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Devoir surveillé 6 (3h)

Caractérisation et exponentielle des matrices normales

L’usage de la calculatrice et de tout dispositif électronique est interdit.

Notations

— n ∈ N∗ etMn désigne l’espace vectoriel des matrices carrées réelles de taille ( n,n).

— En désigne l’espace vectoriel des matrices réelles de taille ( n,1 ) (matrices colonnes). On le munit
de son produit scalaire usuel et de la norme (euclidienne) associée définis par :

(X ∣ Y ) =X⊺.Y et ∥X∥ =
√
X⊺X

— Sn (respectivement An ) désigne le sous-espace vectoriel deMn constitué des matrices symétriques
(respectivement antisymétriques) deMn.

— On = {A ∈ Mn,A
⊺A = In} est le groupe orthogonal d’ordre n.

— SOn = {A ∈ On,det(A) = 1} est le groupe spécial orthogonal d’ordre n.

— Pour tout θ ∈ R, on note R(θ) = [ cos θ − sin θ
sin θ cos θ

] et S(θ) = [ cos θ sin θ
sin θ − cos θ ].

Définition 1 : Une matrice A deMn est dite normale lorsqu’elle commute avec sa transposée, c’est-à-dire
lorsque AA⊺ = A⊺A.

Définition 2 : : A ∈ Mn est dite orthogonalement semblable à B ∈ Mn, s’il existe Q ∈ On tel que
B = Q⊺AQ. (On pourra noter en abrégé : A est ORTS à B)

Objectifs

— Dans un premier temps, ce problème vise à établir que, pour une matrice A ∈ Mn, les quatre
conditions suivantes sont équivalentes :

(C1) Il existe un polynôme P à coefficients réels tel que A⊺ = P (A).
(C2) La matrice A est normale.

(C3) Pour tout X ∈ En, ∥A⊺X∥ = ∥AX∥.
(C4) La matrice A est orthogonalement semblable à une matrice diagonale par blocs, dont chaque

bloc diagonal est :

— soit de taille (1,1),
— soit de taille (2,2) du type rR(θ), où (r, θ) ∈ R∗+ ×R.

— Dans un second temps, on caractérisera l’exponentielle d’une telle matrice.

Résultats préliminaires :

Q 1) a) Montrer que la relation ORTS est une relation d’équivalence surMn.

b) Montrer que pour toute A ∈ Mn inversible, il existe un polynôme P tel que A−1 = P (A).

Exemples

Q 2) Montrer que les éléments de Sn vérifient les conditions (C1) , (C2) , (C3) et (C4), et que ceux de
An vérifient les conditions (C1) , (C2) et (C3).

Q 3) Montrer que les éléments de On vérifient les conditions (C1) , (C2) , (C3) et (C4).
Q 4) Les résultats de la question précédente se généralisent immédiatement aux matrices de la forme rT ,

où r > 0 et T ∈ On, sauf pour la condition (C1) moins évidente (démonstration non demandée).

Montrer que si n = 2 alors les matrices rT , où r > 0 et T ∈ On, vérifient (C1).
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Une implication et une équivalence

Q 5) Montrer que si A ∈ Mn vérifie la condition (C1), alors A vérifie la condition (C2).
Q 6) Montrer que si A ∈ Mn, (C2) ⇒ (C3) puis montrer la réciproque par polarisation.

Les conditions équivalentes (C3) et (C2) impliquent la condition (C4)
Q 7) Dans cette question seulement, on suppose n = 2 et soit A = [ a c

b d
] ∈ M2 vérifiant la condi-

tion (C2). Montrer que c = b ou bien (b ≠ 0 et c = −b et a = d). En déduire que A vérifie (C4).
Dans toute la suite de cette partie, on se donne A ∈ Mn vérifiant les conditions équivalentes (C2), (C3).
Q 8) Montrer que, pour tout réel λ, la matrice A − λIn vérifie (C2) et (C3).
Q 9) En déduire que A et A⊺ ont les mêmes sous-espaces propres et qu’ils sont deux à deux orthogonaux.

