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La fonction digamma pour exprimer une loi de probabilité

CCINP MP 2016 cf DS 4

Q 1) Cf Banque CCINP et cours du I3 : ∀x > 0, Γ′(x) = ∫
+∞

0
ln(t)e−ttx−1dt, bien penser à séparer

l’intervalle en ]0,1] et [1,+∞[ pour la domination.

Q 2) Cf cours du S1, la méthode la plus rapide est certainement le lien suite série, en posant

un =
n

∑
k=1

1

k
− ln(n), alors

un+1 − un =
1

n + 1
− ln(n + 1) + ln(n) = 1

n + 1
− ln(1 + 1

n
) = 1

n
+O( 1

n2
) − 1

n
+O( 1

n2
) = O( 1

n2
)

Par théorème de comparaison, (un+1−un) est terme général de série (absolument ) convergente
et par lien suite/série la suite (un) converge.

Q 3) Avec la Q1), on sait que ∫
+∞

0
e−t ln(t)dt = Γ′(1). Comme Γ(1) = 1, on a aussi :

∫
+∞

0
e−t ln(t)dt = ψ(1)

Mais avec la formule (†), ψ(1) = −1 − γ + 1 par télescopage, donc ψ(1) = −γ, au total :

∫
+∞

0
e−t ln(t)dt = −γ.

Q 4) La v.a. X suit la loi uniforme sur {1, . . . , n}. On a donc, pour tout k ∈ {1, . . . , n}, P (X = k) =
1
n
. Il s’ensuit E(X) = ∑n

k=1 kP (X = k) = 1
n ∑

n
k=1 k =

n(n+1)
2n

= n+1
2
.

Q 5) Soit i ∈ [1, n]. Si la ie boule est sortie au premier tirage, alors l’urne contient, au moment du
deuxième tirage, i+ 1 boules de numéro i, et une boule de numéro k pour tout k ∈ ⟦1, n⟧/{i}.
Puisque l’événement (X = i) est de probabilité non nulle, l’énoncé se traduit sous la forme :

∀(i, k) ∈ ⟦1, n⟧2, P (Y = k ∣X = i) =
⎧⎪⎪⎨⎪⎪⎩

i+1
n+i

si k = i
1

n+i
sinon.

Fixons k ∈ [1, n]. La famille ((X = i))1⩽i⩽n est un système complet d’évènements non
négligeables, et la formule des probabilités totales donne donc

P (Y = k) =
n

∑
i=1

P (Y = k ∣X = i)P (X = i)

= k + 1
n(n + k)

+ 1

n
∑

i∈⟦1,n⟧/{k}

1

n + i

= k

n(n + k)
+ 1

n

n

∑
i=1

1

n + i

Par ailleurs, la formule (†) rappelée par l’énoncé, donne, par soustraction,

ψ(2n + 1) − ψ(n + 1) =
2n

∑
j=n+1

1

j
=

n

∑
i=1

1

n + i

et donc

P (Y = k) = 1

n
(ψ(2n + 1) − ψ(n + 1) + k

n + k
)
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Q 6) Par retour à la définition,

E(Y ) =
n

∑
k=1

kP (Y = k)

= ψ(2n + 1) − ψ(n + 1)
n

n

∑
k=1

k +
n

∑
k=1

k2

n(n + k)

= ψ(2n + 1) − ψ(n + 1)
n

× n(n + 1)
2

+ 1 − n
2
+ n(ψ(2n + 1) − ψ(n + 1)).

Ainsi :

E(Y ) = 3n + 1
2
(ψ(2n + 1) − ψ(n + 1)) + 1 − n

2
.

