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I La fonction digamma pour exprimer une loi de probabilité

Rappels sur Γ et digamma

On note, pour tout x ∈]0,+∞[,

Γ(x) = ∫
+∞

0
e−ttx−1 dt.

Q 1) Démontrer que la fonction Γ est de classe C1 sur ]0,+∞[ et exprimer Γ′ sous forme intégrale.

Pour tout x > 0, on pose :

ψ(x) =
Γ′(x)
Γ(x)

.

Malgré sa notation ψ cette fonction est appelée digamma (lettre grecque disparue...)

Q 2) Démontrer que (
n

∑
k=1

1

k
) − ln(n) converge quand n→ +∞.

On note :

γ = lim
n→+∞(

n

∑
k=1

1

k
) − ln(n).

Au D.S. 4, on a montré que pour tout x ∈]0,+∞[,

ψ(x) =
−1

x
− γ +

+∞
∑
k=1
(
1

k
−

1

k + x
) (†)

Q 3) En déduire une relation entre ∫
+∞

0
e−t ln(t)dt et γ.

Un peu de probabilités

Une urne contient n boules numérotées de 1 à n.
On effectue un premier tirage d’un boule dans l’urne et on adopte le protocole suivant :
si on a tiré la boule numéro k, on la remet alors dans l’urne avec k nouvelles boules toutes

numérotées k.
Par exemple, si on a tiré la boule numéro 3, on remet quatre boules de numéro 3 dans l’urne

(la boule tirée plus 3 nouvelles boules numéro 3 ).
On effectue ensuite un deuxième tirage d’une boule. On note X (respectivement Y ) la variable

aléatoire égale au numéro de la boule choisie au premier tirage (respectivement au deuxième tirage).

Q 4) Déterminer la loi de la variable aléatoire X ainsi que son espérance E(X).

Q 5) Déterminer la loi de la variable aléatoire Y et vérifier que

∀k ∈ ⟦1, n⟧, P (Y = k) =
1

n
(ψ(2n + 1) − ψ(n + 1) +

k

n + k
) .

Q 6) Exprimer l’espérance E(Y ) à l’aide de la fonction ψ.

On pourra utiliser, sans démonstration, que

n

∑
k=1

k2

n(n + k)
=
1 − n

2
+ n(ψ(2n + 1) − ψ(n + 1))
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II Matrices stochastiques et processus de Markov

On dit qu’une matrice A = (ai,j) ∈ Mn(R) est stochastique lorsque elle vérifie les conditions :

∀i ∈ ⟦1, n⟧,
n

∑
j=1

ai,j = 1 (1)

∀(i, j) ∈ ⟦1, n⟧2, ai,j ≥ 0 (2)

Ces matrices, et plus précisément les matrices stochastiques strictement positives, qui vérifient
ai,j > 0 pour tout (i, j) ∈ ⟦1, n⟧2 ont été étudiées au D.S.2.

Il y a été montré que

Résultat du D.S. 2 : Pour A ∈Mn(R) stochastique strictement positive :

● 1 est valeur propre de A de multiplicité algébrique 1,

● ∀λ ∈ SpC(A) ∖ {1}, ∣λ∣ < 1

Nous allons voir une conséquence de ces résultats en probabilité.
Un labyrinthe est constitué de cinq salles, numérotées de 1 à 5 , qui communiquent par des

tubes selon le schéma ci-dessous :

Un rat se déplace dans ce labyrinthe, et on relève sa position en des instants numérotés 0,1,2,⋯, k,⋯
pour k ∈ N. On admet que, si le rat se trouve à l’instant k ( pour k ∈ N ) dans la salle numéro i
avec 1 ≤ i ≤ 5, alors il empruntera aléatoirement l’un des tubes de la salle i et se trouvera donc, à
l’instant k + 1, avec équiprobabilité, dans l’une quelconque des salles communiquant avec la salle i
(il ne reste pas dans la même salle). On admet que l’on peut introduire, pour tout k entier naturel,
une variable aléatoire Sk donnant le numéro de la salle où se trouve le rat à l’instant k. À titre
d’exemple, on aura donc

∀k ∈N,

P (Sk+1 = 1 ∣ Sk = 2) = P (Sk+1 = 3 ∣ Sk = 2) = P (Sk+1 = 5 ∣ Sk = 2) =
1

3
.

Pour tout k ∈N, on introduit la matrice-colonne

Xk =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

P (Sk = 1)
P (Sk = 2)
P (Sk = 3)
P (Sk = 4)
P (Sk = 5)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∈M5,1(R).

Premiers pas

Q 7) montrer que P (Sk+1 = 1) s’écrit comme une combinaison linéaire des (P (Sk = i) , i = 1,⋯,5).

Q 8) Expliciter la matrice carrée B ∈ M5(R) telle que Xk+1 = BXk pour tout k entier naturel, et
vérifier que B⊺ est un matrice stochastique.
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Q 9) Montrer que B⊺ admet 1 comme valeur propre et expliciter un vecteur propre associé.

