MP Samedi 27 Septembre 2025

DEVOIR SURVEILLE 1 (4H)

es calculatrices et autres appareils électroniques (téléphones etc.), I'usage de stylo & encre
effacable et des blancs de correction sont interdits. Les couleurs autorisées sont le bleu, le noir
et le rouge est toléré pour les encadrés. Encadrez ou soulignez vos résultats, séparez claire-
ment vos questions, la clarté de votre présentation est un élément important d’appréciation.

EXERCICE
a) Donner la définition du déterminant de Vandermonde V' (21, ..., z,) pour une famille z1, ..., 2,
de nombres complexes et démontrer une formule explicite pour V(z1,...,2,).

b) On note (E; ;) j)e[1,n]? 1a base canonique de M, (C).
Soit I = [[l,n}]2 soit 7 € N et soit (Jg)g=1,...r une partition de I c’est-a-dire que les ensembles
J1,...,J sont deux a deux disjoints et I = Uj_; Ji
(Par exemple si n = 2, avec J1 = {(1,1),(1,2)} et Jo = {(2,1),(2,2)} la famille (J1, J2) réalise
une partition de I = [1,2]?, puisque I = J; U Jy avec J; N Jo = @).
En revenant au cas général d’une partition (Jg )1, de I =[1,n]?, pour chaque k € [1,7],
on note &, = Vect({E; ;, (i,7) € Jr}). Montrer que

Mn((c) = 692:1516-

0 1 0
c) Soit n € N* et w = exp(2i7/n). Soit A = diag(1,w,...,w" 1) et B = . ] 1 .
10 ... 0

i) Calculer les différentes matrices B pour £ € N : on donnera I’expression de B(4,5) pour
tout (7,5) € [1,n]%
ii) Pour tout ¢ €[0,n—-1], on note & = Vect({E; ;, i=j—¢ [n]})
Montrer que pour tout (k,£) € [0,n - 1], A*B* € &,.
iii) Conclure que la famille des (A*B®) (% ¢)e[0,n-1]2 st une base de M, (C).

PROBLEME

Notations et définitions

On note CN I’ensemble des suites & coefficients complexes.
On note C I'ensemble des suites u = (uy,),, o € C" telles que la série 3,50 u, converge.

Définition 1 : On appelle procédé sommatoire tout couple (C’,.S), dans lequel C’ est une partie
de CN et S:C" — C est une application, vérifiant les deux propriétés suivantes :
(i) Aziome de prolongement : C c C' et pour tout u€C,S(u) = 3,20 Un.
Autrement dit S est un prolongement de la sommation habituelle des séries convergentes.

(ii) Aziome de linéarité : C' est un sous-espace vectoriel de C et S est linéaire.

Définition 2 : On dit qu'un procédé sommatoire est stable par translation si, en outre, il vérifie
Paxiome (iii) suivant :
(iii) Pour toute suite u = (uy,),,y de C’, si on appelle v = Tu la suite translatée définie par Vn € N,
Up = Uns1, alors on a v € C" et S(u) =ug + S(v).

Si (€', S) est un procédé sommatoire, alors une série Y.,,5o u, pour laquelle u € E sera appelée
une série convergente au sens de S, ou encore S-convergente. On notera aussi S(u) =S, %) up.
)’I’L

-1
n+1

+o00

Q 0) Excursion préliminaire : Montrer par la méthode de votre choix que Z
n=0

=1n(2).



I L’exemple de la sommation de Cesaro

Soit (u,) € CN. Pour n € N*, on note dans ce probleme U, = ZZQ& ug et Uy = 0.
On dit que },,59un est convergente au sens de Cesaro si, et seulement si, M, = %ZZ:l Uk
converge quand n — +oo. Dans ce cas, on pose :

1 n
+00 .
= =1 — .
C(u) =CrZun m kgl Uk
Dans ce I, on note C’ 'ensemble des suites u telles que Y.,,50 uy, soit convergente au sens de Cesaro.
Q 1) Montrer que le couple (C’,C') est un procédé sommatoire au sens de la définition 1 ci-dessus.

Q 2) Montrer que Y,,50(—1)" est convergente au sens de Cesaro et préciser la valeur de C123(-1)".

