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DEVOIR SURVEILLE 6 D’APRES CCMP PSI 2020 : UNE SOLUTION

Q1)

Q 3)

Q4)

Q5)

Q 6)

— Réflexivité : VAe M,,, AORTS & A, car I, € O,, et A=1I]AI,.

— Symétrie : on veut montrer que VA, B e M,,, A ORTS & B=— B ORTS a A.

Orsi Qe @, est tel que B=QTAQ, comme QT =Q '€, ona B=Q 'AQ et donc
A=QBQ " =(Q")'B.(Q").

— Transitivité : VA, B,C € M,,,A ORTS a B et B ORTS a C = A ORTS a C, car
si Q,Q" € O, sont tels que B = QTAQ et C = (Q')"BQ’, alors QQ' € O, et C =
(@)7QTAQQ" = (QQ)" A(QQ").

Donc la relation ORTS est bien une relation d’équivalence sur M,,.
Soit S€S,. On a tS =9, donc :

— (C1)ST=S5=P(S) ot P est le mondéme P(X) = X.

— (Cz2) S est normale puisqu’elle commute avec elle-méme.

— (C3) Pour tout X € E,,,|STX| = |SX]| de fagon évidente puisque S* = S.

— (C4) D’apres le théoreme spectral, S est ORTS & une matrice diagonale, donc diagonale
par blocs avec des blocs diagonaux tous de taille (1,1), donc S vérifie ( Cy ).

Soit A€ A,. Ona A" = -A, donc :
— (C1)AT=-A=P(A) ou P est le monéme P(X) =-X.
— (C32) A est normale puisque toute matrice A commute avec —A.
— (C3) Pour tout X € E,, |ATX|| = | - AX| = |AX|| par homogénéité de la norme.

Soit A € O,,. A est inversible et AT est I'inverse de A, et par Q1) b), on sait qu’il existe un
PeR[X] tel que A™! = P(A) donc (C1) est vérifiée.

En outre AAT = ATA (= I,) et A est une matrice normale donc (C2) est vérifiée.

Soit X € E,.||AX]|| = |X| car 'endomorphisme de F,, canoniquement associé & A est une
isométrie. Il en est de méme de I’endomorphisme de E,, canoniquement associé & A™! = AT,
donc la condition (C3) est vérifide.

Enfin(C,) est donnée par le théoréme de réduction des isométries vectorielles du programme.
La matrice T € Oz est de type R(0) ou S(8), ou § € R ( cf. le préambule). (a) CasT = S(6).
Dans ce cas, la matrice M = rT est symétrique réelle, donc d’apres la question 2 , elle vérifie
les conditions (C1) & (C4). (b) Cas T = R(0).

Dans ce cas, la matrice M =T = rR(#) vérifie la condition (C4) de fagon évidente ( M est
ORTS & elle-méme), et elle vérifie la condition ( Cy ) puisque

T cosf sinf | _ ~ cosf —sinf
M _T[—Sinﬁ cos@]_%ms(a)]2 T[ sinf cos@ |’

donec MT = P(M) ot P(X) =2rcos(f) - X e R[X].
Soit A € M,, vérifiant la condition (C}). Puisque pour tout couple ( Q1,Q2 ) de polynémes,
Q1(A)Q2(A4) =(Q1Q2) (A), alors AP(A) = P(A)A, et A est une matrice normale.

a) Soit maintenant A € M,, vérifiant la condition (C3), et X € E,,. Alors :
[ATX] = (ATX) ATX = XTAATX @ XTATAX = (AX)TAX = |AX].
ou (*) utilise 'hypothese (Cs).
N.B. La méme preuve en langage vectoriel en notant A* au lieu de A" pour
désigner I’adjoint de X — AX
VXeE, (AX|AX)=(X|A*AX)=(X]AA*X)=]|A*X|>.
b) On vient de voir que (C3) donnait que pour tout X € E,,,

(X|ATAX) = (X]AATX) ()



Q7

Q9)

Or pour deux matrices symétriques S7 et S la formule de polarisation permet de passer de
Iégalité

VX €B,, (X[S$1X)=(X|S:X)
a 'égalité
VXY € B, (Y[S1X) = (V]S X).

En effet en notant ¢ (X)- = (X|51X), on a :
1
(Y|5:1X) = §(Q1(X +Y) - q(X) -1 (Y))
Comme les matrices ATA et A.AT sont symétriques, on déduit de (1) que :
VXY € E,, (Y]AATX) = (Y|ATAX),

ce qui par unicité dans le théoreme de Riesz donne finalement que ATA = AAT.

. a b
SlA—(C d)'
a?+b’=d’+c

La condition A.AT = AT. A équivaut &{ac+bd = ab+cd .c’est-a-dire a: {
A+d?=b*+d?

2 2

b=cc
(a-b)(d-¢)=0

Dans le cas b= ¢, on a A symétrique.
Dans le cas b= —c, on a a = d et dans ce cas on peut supposer b = 0 puisque sinon on a aussi
c =0 et on retombe dans le cas A symétrique.

On calcule

(A-XD)T.(A-XI) = (AT-XD)(A-)\I),
= ATA-XA- MAT+ N2,
= AATXMA- MAT+ N,
= (A-XD)(AT-AD)
= (A-XD)(A-XD)".

a)Si A une valeur propre de A , et X un vecteur propre de A associé & A, alors |(A - AI,) X| =
0, et, d’apres la question 8 , puisque A vérifie la condition (C3), (AT - AL,) X|| =0: X est
un vecteur propre de AT associé & A donc E)(A) c E\(A').