On suppose que la loi de la variable S0 est donnée par : X0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1/4
3/16
3/16
3/16
3/16

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Q 10) Montrer qu’alors les variables aléatoires Sk ont toutes la même loi.

Q 11) Est-ce que S0 et S1 sont indépendantes ?

Propriété générale de Convergence en moyenne de Cesaro dans Mn(R) pour les ma-
trices de norme d’opérateur au plus un

Soit u un endomorphisme d’un R-espace vectoriel E de dimension finie. On suppose qu’il existe
une norme ∥ ⋅ ∥ sur E telle que l’inégalité suivante soit satisfaite pour tout x ∈ E,

∥u(x)∥ ≤ ∥x∥.

Pour tout entier naturel k non nul, on considère l’endomorphisme de moyenisation des itérés
de u :

rk =
1

k

k−1
∑
l=0

ul =
1

k
(IE + u + u

2
+⋯ + uk−1) ,

où IE représente l’endomorphisme identité de E.

Q 12) a) Soit x ∈ ker (u − IE). Déterminer lim
k→∞

rk(x).

b) Soit x ∈ Im (u − IE). Montrer que lim
k→∞

rk(x) = 0E .

c) En déduire que E = ker (u − IE) ⊕ Im (u − IE).

d) Soit x ∈ E, un vecteur quelconque. Montrer que la suite (rk(x))k∈N∗ converge vers un
vecteur de E, que l’on notera p(x).

Interpréter géométriquement l’application p ∶ E Ð→ E ainsi définie.

Soit A ∈ Mn(R) une matrice carrée d’ordre n à coefficients réels. On suppose qu’il existe une norme,
aussi notée ∥ ⋅ ∥, sur l’espace vectorielMn,1(R) identifié à Rn, telle que, pour tout X ∈ Mn,1(R),
on ait ∥AX∥ ≤ ∥X∥. Pour tout k entier naturel non nul, on considère la matrice

Rk =
1

k

k−1
∑
l=0

Al
=
1

k
(In +A +A

2
+⋯ +Ak−1) , (3)

où In est la matrice identité dansMn(R).

Q 13) Montrer que la suite de matrices (Rk)k∈N∗ converge dansMn(R) vers une matrice P , telle
que P 2 = P .

Retour aux matrices stochastiques

On fixe dans cette partie, un entier n ≥ 2.
Notation : On notera U ∈ Mn,1(R), la matrice-colonne dont tous les coefficients sont égaux à 1.
Rappel : Une matrice carrée A = (ai,j) ∈ Mn(R) est dite stochastique si elle vérifie les conditions
(1) et (2) données au début de ce II.

Nous dirons aussi qu’une matrice-ligne L = (λ1,⋯, λn) ∈ M1,n(R) est stochastique lorsque ses
coefficients λi sont tous positifs ou nuls, et de somme égale à 1.

Q 14) a) Vérifier que la condition (1) équivaut à la condition AU = U .

b) En déduire que l’ensemble E des matrices stochastiques (carrées d’ordre n ) est stable
par le produit matriciel.

c) Montrer que cet ensemble E est une partie fermée et convexe deMn(R).

On munit l’espaceMn,1(R) de la norme ∥ ⋅ ∥∞ définie par ∥X∥∞ = max
1≤i≤n

∣xi∣ si X =
⎛
⎜
⎝

x1
⋮

xn

⎞
⎟
⎠
.
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Q 15) Montrer que, si A ∈ Mn(R) est stochastique, alors on a ∥AX∥∞ ≤ ∥X∥∞ pour tout X ∈
Mn,1(R).

Dans les questions suivantes, on note A ∈ Mn(R) une matrice stochastique, et on suppose qu’il
existe un entier naturel non nul p tel que la matrice Ap ait tous ses coefficients strictement positifs.
Pour tout k entier naturel non nul, on posera

Rk =
1

k

k−1
∑
l=0

Al

Q 16) Avec le résultat du D.S. 2 encadré plus haut, on sait que ker (Ap − In) est de dimension 1.
En déduire que ker (A − In) = Vect(U).

Q 17) Montrer que, pour tout k ∈N∗, la matrice Rk est stochastique.

Q 18) Montrer que la suite (Rk)k∈N∗ converge dans Mn(R) vers une matrice P , stochastique, de
rang 1.

Q 19) En déduire que l’on peut écrire P = UL, où L = (λ1,⋯, λn) ∈ M1,n(R) est une matrice-ligne
stochastique.

Q 20) Montrer que PA = P . En déduire que L est la seule matrice-ligne stochastique vérifiant
LA = L.

Application au labyrinthe

On approfondit l’étude commencée au début de ce II grâce aux résultats qu’on vient d’obtenir.
On pose A = B⊺ où B est la matrice construite à la question 8.
Un calcul qui n’est pas demandé, montre que les coefficients de la matrice A2 sont tous stric-

tement positifs, ce qui traduit le fait que le rat peut, en deux étapes, passer de n’importe quelle
salle à n’importe quelle autre.