1sin=0][3],
Q 3) On pose pour tout n €N, u,, =< -1sin=1[3]
0sin=2][3].

Montrer que Y., un, €st convergente au sens de Cesdro et préciser la valeur de C;f % uy,.

Q 4) Cas particuliers des séries a4 termes positifs : Montrer que si Z U, est une série a
n>0
ep 1 Ui+ +Uzp  Upia . .
termes positifs divergente alors Vn € N*, 5 2> g . En déduire qu’une telle série
n
a termes positifs divergente n’est jamais convergente au sens de Cesaro.

Q 5) Une condition nécessaire :

a) Montrer que si Y,,59 U, est convergente au sens de Cesaro alors U, = o (n).
n—+00o

Indication — On pourra écrire U,, en fonction de M,,.

b) Montrer que la réciproque du a) est fausse. Indication —Considérer H,, = ZZ;& ﬁ

¢) Montrer que la série () (-1)"""n) n’est pas convergente au sens de Cesaro.

Q 6) Montrer que le procédé de sommation de Cesaro est stable par translation au sens de la
définition 2 ci-dessus.

Q 7) Une autre forme de la convergence au sens de Cesaro et ses conséquences :

a) Soit (u,) € CN. Montrer que ¥,,50u, est convergente au sens de Cesaro si, et seulement
si, la suite (X5_o(1 - %)uk)neN est convergente.

n
Montrer aussi que dans ce cas, C'(u) = lim Z (1-—)ug.
n—+oo k=0 n

b) En déduire le résultat suivant sur les séries convergentes : si Y., un €st convergente au

sens usuel, alors :

Uy + 2Ug + - + Ny,
— 0

n n—+oo

¢) Application & deux théorémes Taubériens (théorémes dont I’hypothese est la convergence
de Cesaro et une autre hypotheése et dont la conclusion est la convergence usuelle).

U +2uUg+ - +NnUn
n

— 0
n—+oo

(1) Montrer que si Y50 ur, €st convergente au sens de Cesaro et si

alors 3,5 u, est convergente au sens usuel.
(2) Montrer que si }.,,50 un est convergente au sens de Cesdro et si u, = o (%) alors
n—>+00

Ym0 Un €st convergente au sens usuel.

II L’exemple de la sommation d’Euler

n—1
Définition — Soit (u,) € CY et pour tout n € N*, U, = Z ug. On dit que la série Z Uy, est
k=0 n>0

FEuler-convergente si, et seulement si,

1 Y (N
Q—NnZl(n)Un s leC

N—+o00



On notera alors, dans ce paragraphe II, C’ I'ensemble des suites (uy) telle que Z Uy, est Euler-
n>0

convergente et pour une telle suite E(u) = E}Quy, = .
Q 8) Montrer que (C', E) est un procédé sommatoire au sens de la définition 1.
Q 9) Une autre expression de la sommation d’Euler :
a) Soit 7 : CN - CN, u = Tu ot VneN, (7u), = uns1, lopérateur de translation & gauche
et id opérateur identité. Montrer ’égalité suivante dans 1'algebre (£ (CY),+,0,-) :

VN eN, (T;id)oNi(id;)n = (r-id) o ;V(szj (Z)(id+7+...+7"‘1)).

n=0 n=1

b) Montrer que 7 —id est surjective et en déduire que :

N-1,: n N
VNEN’ (ld;T) :2]\71—1(2(‘2[)(1(1-#-7'-‘-..._{_7.711)).

n=0 n=1

1

2(n
Uk -
2n+1 k;)(k)

¢) En déduire que pour toute suite (u,) € CY, en notant ¥ n € N, @, :=

. 1 N N N—1~
VN N, ﬁzl(n)U": S .

d) En déduire le théoréme de FE-convergence suivant : une série (Z un) est Buler-

n20
convergente si, et seulement si, (Z Un) est convergente au sens usuel. Montrer aussi
n>0
que si (Z Uy, ) est une série convergente au sens usuel, alors :

n>0

+oo 1 n n +oo
Q 10) Deux exemples :
a) Exemple 1 : déterminer pour quels z € C la série ) (-1)"z" est convergente au sens
usuel, et pour quels z € C elle est Fuler-convergente.
Déterminer aussi sa somme dans chacun des deux cas.

