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Devoir surveillé 6 d’après CCMP PSI 2020 : une solution

Q 1) — Réflexivité : ∀A ∈ Mn,A ORTS à A, car In ∈ On et A = I⊺nAIn.

— Symétrie : on veut montrer que ∀A,B ∈ Mn,A ORTS à B Ô⇒ B ORTS à A.

Or si Q ∈ On est tel que B = Q⊺AQ, comme Q⊺ = Q−1 ∈ On, on a B = Q−1AQ et donc
A = QBQ−1 = (Q⊺)⊺B.(Q⊺).

— Transitivité : ∀A,B,C ∈ Mn,A ORTS à B et B ORTS à C Ô⇒ A ORTS à C, car
si Q,Q′ ∈ On sont tels que B = Q⊺AQ et C = (Q′)⊺BQ′, alors QQ′ ∈ On et C =
(Q′)⊺Q⊺AQQ′ = (QQ′)⊺A (QQ′).

Donc la relation ORTS est bien une relation d’équivalence surMn.

Q 2) Soit S ∈ Sn. On a tS = S, donc :

— (C1)S⊺ = S = P (S) où P est le monôme P (X) =X.

— (C2)S est normale puisqu’elle commute avec elle-même.

— (C3) Pour tout X ∈ En, ∥S⊺X∥ = ∥SX∥ de façon évidente puisque S⊺ = S.
— (C4) D’après le théorème spectral, S est ORTS à une matrice diagonale, donc diagonale

par blocs avec des blocs diagonaux tous de taille (1,1), donc S vérifie ( C4 ).

Soit A ∈ An. On a A⊺ = −A, donc :

— (C1)A⊺ = −A = P (A) où P est le monôme P (X) = −X.

— (C2)A est normale puisque toute matrice A commute avec −A.

— (C3) Pour tout X ∈ En, ∥A⊺X∥ = ∥ −AX∥ = ∥AX∥ par homogénéité de la norme.

Q 3) Soit A ∈ On. A est inversible et A⊺ est l’inverse de A, et par Q1) b), on sait qu’il existe un
P ∈ R[X] tel que A−1 = P (A) donc (C1) est vérifiée.

En outre AA⊺ = A⊺A (= In) et A est une matrice normale donc (C2) est vérifiée.

Soit X ∈ En.∥AX∥ = ∥X∥ car l’endomorphisme de En canoniquement associé à A est une
isométrie. Il en est de même de l’endomorphisme de En canoniquement associé à A−1 = A⊺,
donc la condition (C3) est vérifiée.
Enfin(C4) est donnée par le théorème de réduction des isométries vectorielles du programme.

Q 4) La matrice T ∈ O2 est de type R(θ) ou S(θ), où θ ∈ R ( cf. le préambule). (a) CasT = S(θ).
Dans ce cas, la matrice M = rT est symétrique réelle, donc d’après la question 2 , elle vérifie
les conditions (C1) à (C4). (b) Cas T = R(θ).
Dans ce cas, la matrice M = rT = rR(θ) vérifie la condition (C4) de façon évidente ( M est
ORTS à elle-même), et elle vérifie la condition ( C1 ) puisque

M⊺ = r [ cos θ sin θ
− sin θ cos θ

] = 2r cos(θ)I2 − r [
cos θ − sin θ
sin θ cos θ

] ,

donc M⊺ = P (M) où P (X) = 2r cos(θ) −X ∈ R[X].
Q 5) Soit A ∈ Mn vérifiant la condition (C1). Puisque pour tout couple ( Q1,Q2 ) de polynômes,

Q1(A)Q2(A) = (Q1Q2) (A), alors AP (A) = P (A)A, et A est une matrice normale.

Q 6) a) Soit maintenant A ∈ Mn vérifiant la condition (C2), et X ∈ En. Alors :

∥A⊺X∥ = (A⊺X)⊺A⊺X =X⊺AA⊺X
(∗)= X⊺A⊺AX = (AX)⊺AX = ∥AX∥.

où (∗) utilise l’hypothèse (C2).
N.B. La même preuve en langage vectoriel en notant A∗ au lieu de A⊺ pour
désigner l’adjoint de X ↦ AX

∀ X ∈ En, (AX ∣AX) = (X ∣A∗AX) = (X ∣AA∗X) = ∣∣A∗X ∣∣2.

b) On vient de voir que (C3) donnait que pour tout X ∈ En,

(X ∣A⊺AX) = (X ∣AA⊺X) (†)
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Or pour deux matrices symétriques S1 et S2 la formule de polarisation permet de passer de
l’égalité

∀X ∈ En, (X ∣S1X) = (X ∣S2X)
à l’égalité

∀X,Y ∈ En, (Y ∣S1X) = (Y ∣S2X).