Q 21) Expliciter la limite P de la suite de matrices (Rk)k∈N∗ définie en (3) pour cette matrice A.

Q 22) Montrer qu’il existe une unique loi de probabilité sur l’ensemble ⟦1,5⟧ telle que, si la variable
aléatoire S0 suit cette loi, alors les variables Sk suivent toutes la même loi (autrement dit,
telle que la probabilité de présence du rat dans une salle soit la même à tous les instants
k, k ∈N ). (On parle de l’unique loi de probabilité invariante pour ce processus de Markov).
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III Équation de diffusion et marche aléatoire

Cette partie donne une modélisation probabilistique donnant la même relation de récurrence
que le schéma numérique d’approximation des solutions de l’équation de la chaleur vue au D.S. 5.

Le déplacement d’une particule dans une direction donnée sous l’action des chocs avec les parti-
cules voisines peut se modéliser par des déplacements successifs à droite ou à gauche équiprobables,
d’une quantité strictement positive δ, qui interviennent à intervalles de temps réguliers, le temps
entre deux chocs étant égal à τ > 0.

Une variable aléatoire est dite de Rademacher si elle est à valeurs dans {1,−1} et si elle prend
les valeurs 1 et -1 avec la même probabilité 1/2.

Soit (Xn)n∈N une suite de variables de Rademacher mutuellement indépendantes, définies sur
un espace probabilisé (Ω,A,P). On note, pour tout entier n ⩾ 1, Sn = ∑

n
j=1Xj . Ainsi, la variable

aléatoire δSn modélise la position de la particule au temps nτ .
Pour tout n ∈ N∗, on pose Yn =

1
2
(Xn + 1) et Zn = ∑

n
j=1 Yj . Soit n ∈ N∗.

Q 23) Déterminer la loi de la variable aléatoire Yn et celle de la variable aléatoire Zn. Soit k un
entier tel que −n ⩽ k ⩽ n.

Q 24) Montrer que, si n et k ne sont pas de même parité, alors P (Sn = k) = 0.

Q 25) Montrer que, si n et k sont de même parité, P (Sn = k) = (
n

(k+n)/2)
1
2n

.

Pour x réel, on note ⌊x⌋ la partie entière de x.

Q 26) Pour tous réels δ > 0 et τ > 0, calculer V (δS⌊1/τ⌋), variance de la variable aléatoire δS⌊1/τ⌋.

Q 27) Montrer que, pour tout réel δ,V (δS⌊1/τ⌋) est équivalent à δ2

τ
, lorsque τ tend vers 0 par valeurs

supérieures.

Q 28) Pour tout n ∈ N∗ et tout k ∈ Z, en posant pn(k) = P (Sn = k), montrer que

pn+1(k) − pn(k)
τ

=
δ2

2τ

pn(k + 1) − 2pn(k) + pn(k − 1)

δ2

Interprétation de ce résultat en lien avec l’équation de diffusion du D.S. 5 :

Remarquons d’abord que, pour tout n ∈ N∗ et k ∈ Z, pn(k) est la probabilité de trouver la
particule à l’emplacement kδ à l’instant nτ .

En passant à des variables continues, pour tout (t, x) ∈ R∗+×R, notons alors P(t, x) la probabilité
de trouver la particule à l’emplacement x à la date t. Celle-ci vérifie

∀n ∈ N∗,∀k ∈ Z P(nτ, kδ) = pn(k)

et on a donc, d’après le résultat de la question précédente, pour tous n ∈ N∗ et k ∈ Z,

P((n + 1)τ, kδ) −P(nτ, kδ)

τ
=
δ2

2τ

P(nτ, (k + 1)δ) − 2P(nτ, kδ) +P(nτ, (k − 1)δ)

δ2

Supposons maintenant que δ et τ tendent tous deux vers 0 de façon à ce que le coefficient D = δ2/2τ
reste constant.

Q 29) En supposant que les dérivées partielles secondes de P existent, montrer que P vérifie
l’équation

∂P

∂t
(t, x) =

δ2

2τ

∂2P

∂x2
(t, x)

qui est une équation de diffusion, dont le coefficient de diffusion est D = δ2/2τ

Par ailleurs, ⌊1/τ⌋ représente le nombre de chocs subis par la particule entre les dates t = 0 et
t = 1 ; la variable aléatoire δS⌊1/τ⌋ représente par conséquent la position de la particule à la date

t = 1, et V (δS⌊1/τ⌋) est un indicateur de la dispersion de ses valeurs. Or d’après le résultat de la

question 27, si τ est proche de 0,V (δ S[1/τ]) sera proche de δ2/τ = 2D.
Le coefficient de diffusion D peut donc s’interpréter comme une quantité proportionnelle à la

variance de la variable aléatoire donnant la position de la particule à une date donnée.
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