Châınes de Markov et matrices stochastiques

Mines 2017 - PSI

Q 7) (Sk = i)1≤i≤5 est un système complet d’événements. La formule des probabilités totales donne

∀k ∈ N,P (Sk+1 = 1) =
5

∑
i=1

P (Sk+1 = 1 ∣ Sk = i)P (Sk = i)

Il reste à remarquer que les salles 2,3,4,5 mènent toutes à 1 avec probabilité 1
3
pour en

déduire

∀k ∈ N,P (Sk+1 = 1) =
1

3

5

∑
i=2

P (Sk = i)

Q 8) On peut procéder de même pour expliciter P (Sk+1 = j) pour j = 2,3,4,5 et obtenir

P (Sk+1 = 2) =
1

4
P (Sk = 1) +

1

3
P (Sk = 3) +

1

3
P (Sk = 5)

P (Sk+1 = 3) =
1

4
P (Sk = 1) +

1

3
P (Sk = 2) +

1

3
P (Sk = 4)

P (Sk+1 = 4) =
1

4
P (Sk = 1) +

1

3
P (Sk = 3) +

1

3
P (Sk = 5)

P (Sk+1 = 5) =
1

4
P (Sk = 1) +

1

3
P (Sk = 2) +

1

3
P (Sk = 4)

En effet, en partant de la salle S1 le rat a une chance sur 4 de partir dans chaque direction,
donc P (Sk+1 = 2∣Sk = 1) = 1/4. Ce qui se traduit matriciellement par

∀k ∈ N,Xk+1 = BXk avec B =

⎛
⎜⎜⎜⎜⎜
⎝

0 1
3

1
3

1
3

1
3

1
4

0 1
3

0 1
3

1
4

1
3

0 1
3

0
1
4

0 1
3

0 1
3

1
4

1
3

0 1
3

0

⎞
⎟⎟⎟⎟⎟
⎠

On a bien la somme de chaque colonne qui fait 1 et les entrées positives, donc B⊺ est une
matrice stochastique.

Q 9) En notant U = (11111)⊺, on a B⊺U = U ce qui correspond, avec la positivité des coefficients,
au fait que B⊺ est une matrice stochastique.

Q 10) Un calcul immédiat donne BX0 = X0 et, par récurrence immédiate, Xk = BkX0 = X0 pour
tout entier k. Xk donnant la loi de Sk, toutes les Sk ont même loi dans ce cas.

N.B. On sait que les s.e.v. propres de B et B⊺ pour chaque v.p. ont même dimension. Ici
B⊺ est stochastique, et sa droite propre pour la v.p. est connue. Pour B la forme d’un tel
vecteur propre doit être calculée.

Q 11) Si le rat est dans une pièce, il la quitte au temps suivant. Ainsi, P (S0 = 1 ∩ S1 = 1) = 0. Or
P (S0 = 1)P (S1 = 1) = 1

16
≠ 0. Ainsi S0 et S1 ne sont pas indépendantes
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Q 12) a) Soit x ∈ ker (u − IE). On a u(x) = x et par récurrence immédiate, uk(x) = x pour tout k.
Ainsi, rk(x) = x et

∀x ∈ ker (u − IE) , rk(x) Ð→
k→+∞

x

b) Soit x ∈ Im (u − IE). Il existe y tel que x = (u − IE) (y) et donc x = u(y) − y. Ainsi ul(x) =
ul+1(x) − ul(x) et (télescopage)

rk(x) =
1

k

k−1

∑
l=0

(ul+1(x) − ul(x)) = 1

k
(uk(x) − x)

On en déduit que ∥rk(x)∥ ≤ 1
k
(∥uk(x)∥ + ∥x∥). Or, u n’augmentant pas les normes, ∥uk(x)∥ ≤

∥x∥ et donc notre majorant est de limite nulle. Ceci montre que

∀x ∈ Im (u − IE) , rk(x) Ð→
k→+∞

0E

c) Par théorème du rang, on a les bonnes dimensions. De plus, si x ∈ Im (u − IE)∩ker (u − IE),
(rk(x)) est simultanément de limite x et 0E et donc x = 0E par unicité de la limite. L’inter-
section est donc réduite à 0E et la somme est directe. Finalement

E = ker (u − IE) ⊕ Im (u − IE)

d) Soit x ∈ E. Il existe y ∈ ker (u − IE) et z ∈ Im (u − IE) tels que x = y + z. On a alors
rk(x) = rk(y) + rk(z) → y.

Or l’application qui à x associe sa composante y comme ci-dessus est la projection sur
ker (u − IE) de direction Im (u − IE).