1
b) Exemple 2 : montrer que la série harmonique ( Z Tl) n’est pas Fuler-convergente.
nx0 T

Q 11) Déduire du théoréme de E-convergence de la question 9d) que le procédé (C', E) de la som-
mation d’Euler est aussi stable par translation au sens de la définition 2.

IIT Application de la sommation d’Euler aux séries alternées

On note encore 7 l'opérateur de translation défini & la question 9a) et on note A = 7 —1id
'opérateur de différence finie. Ainsi si w = (w,,) € CV, alors

VneN, (Aw), = W1 — Wy

On note A™ = A o---0 A la composée n fois de A.

n

Q 12) Justifier que pour toute suite (w,) € CY, et tout n e N, (A"w)g = ") (-1 K.
k

k=0
+o0o n
13) On admet que pour tout z € R, e” = — et que cette série est absolument convergente.
|
n=0 T

xn
Soit « € R. On suppose que la série an—' est absolument convergente. Montrer que :
n!

“(E ) St
e . wy,— | = A"w)g—.
n=0 nn' n=0 n!



Dans la suite on s’intéresse a des suites qu’on note pour tout n € N, (-1)"w, avec d’abord
(wy,) € CY, puis ensuite (w,,) positive, et on montre alors que la sommation d’Euler peut aussi étre
un procédé d’amélioration de convergence de ces séries alternées.

Q 14) Montrer que la série Z (=1)"w,, est convergente au sens d’Euler si, et seulement si, la série
n>0

1 n
Z (2”+)1 (A™w), converge au sens usuel et qu’alors on a I’égalité :
0

B 1), = 3 SO (am),

n=

La régularité du procédé de sommation d’Euler entraine donc que si la série Y,,59(-1)"w, est
convergente, on a alors

+o00

3 1y - 5 S (am),

Cette formule peut servir de méthode d’ <<acceleratlon de convergence» du fait que, bien souvent,
le membre de droite est une série dont les restes tendent plus vite vers 0 que ceux du membre de
gauche, ce qui est illustré dans la question suivante.

Q 15) a) Soit la série de Leibniz ¥,,50(~1)" 5. On peut montrer (de manitre analogue & la QO0)
que sa somme usuelle est égale & /4. Montrer qu'’il existe des réels a,b € R** tels que
les restes de cette série vérifient

Z( )n2n+1

a
> )
(N +b)?

pour tout N > 1

b) Soit wy = 1/(2n + 1) pour tout n > 0. Montrer que (A"w), = I,, ou I,, fol (t2 - l)n dt
(utiliser I’écriture w,, = fo t2n dt )
¢) Montrer que 7/4 = Y5 (-1)"1,,/2"*!, et que les restes de cette série vérifient

n"r, 1
Z()

n+l 2N, pour tout N > 1

oy
Ainsi la série transformée converge beaucoup plus vite vers /4.

HoRs BAREME : D.M. 5/2
Q 16) Montrer que le procédé précédent ne conduit pas toujours & une accélération de la convergence, en
1
I’appliquant & Z( 1) — (qui converge déja vite!)

Q 17) Remarque prellmmalre : Pour une série },,.; un, on définit la sommation d’Euler au moyen de
la suite (vn),,,, définie par v, = un41, et Pon pose

400

E;:ol(_l)nilun :E:z?())(_l)nv Z n+1 (A )0

Comme .
(A™), = zc ()" Fo = 3 CE ()" s = (Au),
k=0
on obtient (1)
n-1 1 "
S = 3 S (),
Un exemple de sommation d’Euler prolongeant les formules de Taylor : On a 7/3 =
arctan(\/g), mais le développement de Taylor en 0 de la fonction arctan ne permet pas d’écrire
2n-1
Z( 1y l(f) — (beurk!)

car la série 3,51 (=1)" " un, olt uy = (\/§)Qn_1/(2n —1), est grossierement divergente. Mais montrer
que la sommation d’Euler permet de récupérer la valeur de /3, autrement dit montrer que :

T =E;:‘;(_1)n—1@ _ V3 *f [01 (1—3t2)” o

2n -1 2 = 2

|



