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DEVOIR SURVEILLE 7(4H)

I La fonction digamma pour exprimer une loi de probabilité
Rappels sur I' et digamma

On note, pour tout z €]0, +oo],

+ 00
I'(x) = [ et dt.
0

Q 1) Démontrer que la fonction I est de classe C! sur ]0,+oo [ et exprimer I sous forme intégrale.

Pour tout x > 0, on pose :
I'(x)
I'(z)’

U(x) =
Malgré sa notation 1) cette fonction est appelée digamma (lettre grecque disparue...)
n
1
Q 2) Démontrer que (> E) —1In(n) converge quand n — +oo.

k=1
On note :

LA |
v= lim (320~ In(n).

Au D.S. 4, on a montré que pour tout z €]0,+oo[,

=S ()

k+x
+o00
Q 3) En déduire une relation entre [ e tn(t)dt et 7.
0

Un peu de probabilités

Une urne contient n boules numérotées de 1 a n.

On effectue un premier tirage d’'un boule dans 1'urne et on adopte le protocole suivant :

si on a tiré la boule numéro k, on la remet alors dans I'urne avec k nouvelles boules toutes
numérotées k.

Par exemple, si on a tiré la boule numéro 3, on remet quatre boules de numéro 3 dans 'urne
(la boule tirée plus 3 nouvelles boules numéro 3 ).

On effectue ensuite un deuxiéme tirage d’une boule. On note X (respectivement Y ) la variable
aléatoire égale au numéro de la boule choisie au premier tirage (respectivement au deuxiéme tirage).

Q 4) Déterminer la loi de la variable aléatoire X ainsi que son espérance E(X).

Q 5) Déterminer la loi de la variable aléatoire Y et vérifier que

Vkeﬂl,nﬂ,P(Y:k)=%(¢(2n+1)—¢(”+1)+nﬁk)'

Q 6) Exprimer lespérance E(Y) & Paide de la fonction ).

On pourra utiliser, sans démonstration, que

D k2 1-n

;m=?+n(w(2n+l)—w(n+l))



II Matrices stochastiques et processus de Markov

On dit qu’une matrice A = (a; ;) € M, (R) est stochastique lorsque elle vérifie les conditions :

Vie[l1,n], iam =1 (1)

J=1
V(i,5) €[1,n]? a;; >0 (2)

Ces matrices, et plus précisément les matrices stochastiques strictement positives, qui vérifient
ai; >0 pour tout (4,;) € [1,n]? ont été étudiées au D.S.2.
Il y a été montré que

Résultat du D.S. 2 : Pour A € M, (R) stochastique strictement positive :
e 1 est valeur propre de A de multiplicité algébrique 1,
o VA€ Spe(A) N {1}, P <1

Nous allons voir une conséquence de ces résultats en probabilité.
Un labyrinthe est constitué de cinq salles, numérotées de 1 a 5 , qui communiquent par des
tubes selon le schéma ci-dessous :

Un rat se déplace dans ce labyrinthe, et on releve sa position en des instants numérotés 0,1,2,---, k, ---
pour k € N. On admet que, si le rat se trouve a l'instant k ( pour k € N ) dans la salle numéro %
avec 1 <7 <5, alors il empruntera aléatoirement 1’'un des tubes de la salle i et se trouvera donc, a
Iinstant k& + 1, avec équiprobabilité, dans I'une quelconque des salles communiquant avec la salle i
(il ne reste pas dans la méme salle). On admet que I’on peut introduire, pour tout k entier naturel,
une variable aléatoire Sy donnant le numéro de la salle ou se trouve le rat & 'instant k. A titre
d’exemple, on aura donc

VkeN,
1
P(Sk+1=1|Sk=2)=P(Sk+1=3|5k=2)=P(Sk+1=5|Sk=2)=§.

Pour tout k£ € N, on introduit la matrice-colonne

P(Sp=1)
P (S =2)
Xk = P(Sk = 3) € M5,1(R).
P (S =4)
P(Sk=5)

Premiers pas

Q 7) montrer que P (Si4+1 = 1) s’écrit comme une combinaison linéaire des (P (S =14),i=1,--,5).

Q 8) Expliciter la matrice carrée B € M5(R) telle que Xy41 = BX) pour tout k entier naturel, et
vérifier que BT est un matrice stochastique.