En effet en notant q1(X)− = (X ∣S1X), on a :

(Y ∣S1X) =
1

2
(q1(X + Y ) − q1(X) − q1(Y ))

Comme les matrices A⊺A et A.A⊺ sont symétriques, on déduit de (†) que :

∀X,Y ∈ En, (Y ∣A.A⊺X) = (Y ∣A⊺AX),

ce qui par unicité dans le théorème de Riesz donne finalement que A⊺A = AA⊺.

Q 7) Si A = (a b
c d

).

La conditionA.A⊺ = A⊺.A équivaut à

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a2 + b2 = a2 + c2

ac + bd = ab + cd
c2 + d2 = b2 + d2

. c’est-à-dire à :

⎧⎪⎪⎨⎪⎪⎩

b = εc
(a − b)(d − c) = 0

Dans le cas b = c, on a A symétrique.

Dans le cas b = −c, on a a = d et dans ce cas on peut supposer b = 0 puisque sinon on a aussi
c = 0 et on retombe dans le cas A symétrique.

Q 8) On calcule

(A − λI)⊺.(A − λI) = (A⊺ − λI)(A − λI),
= A⊺A − λA − λA⊺ + λ2I,

= A.A⊺λA − λA⊺ + λ2I,

= (A − λI)(A⊺ − λI)
= (A − λI)(A − λI)⊺.

Q 9) a)Si λ une valeur propre de A , et X un vecteur propre de A associé à λ, alors ∥(A − λIn)X∥ =
0, et, d’après la question 8 , puisque A vérifie la condition (C3) , ∥(A⊺ − λIn)X∥ = 0 ∶ X est
un vecteur propre de A⊺ associé à λ donc Eλ(A) ⊂ Eλ(A⊥).
Réciproquement, comme (A⊺)⊺ = A, on en déduit que ker (A − λIn) = ker (A⊺ − λIn), et A et
A⊺ ont les mêmes sous-espaces propres.

Remarque : pour toute matrice A ∈ Mn, Sp(A) = Sp(A⊺) puisque det(A − λI) = det(A −
λI)⊺ = det(A⊺ − λI), mais si A n’est pas une matrice normale comme ici, ils n’ont pas
forcément les mêmes s.e.v propres, par exemple si A est la matrice d’un projecteur p non
orthogonal, A⊺ est la matrice du projecteur sur (kerp)⊺ parallèlement à (Imp)⊥.
b) Ensuite, si λ1 et λ2 sont deux valeurs propres distinctes de A, et X1 et X2 deux vecteurs
propres respectivement associés à chacune des deux valeurs propres,

(X1∣AX2) = λ2(X1∣X2)

et
(X1∣AX2) = (A⊺X1∣X2) = λ1(X1∣X2)

car X1 est aussi un vecteur propre de A⊺, associé à la valeur propre λ1. Donc

(λ1 − λ2) (X1∣X2) = 0

, et X1 et X2 sont deux vecteurs orthogonaux, et les deux sous-espaces propres ker (A − λ1In)
et ker (A − λ2In) sont orthogonaux.
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Q 10) Si A est diagonalisable, ses sous-espaces propres étant deux à deux orthogonaux, A est ortho-
gonalement semblable à une matrice diagonale : A est une matrice symétrique. Finalement,
une matrice A vérifiant (C3) est diagonalisable si et seulement si elle est symétrique.

Q 11) a) Cf cours : soit f un tel endomorphisme. Si f admet une v.p. réelle c’est gagné

Sinon, on note A une matrice représentant f . Elle admet une v.p. complexe non réelle λ et
soit Z ∈Mn,1(C) tel que AZ = λZ.

On décompose λ = α + iβ avec (α,β) ∈ R2 et Z =X + iY avec X,Y ∈Mn,1(R).
Alors AX + iAY = αX − βY + i(αY + βX) En identifiant parties réelles et imaginaires :

⎧⎪⎪⎨⎪⎪⎩

AX = αX − βY,
AY = βX + αY

Mais ce système dit que si on note x et y les vecteurs de E représentés par X et Y alors le
plan Vect(x, y) est stable par f .

b) Ex. planche. Avec les notations de l’énoncé comme a laisse F stable, la matrice de a
dans une base o.n. respectant la décomposition E = F ⊕ F ⊥ sera de la forme : M = Q⊺AQ =

(A1 B
0 A2

).