∀x ∈ E, rk(x) Ð→
k→+∞

p(x) avec p projection sur ker (u − IE) de direction Im (u − IE)

Q 13) La question semble triviale, il y a quand même une petite chose à vérifier.

La question précédente donne un résultat de convergence simple. Dans un espace fonctionnel
usuel la convergence simple ne vient pas forcément d’une norme sur l’espace des fonctions.
Ici, on veut montrer la convergence dans l’espace des endomorphimes ou c’est équivalent, des
matrices, à partir de la convergence simple.

Pour parler de convergence dansMn(R), on doit munir cet espace d’une norme. Et comme
l’espace est de dimension finie, le choix de la norme est indifférent (les normes sont équivalentes
en dimension finie). La question précédente montre que

∀X ∈ Rn,RkX Ð→
k→+∞

PX (1)

où P est la matrice (dans la base canonique) du projecteur sur ker (A − In) de direction
Im (A − In) (espaces supplémentaires dans Rn ).

On veut en déduire que :
Rk Ð→

k→+∞
P (2)

dansMn(R).
Appliquons (1) aux éléments Ei de la base canonique de Rn ∶ on sait alors que :

∀i ∈ ⟦1, n⟧, ∥RkEi − PEi∥ →
k→+∞

0

Comme tous les normes sont équivalentes sur Rn, on peut choisir de travailler avec la norme
infinie associée à la base canonique. La propriété ∥RkEi − PEi∥ →

k→+∞
0 signifie alors que

chaque suite des coefficients de RkEi converge vers le coefficient associé de PEi. Ceci signifie
donc que chaque suite coefficient de Rk converge vers le coefficient de P associé. Donc

Rk →
k→+∞

P

au sens de la norme infinie. Enfin, P est la matrice d’une projection et P 2 = P .
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Q 14) a) Posons V = AU . On a

∀i, Vi =
n

∑
j=1

ai,jUj =
n

∑
j=1

ai,j

On en déduit que
(1) équivaut à AU = U

b) Soient A,B stochastiques. Par les formules de produit, C = AB est à coefficients positifs
(chaque ci,j est somme et produit de termes ≥ 0 ). En outre CU = ABU = AU = U avec la
question précédente. Cette même question indique que C vérifie (4) et est donc stochastique.

E est stable par multiplication

c) (i) Soit (Ak) une suite convergente de matrices stochastiques et A sa limite. Chaque
coefficient de A est limite de la suite correspondante des coefficients de Ak et est positif
comme limite de tels termes. De plus, ∀k,AkU = U donne par passage à la limite (continuité
du produit matriciel) : AU = U . Ainsi A est stochastique. Donc E est fermé.

(ii) Soient A,B stochastiques et λ ∈ [0,1]. Posons M = λA + (1 − λ)B. La positivité des
coefficients de A et B entrâıne celle des coefficients de M . De plus MU = λAU +(1−λ)BU =
λU + (1 − λ)U = U ce qui donne (4) pour M qui est donc stochastique. Donc E est convexe .

Q 15) Posons Y = AX = (yi)1≤i≤n. On a

∀i ∈ ⟦1, n⟧, ∣yi∣ =
RRRRRRRRRRR

n

∑
j=1

ai,jxj

RRRRRRRRRRR
≤

n

∑
j=1

∣ai,j ∣ ⋅ ∣xj ∣ ≤ ∥X∥∞
n

∑
j=1

ai,j = ∥X∥∞

Ceci étant vrai pour tout i, on a

∥AX∥∞ ≤ ∥X∥∞ pour tout X ∈ Rn

Q 16) On sait déjà que
Vect(U) ⊂ ker (A − In) (∗)

car A est stochastique

Si AX =X alors par récurrence AkX =X pour tout k et en particulier ApX =X. Autrement
dit :

ker (A − In) ⊂ ker(Ap − In) (∗∗)

Donc avec (∗) et (∗∗), on a :
Vect(U) ⊂ ker(Ap − In)

Mais par le résultat du D.S.2. rappelé, pour la matrice stochastique stmt postive Ap, on a
l’égalité des dimensions dans l’inclusion précédente donc :

ker(Ap − In) = Vect(U) (∗ ∗ ∗)

Avec(∗), (∗∗), (∗ ∗ ∗) on a bien :

ker (A − In) = Vect(U)

Q 17) Par produit les Al sont toutes stochastiques (question 14 b)). Rk est une combinaison convexe
de matrices stochastique donc par Q14 c),

Rk est stochastique pour tout k

Q 18) La question 14 montre que (Rk) est convergente de limite P telle que P 2 = P . De plus,
les questions 17 et 14 (caractère fermé) montrent que P est stochastique. La Q13 a montré
que P est la matrice de la projection sur ker (A − In) de direction Im (A − In). On a donc
Im(P ) = Vect(U) et P est de rang 1.