Q 9) Montrer que B' admet 1 comme valeur propre et expliciter un vecteur propre associé.
1/4
3/16
On suppose que la loi de la variable Sy est donnée par : Xg =] 3/16
3/16
3/16
Q 10) Montrer qu’alors les variables aléatoires Sy ont toutes la méme loi.
Q 11) Est-ce que Sy et Sy sont indépendantes ?

Propriété générale de Convergence en moyenne de Cesaro dans M, (R) pour les ma-
trices de norme d’opérateur au plus un

Soit u un endomorphisme d’un R-espace vectoriel E de dimension finie. On suppose qu’il existe
une norme | - | sur E telle que I'inégalité suivante soit satisfaite pour tout z € F,

[u(@)] < ]

Pour tout entier naturel k£ non nul, on considere I'’endomorphisme de moyenisation des itérés
de u :
1 1
TR = Zul:f(IE+u+u
k3 k

2+“.+uk—1)7
ou I représente 'endomorphisme identité de F.
Q 12) a) Soit z € ker (u — Ig). Déterminer klim ri(z).
b) Soit # € Im (u —Ig). Montrer que klim rp(z) =0g.

)
¢) En déduire que E =ker (u—-Ig) ®Im (u-1g).
d) Soit z € E, un vecteur quelconque. Montrer que la suite (7;(2)) .« cOnverge vers un
vecteur de E, que 'on notera p(z).
Interpréter géométriquement ’application p : F — E ainsi définie.
Soit A € M,,(R) une matrice carrée d’ordre n & coefficients réels. On suppose qu’il existe une norme,
aussi notée | - |, sur 'espace vectoriel M,, 1(R) identifié & R", telle que, pour tout X € M,, 1(R),
on ait |AX] < | X]. Pour tout k entier naturel non nul, on considére la matrice

k-1
Rk:lZAZ:E(IR+A+A2+-~+A’“‘1), (3)
ki3 k

ou I,, est la matrice identité dans M, (R.).

Q 13) Montrer que la suite de matrices (R ), converge dans M, (R) vers une matrice P, telle
2
que P*=P.

Retour aux matrices stochastiques

On fixe dans cette partie, un entier n > 2.
Notation : On notera U € M,, 1(R), la matrice-colonne dont tous les coefficients sont égaux a 1.
Rappel : Une matrice carrée A = (a; ;) € M, (R) est dite stochastique si elle vérifie les conditions
(1) et (2) données au début de ce II.

Nous dirons aussi qu’une matrice-ligne L = (A1,---, Ap) € M1 ,(R) est stochastique lorsque ses
coefficients \; sont tous positifs ou nuls, et de somme égale a 1.
Q 14) a) Vérifier que la condition (1) équivaut & la condition AU =U.
b) En déduire que 'ensemble £ des matrices stochastiques (carrées d’ordre n ) est stable
par le produit matriciel.
c) Montrer que cet ensemble £ est une partie fermée et convexe de M,,(R.).
T
On munit Pespace M,, 1 (R) de la norme || - |« définie par | X || = max |z;| i X =
<i<n
xTL



Q 15) Montrer que, si A € M, (R) est stochastique, alors on a |AX|e < |X|le pour tout X €
Mn,l(R)'

Dans les questions suivantes, on note A € M,,(R) une matrice stochastique, et on suppose qu’il
existe un entier naturel non nul p tel que la matrice AP ait tous ses coefficients strictement positifs.
Pour tout k entier naturel non nul, on posera

k

|
—

Ry = Al

=

l

Il
[}

Q 16) Avec le résultat du D.S. 2 encadré plus haut, on sait que ker (AP — I,,) est de dimension 1.
En déduire que ker (A - I,,) = Vect(U).

Q 17) Montrer que, pour tout k € N*, la matrice Ry, est stochastique.

Q 18) Montrer que la suite (Rj) N+ converge dans M, (R) vers une matrice P, stochastique, de
rang 1.

Q 19) En déduire que l'on peut écrire P =UL, ou L = (A1, -, A ) € M1, (R) est une matrice-ligne
stochastique.

Q 20) Montrer que PA = P. En déduire que L est la seule matrice-ligne stochastique vérifiant
LA=1L.

Application au labyrinthe

On approfondit I’étude commencée au début de ce II grace aux résultats qu’on vient d’obtenir.

On pose A = BT ol B est la matrice construite a la question 8.

Un calcul qui n’est pas demandé, montre que les coefficients de la matrice A? sont tous stric-
tement positifs, ce qui traduit le fait que le rat peut, en deux étapes, passer de n’importe quelle
salle a n’importe quelle autre.