On veut montrer que B = 0

Mais M⊺ = (A
⊺

1 0
B⊺ A⊺2

)

et en traduisant AA⊺ = A⊺A on obtient en part.

A⊺1A1 −A1A
⊺

1 = BB⊺

En prenant la trace dans cette égalité, on a Tr(B.B⊺) = 0 ce qui, en reconnaissant la norme
euclidienne de B au carré, donne B = 0.
(M2) En fait A1 est la matrice de la restriction de a à F stable.

Or avec la caractérisation (C3) des endomorphismes normaux, la restriction d’un endomor-
phisme normal à un s.e.v. stable est encore un endo. normal donc A⊺1A1 −A1A

⊺

1 = 0.
Q 12) On procède ici par récurrence forte sur la taille n de la matrice : on démontre la proposition

Pn : si A ∈ Mn vérifie (C3) ,A vérifie (C4). Le cas n = 1 est trivial, et le cas n = 2 a été
démontré à la question 7 . On considère un entier n ≥ 3, et on suppose que toute matrice de
Mk, k < n, vérifiant (C3) vérifie (C4). On considère alors une matrice A ∈ Mn vérifiant (C3).

D’après la question précédente, A est ORTS à une matrice du type ( A1 0
0 A2

), où A1 ∈ Mp

et A2 ∈ Mn−p, et p = 1 ou 2 . Les matrices A1 et A2 vérifient encore la condition (C3), et
soit par l’étude des cas en dimension 1 ou 2 , soit par hypothèse de récurrence, vérifient la
condition (C4) : il existe Q1 ∈ Op et Q2 ∈ On−p telles que les matrices Q1A1Q

⊺

1 et Q2A2Q
⊺

2

sont diagonales par blocs, avec des blocs diagonaux de taille 1×1 ou de la forme rR(θ), r > 0.

On vérifie alors que la matrice QAQ⊺, avec Q = ( Q1 0
0 Q2

) est diagonale par blocs, avec

des blocs diagonaux de taille 1 × 1 ou de la forme rR(θ), r > 0, la récurrence est établie.

Q 13) a) C’est une conséquence immédiate du théorème d’interpolation de Lagrange. Vu la question,
on va donc le redémontrer,

(M1) Unicité : la différence deux polynômes de Cn−1[X] vérifiant chacun P (zk) = zk pour
tout k = 1, . . . , n possède n racines deux à deux distinctes. C’est donc le polynôme nul, et les
deux polynômes sont égaux.

Existence : on vérifie que le polynôme P = ∑n
k=1 zkLk, où Lk = ∏i≠k

X−zi
zk−zi

, convient.

(M2) plus conceptuelle : algèbre linéaire pure

L’application φ ∶ Cn−1[X] → Cn, P ↦ (P (z1) , . . . , P (zn)), est clairement linéaire et injective
(car le seul polynôme de degré ⩽ n−1 admettant n racines distinctes est le polynôme nul). Et
comme les espaces Cn−1[X] et Cn sont de même dimension finie (à savoir n ), l’application
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φ est un isomorphisme. Ainsi le n-uplet (z1, . . . , zn) ∈ Cn a un unique antécédent par φ.
Autrement dit, il existe un unique P ∈ Cn−1[X] tel que pour tout k ∈ ⟦1;n⟧, P (zk) = zk.
b) Si pour tout k le complexe zk est dans l’ensemble Z, alors on peut appliquer l’hypothèse
sur les zk aux zk, on sait donc aussi que pour tout k ∈ ⟦1, n⟧,

P (zk) = zk = zk (†)

. Pour en déduire que P ∈ R[x], on note P =
n−1

∑
k=0

akz
k et P =

n−1

∑
k=0

akz
k. On veut donc montrer

que P = P .

Par le résultat d’unicité du a), il suffit de montrer que pour tout k ∈ ⟦1, n⟧,

P (zk) = P (zk)

et donc avec l’hypothèse sur P il suffit de montrer que

P (zk) = zk (‡)

Or l’égalité (†) s’écrit explicitement :

n−1

∑
i=0

ai(zk)i = zk

donc en conjuguant cette égalité on a :

n−1

∑
i=0

aiz
i
k = zk

ce qui est exactement (‡).
Q 14) On suit l’indication de l’énoncé.