Rk → P,P ∈ E , Im(P ) = Vect(U)
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Q 19) Comme P est de rang 1 et que Im(P ) = Vect(U) (vecteur propre), toutes les colonnes de
P sont ainsi multiples de U et il existe λi telle que la colonne i s’écrive λiU . En posant
L = (λ1, . . . , λn) (matrice ligne) on a alors P = UL. Comme toutes les coordonnées de U
valent 1, toutes les lignes de P valent L. Comme P est stochastique, L l’est aussi.

P = UL avec L matrice ligne stochastique

Q 20) (M1) On sait que P est la matrice du projecteur sur ker(A−In) parallélement à Im(A−In).
Donc Im (A − In) = ker(P ) et donc P (A − In) = 0 donc PA = P .
(M2) Remarquons que

RkA =
1

k

k

∑
l=1

Al = 1

k
((k + 1)Rk+1 − In) =

k + 1
k

Rk+1 −
1

k
In

En faisant tendre k vers +∞, on obtient

PA = P

Pour le ≪ en déduire ≫ :

● P est une matrice dont toutes les lignes sont égale à L. PA est ainsi une matrice dont
toutes les lignes sont LA. L’égalité PA = P donne ainsi LA = L.
● Si Y est une matrice ligne, Y A = Y s’écrit aussi A⊺Y ⊺ = Y ⊺ ou encore (A⊺ − In)Y ⊺ = 0.
Or, avec la question 16, A− In est de rang n− 1 (par théorème du rang) et il en est de même
de (A − In)⊺ = A⊺ − In. Le noyau de A⊺ − In est ainsi de dimension 1 . Il contient la matrice
L⊺ qui est non nulle (car sinon P = 0 ). Ainsi, les matrices ligne Y vérifiant Y A = Y sont les
multiples de L. La somme des coefficients de λL ne valant 1 que si λ = 1, on a finalement L
est la seule ligne stochastique telle que LA = L
N.B. Pour revenir au rat, on va s’intéresser bien sûr aux colonnes stochastiques invariantes
par B = A⊺ comme celle qui était donnée à la Q10.

Q 21) On a vu aux Q 19 et 20 que P = UL où L est l’unique ligne stochastique telle que LA = L,
c’est-à-dire où L⊺ a des coefficients positifs de somme 1 et vérifie A⊺L⊺ = L⊺, c’est-à-dire où
L⊺ est vecteur propre de B associé à la valeur propre 1.

Or comme donné par le sujet à la Q10, (4,3,3,3,3)⊺ est un tel vecteur propre et donc
L = 1

16
(4,3,3,3,3). Finalement,

P = 1

16

⎛
⎜⎜⎜⎜⎜
⎝

4 3 3 3 3
4 3 3 3 3
4 3 3 3 3
4 3 3 3 3
4 3 3 3 3

⎞
⎟⎟⎟⎟⎟
⎠

Q 22) Supposons que S0 suive une loi vérifiant la condition de l’énoncé. Avec la notation de l’énoncé
avant la Q6, on a alors X0 = BX0 et, en transposant, X⊺0A =X⊺0 . Comme X⊺0 est stochastique,
la question 20 montre que

X⊺0 = L

avec L. trouvé à la question précédente, qui convient comme on le sait depuis la Q10.