Q 21) Expliciter la limite P de la suite de matrices (Ry) N+ définie en (3) pour cette matrice A.

Q 22) Montrer qu’il existe une unique loi de probabilité sur I’ensemble [1, 5] telle que, si la variable
aléatoire Sy suit cette loi, alors les variables Sy suivent toutes la méme loi (autrement dit,
telle que la probabilité de présence du rat dans une salle soit la méme a tous les instants
k,k € N ). (On parle de 'unique loi de probabilité invariante pour ce processus de Markov).



111 Equation de diffusion et marche aléatoire

Cette partie donne une modélisation probabilistique donnant la méme relation de récurrence
que le schéma numérique d’approximation des solutions de ’équation de la chaleur vue au D.S. 5.

Le déplacement d’une particule dans une direction donnée sous ’action des chocs avec les parti-
cules voisines peut se modéliser par des déplacements successifs a droite ou a gauche équiprobables,
d’une quantité strictement positive §, qui interviennent a intervalles de temps réguliers, le temps
entre deux chocs étant égal a 7 > 0.

Une variable aléatoire est dite de Rademacher si elle est & valeurs dans {1,-1} et si elle prend
les valeurs 1 et -1 avec la méme probabilité 1/2.

Soit (X,),,qy une suite de variables de Rademacher mutuellement indépendantes, définies sur
un espace probabilisé (£2,.4,P). On note, pour tout entier n > 1,5, = ¥_; X;. Ainsi, la variable
aléatoire 6.5, modélise la position de la particule au temps nr.

Pour tout n € N*, on pose Y,, = % (Xp+1) et Z, = Z;»Lzl Y;. Soit n e N*.

Q 23) Déterminer la loi de la variable aléatoire Y,, et celle de la variable aléatoire Z,. Soit k un
entier tel que —n <k < n.

Q 24) Montrer que, si n et k ne sont pas de méme parité, alors P (.S, = k) = 0.
Q 25) Montrer que, si n et k sont de méme parité, P (S, = k) = ((k+2)/2)in'
Pour z réel, on note || la partie entiere de x.
Q 26) Pour tous réels § >0 et 7 > 0, calculer V((SSH/TJ), variance de la variable aléatoire 65|17
Q 27) Montrer que, pour tout réel §, V (55[1 I J) est équivalent a §, lorsque 7 tend vers 0 par valeurs
supérieures.
Q 28) Pour tout n € N* et tout k € Z, en posant p, (k) =P (S, = k), montrer que

pn+1(k) _pn(k) — ﬁpn(k + 1) B 2pn(k) +pn(k B 1)
T 27 62

Interprétation de ce résultat en lien avec I’équation de diffusion du D.S. 5 :

Remarquons d’abord que, pour tout n € N* et k € Z,p,, (k) est la probabilité de trouver la
particule a ’emplacement kd & 'instant nr.
En passant & des variables continues, pour tout (¢,2) € RY xR, notons alors P(¢, z) la probabilité
de trouver la particule a 'emplacement x a la date t. Celle-ci vérifie

VneN* VkeZ P(nt,kd)=p,(k)
et on a donc, d’apres le résultat de la question précédente, pour tous n € N* et k € Z,

P((n+1)7,k8) - P(n7,k8) 62 P(n7,(k+1)8) - 2P(n7, ké) + P(n7, (k- 1)d)
T T or 52

Supposons maintenant que 6 et 7 tendent tous deux vers 0 de facon & ce que le coefficient D = §2 /271
reste constant.

Q 29) En supposant que les dérivées partielles secondes de P existent, montrer que P vérifie
I’équation

opP 52 9°P

()= ———(t,x

ot (t,2) 27 (‘31;2( )

qui est une équation de diffusion, dont le coefficient de diffusion est D = §2/27
Par ailleurs, |1/7] représente le nombre de chocs subis par la particule entre les dates t = 0 et
t = 1; la variable aléatoire S|1/;| représente par conséquent la position de la particule a la date
t=1, et V(éSll I J) est un indicateur de la dispersion de ses valeurs. Or d’apres le résultat de la

question 27, si 7 est proche de O,V(5 S[l/T]) sera proche de 6%/7 = 2D.
Le coefficient de diffusion D peut donc s’interpréter comme une quantité proportionnelle a la
variance de la variable aléatoire donnant la position de la particule a une date donnée.