● Si sin(θ) = 0,R(θ) = ϵI2, avec ϵ = ±1.
Par hypothèse dans ce cas P (ϵr) = ϵr (∗).
Or ici P (rR(θ)) = P (ϵrI2) = P (ϵr)I2 donc avec (∗) ;

P (rR(θ)) = ϵrI2 = (rR(θ))⊺.

● Sinon, on note χ le polynôme caractéristique de rR(θ) :

χ =X2 − 2r cos(θ)X + r2 = (X − reiθ) (X − re−iθ) .

Par le théorème de division euclidienne, il existe un polynôme Q ∈ R[X] et deux réels a et b
tels que

P = χ ×Q + aX + b. (0)
On évalue cette relation polynomiale avec X → reiθ :

P (reiθ) = areiθ + b, (1)

comme par déf. de P , on a :
P (reiθ) = re−iθ (2)

on déduit de (1) et (2) que :

⎧⎪⎪⎨⎪⎪⎩

ar cos(θ) + b = r cos(θ),
ar sin(θ) = −r sin(θ)

et comme r > 0 et sin(θ) ≠ 0, on conclut que :

a = −1 et b = 2r cos(θ).
Ensuite, grâce au théorème de Cayley-Hamilton, si on évalue la relation polynomiale (0) via
X → rR(θ) :

P (rR(θ)) = arR(θ)+bI2 = −r (
cos(θ) − sin(θ)
sin(θ) cos(θ) )+2r cos(θ)I2 = (

r cos(θ) r sin(θ)
−r sin(θ) r cos(θ) ) = (rR(θ))

⊺
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Q 15) Soit A ∈ Mn vérifiant la condition (C4). A est ORTS à une matrice B de la forme

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 0 0
0 ⋱

ak
r1R (θ1)

⋱ 0
0 0 rlR (θl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, où a1, . . . , ak

sont des réels, r1, . . . , rl des réels strictement positifs, et θ1, . . . , θl des réels. Notons z1, . . . , zm
l’ensemble des éléments de la liste [a1, . . . , ak, r1eiθ1 , r1e−iθ1 , . . . , rleiθl , rle−iθl]. Les complexes
z1, . . . , zm sont deux à deux distincts, et, d’après la question 13 , il existe un polynôme P
de Cm−1[X] tel que P (zj) = zj pour tout j = 1 . . .m. Ainsi P (aj) = aj pour tout j = 1 . . . k
et P (rjeiθj) = rje−iθj pour tout j = 1 . . .m. De plus, pour tout k = 1 . . .m, zk ∈ {z1, . . . , zm}.
Ainsi P est à coefficients réels par la Q13 b). On vérifie alors, par le calcul par blocs et le
résultat de la question 14 , que P (B) = B⊺, puis que P (A) = A⊺.

Q 16) SiAB = (Ci,j), alors, pour tout couple (i, j) d’entiers compris entre 1 et n,Ci,j = ∑n
k=1Ai,kBk,j ,

et ∣Ci,j ∣ ≤ ∑n
k=1 ∣Ai,k ∣ ∣Bk,j ∣ ≤ n∥A∥∞ ⋅ ∥B∥∞, ce qui prouve que ∥C∥∞ ≤ n∥A∥∞ ⋅ ∥B∥∞ et en

multipliant par n, on a le résultat sur la norme de l’énoncé.

Q 17) La suite (Sp(A)) est une somme partielle de série dans un espace vectoriel de dimension finie
donc on sait qu’il suffit de montrer qu’elle converge absolument pour une norme de notre
choix. On choisit la norme de la question précédente qui est une norme d’algèbre.

Ainsi pour cette norme ∥Ak∥/k! ≤ ∥A∥k/k! et ce majorant est terme général de série conver-
gente, on conclut par le théorème de comparaison pour les séries à termes positfs.

Si maintenant Q ∈ On, et p est un entier naturel,

Sp (Q⊺AQ) =
p

∑
k=0

(Q⊺AQ)k

k!

=
p

∑
k=0

Q⊺AkQ

k!
carQ⊺Q = In

= Q⊺ (
p

∑
k=0

Ak

k!
)Q

= Q⊺Sp(A)Q
Ð→

p→+∞
Q⊺Exp( A)Q

le dernier passage à la limite étant justifié par le fait que M ∈ Mn ↦ Q⊺MQ est une appli-
cation linéaire sur un espace de dimension finie, donc est continue.