Le seul cas où les tous les Sk ont la même loi est donc donné par la distribution initiale

X0 =

⎛
⎜⎜⎜⎜⎜
⎝

1/4
3/16
3/16
3/16
3/16

⎞
⎟⎟⎟⎟⎟
⎠
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Partie III

Q 23) La variable aléatoire Yn prend les valeurs 1 et 0 avec la même probabilité 1
2
Elle suit donc la

loi de Bernoulli de paramètre 1
2
. La variable aléatoire Zn est donc une somme de n variables

aléatoires de Bernoullj indépendantes, de paramètre 1/2. Par conséquent, la variable aléatoire
Zn suit la loi binomiale de paramètres (n, 1

2
).

Q 24) Soit ω ∈ Ω. Soit p le cardinal de l’ensemble {j ∈ ⟦1;n⟧,Xj(ω) = 1}.
L’ensemble {j ∈ ⟦1;n⟧,Xj(ω) = −1} est alors de cardinal n − p. Il s’ensuit que

Sn(ω) = p × 1 + (n − p) × (−1) = 2p − n

Or n et 2p − n sont de même parité. La variable aléatoire Sn est donc de même parité que n
avec probabilité 1 , c’est-à-dire que si k et n ne sont pas de même parité, alors P (Sn = k) = 0.

Q 25) Remarquons d’abord que Xn = 2Yn − 1, d’où

Sn =
n

∑
j=1

(2Yj − 1) = 2
n

∑
j=1

Yj − n = 2Zn − n

Supposons que k et n soient de même parité. On a alors

P (Sn = k) = P (2Zn − n = k) = P(Zn =
n + k
2
)

et (n+k)/2 est bien entier puisque n et k ont la même parité, et dans ⟦0;n⟧ puisque k ∈ ⟦−n;n⟧.
Comme Zn suit la loi binomiale de paramètres ( n,1/2 ), on conclut que

Si n et k sont de même parité, P (Sn = k) = (
n

n+k
2

) 1

2n

Q 26) Soient δ > 0, τ > 0. Calculons
V (δS⌊1/τ⌋) = δ2V ( S⌊1/τ⌋)
= δ2V (2Z⌊1/τ⌋ − n)
= 4δ2V (Z⌊1/τ⌋)

d’où, connaissant la variance de la loi binomiale B(⌊1/τ⌋, 1
2
)

V (δS⌊1/τ⌋) = 4δ2⌊1/τ⌋
1

4
= δ2⌊1/τ⌋

Q 27) Par définition de la partie entière :

1

τ
− 1 < ⌊1

τ
⌋ ⩽ 1

τ

1 − τ < τ ⌊1
τ
⌋ ⩽ 1

Il s’ensuit, par le théorème d’encadrement, que

τ ⌊1
τ
⌋ Ð→
τ→0+

1

⌊1
τ
⌋ ∼
τ→0+

1

τ

On en déduit que

V (δS⌊1/τ⌋) = δ2 ⌊
1

τ
⌋ ∼
τ→0+

δ2

τ

6



Q 28) Soient n ∈ N∗, k ∈ Z. La famille {[Sn = j] , j ∈ Z} forme un système complet d’événements, on
a donc d’après la formule des probabilités totales

P (Sn+1 = k) = ∑
j∈Z

P ( Sn+1 = k ∣ Sn = j)P (Sn = j)

= ∑
j∈Z

P ( Sn +Xn+1 = k ∣ Sn = j)P (Sn = j)

P (Sn+1 = k) = ∑
j∈Z

P (Xn+1 = k − j)P (Sn = j)

où on a utilisé, pour obtenir la dernière égalité, le fait que Xn+1 et Sn sont indépendantes.
Or pour tout j ∈ Z,P (Xn+1 = k − j) = 0 si j ∉ {k − 1, k + 1}, et cette probabilité vaut 1/2 si
j = k − 1 ou j = k + 1. Par conséquent,

pn+1(k) = P (Sn+1 = k) =
1

2
P ( Sn = k − 1) +

1

2
P ( Sn = k + 1) =

pn(k − 1) + pn(k + 1)
2

et en soustrayant pn(k) de chaque côté de l’égalité, puis en divisant par τ et en multipliant
le membre de droite par δ2/δ2 = 1, cela équivaut à

pn+1(k) − pn(k)
τ

= δ
2

2τ

pn(k + 1) − 2pn(k) + pn(k − 1)
δ2
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