som-
mation d’Euler est aussi stable par translation au sens de la définition 2.

III Application de la sommation d’Euler aux séries alternées

On note encore τ l’opérateur de translation défini à la question 9a) et on note ∆ = τ − id
l’opérateur de différence finie. Ainsi si w = (wn) ∈ CN, alors

∀n ∈ N, (∆w)n = wn+1 −wn.

On note ∆n =∆ ○ ⋅ ⋅ ⋅ ○∆ la composée n fois de ∆.

Q 12) Justifier que pour toute suite (wn) ∈ CN, et tout n ∈ N, (∆nw)0 =
n

∑
k=0

(
n

k
)(−1)n−kwk.

Q 13) On admet que pour tout x ∈ R, ex =
+∞

∑
n=0

xn

n!
et que cette série est absolument convergente.

Soit x ∈ R. On suppose que la série ∑wn
xn

n!
est absolument convergente. Montrer que :

e−x.(
+∞

∑
n=0

wn
xn

n!
) =

+∞

∑
n=0

(∆nw)0
xn

n!
.
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Dans la suite on s’intéresse à des suites qu’on note pour tout n ∈ N, (−1)nwn avec d’abord
(wn) ∈ CN, puis ensuite (wn) positive, et on montre alors que la sommation d’Euler peut aussi être
un procédé d’amélioration de convergence de ces séries alternées.

Q 14) Montrer que la série ∑
n⩾0

(−1)nwn est convergente au sens d’Euler si, et seulement si, la série

∑
n⩾0

(−1)n

2n+1
(∆nw)0 converge au sens usuel et qu’alors on a l’égalité :

E+∞n=0(−1)
nwn =

+∞

∑
n=0

(−1)n

2n+1
(∆nw)0

La régularité du procédé de sommation d’Euler entrâıne donc que si la série ∑n⩾0(−1)
nwn est

convergente, on a alors
+∞

∑
n=0

(−1)nwn =
+∞

∑
n=0

(−1)n

2n+1
(∆nw)0

Cette formule peut servir de méthode d’ ≪accélération de convergence≫ du fait que, bien souvent,
le membre de droite est une série dont les restes tendent plus vite vers 0 que ceux du membre de
gauche, ce qui est illustré dans la question suivante.

Q 15) a) Soit la série de Leibniz ∑n⩾0(−1)
n 1
2n+1

. On peut montrer (de manière analogue à la Q0)
que sa somme usuelle est égale à π/4. Montrer qu’il existe des réels a, b ∈ R+∗ tels que
les restes de cette série vérifient

∣
+∞

∑
n=N

(−1)n
1

2n + 1
∣ ⩾

a

(N + b)2
, pour tout N ⩾ 1

b) Soit wn = 1/(2n + 1) pour tout n ⩾ 0. Montrer que (∆nw)0 = In, où In = ∫
1
0 (t

2 − 1)
n

dt

(utiliser l’écriture wn = ∫
1
0 t2n dt )

c) Montrer que π/4 = ∑
+∞
n=0(−1)

nIn/2
n+1, et que les restes de cette série vérifient

0 ⩽
+∞

∑
n=N

(−1)nIn
2n+1

⩽
1

2N
, pour tout N ⩾ 1

Ainsi la série transformée converge beaucoup plus vite vers π/4.

Hors Barème : D.M. 5/2

Q 16) Montrer que le procédé précédent ne conduit pas toujours à une accélération de la convergence, en

l’appliquant à ∑(−1)
n 1

4n
(qui converge déjà vite !)

Q 17) Remarque préliminaire : Pour une série ∑n⩾1 un, on définit la sommation d’Euler au moyen de
la suite (vn)n⩾0 définie par vn = un+1, et l’on pose

E+∞n=1(−1)
n−1un = E

+∞

n=0(−1)
nvn =

+∞

∑

n=0

(−1)n

2n+1
(∆nv)0

Comme

(∆nv)0 =
n

∑

k=0

Ck
n(−1)

n−kvk =
n

∑

k=0

Ck
n(−1)

n−kuk+1 = (∆
nu)1

on obtient

E+∞n=1(−1)
n−1un =

+∞

∑

n=0

(−1)n

2n+1
(∆nu)1

Un exemple de sommation d’Euler prolongeant les formules de Taylor : On a π/3 =
arctan(

√

3), mais le développement de Taylor en 0 de la fonction arctan ne permet pas d’écrire

π

3
=

+∞

∑

n=1

(−1)n−1
(

√

3)2n−1

2n − 1
(beurk!)

car la série ∑n⩾1(−1)
n−1un, où un = (

√

3)2n−1/(2n − 1), est grossièrement divergente. Mais montrer
que la sommation d’Euler permet de récupérer la valeur de π/3, autrement dit montrer que :

π

3
= E+∞n=1(−1)

n−1 (
√

3)2n−1

2n − 1
=

√

3

2

+∞

∑

n=0
∫

1

0
(
1 − 3t2

2
)

n

dt
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