Par unicité de la limite, on a bien montré que

Exp (Q⊺AQ) = Q⊺ AQ

Q 18) a) L’application Φ ∶ A ∈ Mn ↦ A⊺A − AA⊺ est continue par continuité de la transposition
(linéaire en dim. finie) et du produit matriciel. On en déduit que comme En = Φ−1({0}), c’est
une partie fermée deMn. Si A ∈ En et p est un entier naturel, alors Sp(A) ∈ En.‘
b) On remarque d’abord que si A ∈ En alors Sp(A) ∈ En pour tout p.

En effet ; puisque pour tout k, (Ak)⊺ = (A⊺)k, et pour tout k, l, Ak.(A⊺)l = (A⊺)l.Ak donc
on a :

Sp(A)Sp(A)⊺ =
p

∑
k=0

Ak

k!
)(

p

∑
l=0

(A⊺)l
l!

= ∑
k≤p,l≤p

Ak(A⊺)l
k!l!

= ∑
k≤p,l≤p

(A⊺)lAk

k!l!

= Sp(A)⊺.Sp(A)
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Puisque En est une partie fermée deMn, la limite de la suite (Sp(A)) est donc encore dans
En : donc Exp(A) est encore une matrice normale.

Q 19) a) On sait que pour tout k ∈ N,R(θ)k = R(kθ). Donc pour tout p ∈ N,

Sp(rR(θ)) =
p

∑
k=0

rk

k!
R(kθ) =

⎡⎢⎢⎢⎢⎣

∑p
k=0

rk cos(kθ)
k!

−∑p
k=0

rk sin(kθ)
k!

∑p
k=0

rk sin(kθ)
k! ∑p

k=0
rk cos(kθ)

k!

⎤⎥⎥⎥⎥⎦
. (∗)

Or

p

∑
k=0

rk cos(kθ)
k!

= Re(
p

∑
k=0

rk exp(ikθ)
k!

)

= Re(
p

∑
k=0

(r exp(iθ))k
k!

)

Ð→
p→+∞

Re(exp(r exp(iθ))) = Re(exp(r cos(θ) + ir sin(θ)))

Ð→
p→+∞

Re(er cos(θ)(cos(r sin(θ)) + i sin(r sin(θ))) = er cos(θ) cos(r sin(θ))

De même

p

∑
k=0

rk sin(kθ)
k!

Ð→
p→+∞

er cos(θ) sin(r sin(θ))

Ainsi, en passant à la limite dans (∗), on obtient :

exp(rR(θ)) = [ er cos(θ) cos(r sin(θ)) −er cos(θ) sin(r sin(θ))
er cos(θ) sin(r sin(θ)) er cos(θ) cos(r sin(θ)) ]

ce qui est la formule demandée.

b) Soit A ∈ En. Il existe une matrice orthogonale Q telle Q⊺AQ est de la forme

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 0 0
0 ⋱

ak
r1R (θ1)

⋱ 0
0 0 rlR (θl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

où a1, . . . , ak sont des réels, r1, . . . , rl des réels strictement positifs, et θ1, . . . , θl des réels.

D’après les règles du calcul par blocs,

Exp(A) =Q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ea1 0 0
0 ⋱

eak

exp(r1R (θ1))
⋱ 0

0 0 exp(rlR (θl))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Q−1

=Q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ea1 0 0
0 ⋱

eak

er1 cos(θ1R (r1 sin(θ1)))
⋱ 0

0 0 erl cos(θlR (rl sin(θl)))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Q−1

et Exp(A) est bien ORTS à une matrice du type demandé.
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Réciproquement, une matrice de la forme

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

µ1 0 0
0 ⋱

µk

α1R (β1)
⋱ 0

0 0 αlR (βl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

où µ1, . . . , µk, α1, . . . , αl sont des réels strictement positifs, et β1, . . . , βl des réels, est l’expo-
nentielle de la matrice

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 0 0
0 ⋱

ak
r1R (θ1)

⋱ 0
0 0 rlR (θl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

où aj = ln (µj) , rj =
√

ln (αj)2 + β2
j et θj est un réel vérifiant cos (θj) = ln(αj)

rj
et sin (θj) = βj

rj
.

D’où l’équivalence demandée.
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