Q 10) En utilisant la question précédente, déterminer une condition nécessaire et suffisante sur la matrice
A pour qu’elle soit diagonalisable.

Q 11) a) Montrer que tout endomorphisme de Rn admet au moins une droite ou un plan stable.

b) Pour n ⩾ 3, montrer que A est orthogonalement semblable à une matrice du type [ A1 0
0 A2

],

où A1 ∈ Mp et A2 ∈ Mn−p vérifient (C3), avec p ∈ {1,2}. On pourra commencer par montrer qu’en
notant a l’endomorphisme X ↦ A.X, pour tout s.e.v. F de E stable par a, F ⊥ est aussi stable par a.

Q 12) Montrer que si A vérifie la condition (C3), alors A vérifie la condition (C4).

La condition ( C4 ) implique la condition ( C1 )

Soit Z = {z1, . . . , zn}, une famille de n complexes deux à deux distincts.

Q 13) a) Établir l’existence d’un unique polynôme P de Cn−1[X] tel que : ∀k ∈ {1, . . . , n}, P (zk) = zk
b) On suppose de plus que, pour tout k ∈ {1, . . . , n}, zk ∈ Z. Montrer alors que le polynôme P est

à coefficients réels.

Q 14) Soient (r, θ) ∈ R∗+ ×R et P ∈ R[X] tel que P (reiθ) = re−iθ. Montrer que P (rR(θ)) = (rR(θ))⊺.
Lorsque sin θ ≠ 0, on pourra utiliser la division euclidienne de P par le polynôme caractéristique χ
de la matrice rR(θ) deM2.

Q 15) Montrer que si A ∈ Mn vérifie la condition (C4), alors A vérifie la condition (C1).

Exponentielle d’une matrice normale

L’espace vectorielMn est désormais muni de la norme ∥.∥ définie par :

∀A = (Ai,j)1⩽i,j⩽n ∈ Mn, ∥A∥ = n. max
1⩽i,j⩽n

∣Ai,j ∣

Q 16) Montrer que, pour tout (A,B) ∈ M2
n, ∥AB∥ ⩽ ∥A∥∥B∥.

Pour A ∈ Mn et p ∈ N, on pose Sp(A) = ∑p
k=0

1
k!
Ak.

Q 17) Montrer que la suite (Sp(A))p∈N converge dansMn, vers une limite que l’on notera Exp(A), et que :

∀Q ∈ On, Exp (Q⊺AQ) = Q⊺Exp(A)Q

Q 18) Montrer que l’ensemble En constitué des matrices normales de Mn est un fermé de Mn. Qu’en
déduit-on pour Exp(A), lorsque A ∈ En ?

Q 19) a) Soit (r, θ) ∈ R ×R. Montrer que Exp(rR(θ)) = er cosθR(r sin θ).
b) En déduire que Exp (En) est l’ensemble des matrices deMn orthogonalement semblables aux

matrices diagonales par blocs, dont chaque bloc diagonal est : - soit du type (µ) ∈ M1, avec
µ > 0 - soit du type αR(β) ∈ M2, avec α > 0 et β ∈ R.

Ce qui suit n’est PAS à faire en DS : On note S++n l’ensemble des matrices symétriques de Mn

définies positives, et Fn l’ensemble des matrices B deMn vérifiant les deux conditions :

— les valeurs propres négatives de B sont de multiplicité paire

— il existe S ∈ S++n et T ∈ SOn telles que B = ST = TS.
Q 20) Démontrer que Exp (En) = Fn.

Q 21) La matrice B = (Bi,j) ∈ Mn définie par : Bi,j =
⎧⎪⎪⎨⎪⎪⎩

1 si 1 ⩽ i + 1 = j ⩽ n ou (i, j) = (n,1)
0 sinon

est-elle

l’exponentielle d’une matrice de En ?
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