Réciproquement, comme (A7) = A, on en déduit que ker (A - \I,,) = ker (AT = \I,,), et A et
AT ont les mémes sous-espaces propres.

Remarque : pour toute matrice A € M,,, Sp(A) = Sp(A") puisque det(A - A\I) = det(A -
A)T = det(AT — AI), mais si A n’est pas une matrice normale comme ici, ils n’ont pas
forcément les mémes s.e.v propres, par exemple si A est la matrice d’un projecteur p non
orthogonal, AT est la matrice du projecteur sur (kerp)” parallelement & (Imp)*.

b) Ensuite, si A\; et A2 sont deux valeurs propres distinctes de A, et X; et Xo deux vecteurs
propres respectivement associés a chacune des deux valeurs propres,

(X1]AX2) = Mo (X1 |X2)

et
(X1]AX5) = (ATX1|X3) = A\ (X1|X3)

car X est aussi un vecteur propre de A", associé a la valeur propre ;. Donc
()\1 - )\2) (X1|X2) = 0

, et X1 et Xo sont deux vecteurs orthogonaux, et les deux sous-espaces propres ker (A — A1 1,,)
et ker (A — \21,) sont orthogonaux.



Q 10)

Q11)

Q 12)

Q 13)

Si A est diagonalisable, ses sous-espaces propres étant deux a deux orthogonaux, A est ortho-
gonalement semblable & une matrice diagonale : A est une matrice symétrique. Finalement,
une matrice A vérifiant (C3) est diagonalisable si et seulement si elle est symétrique.

a) Cf cours : soit f un tel endomorphisme. Si f admet une v.p. réelle c’est gagné

Sinon, on note A une matrice représentant f. Elle admet une v.p. complexe non réelle A et
soit Z € M, 1(C) tel que AZ = \Z.

On décompose A = a +if3 avec (o, 3) e R? et Z = X +iY avec X,Y € M, 1(R).

Alors AX +iAY =aX - Y +i(aY + fX) En identifiant parties réelles et imaginaires :

AX =aX - BY,
AY = BX +aY

Mais ce systeme dit que si on note x et y les vecteurs de E représentés par X et Y alors le
plan Vect(z,y) est stable par f.

b) Ex. planche. Avec les notations de I’énoncé comme a laisse F stable, la matrice de a
dans une base o.n. respectant la décomposition E = F & F* sera de la forme : M = QTAQ =

A, B
0 A

On veut montrer que B =0
AT 0
VA L
Mais M' = (BT A;)
et en traduisant AAT = AT A on obtient en part.

ATA; - A Al = BB

En prenant la trace dans cette égalité, on a Tr(B.B") =0 ce qui, en reconnaissant la norme
euclidienne de B au carré, donne B = 0.

(M2) En fait A; est la matrice de la restriction de a & F' stable.

Or avec la caractérisation (Cs) des endomorphismes normaux, la restriction d'un endomor-
phisme normal & un s.e.v. stable est encore un endo. normal donc A]A; - A1 A] =0.

On procede ici par récurrence forte sur la taille n de la matrice : on démontre la proposition
Pn i si A e M, vérifie (Cs3), A vérifie (Cy). Le cas n = 1 est trivial, et le cas n = 2 a été
démontré a la question 7 . On consideére un entier n > 3, et on suppose que toute matrice de
My, k < n, vérifiant (C3) vérifie (Cy). On considere alors une matrice A € M,, vérifiant (C3).
D’apres la question précédente, A est ORTS & une matrice du type ( %1 /(1)2 ), ou A; e M,
et Ay e M,,_p, et p=1ou 2 . Les matrices A; et Ay vérifient encore la condition (Cj3), et
soit par ’étude des cas en dimension 1 ou 2 , soit par hypothese de récurrence, vérifient la
condition (Cy) : il existe Q1 € O, et Q2 € O,_, telles que les matrices Q1 A41Q] et Q2420
sont diagonales par blocs, avec des blocs diagonaux de taille 1 x 1 ou de la forme rR(0),r > 0.
Q1 0
0 @2

des blocs diagonaux de taille 1 x 1 ou de la forme rR(0),r > 0, la récurrence est établie.

On vérifie alors que la matrice QAQT, avec Q = ( ) est diagonale par blocs, avec

a) C’est une conséquence immédiate du théoreme d’interpolation de Lagrange. Vu la question,
on va donc le redémontrer,

(M1) Unicité : la différence deux polynémes de C,,_1[X] vérifiant chacun P (z;) = Zx pour
tout k= 1,...,n possede n racines deux a deux distinctes. C’est donc le polynéme nul, et les
deux polynomes sont égaux.

Existence : on vérifie que le polynéme P = Y.}'_; Zx Lg, ot Ly = [T;zp %, convient.

(M2) plus conceptuelle : algébre linéaire pure

L’application ¢ : C,,-1[X] > C", P~ (P (21),..., P (2n)), est clairement linéaire et injective
(car le seul polynome de degré < n—1 admettant n racines distinctes est le polynoéme nul). Et
comme les espaces C,,_1[X] et C" sont de méme dimension finie (& savoir n ), Papplication



¢ est un isomorphisme. Ainsi le n-uplet (z1,...,%,) € C® a un unique antécédent par ¢.
Autrement dit, il existe un unique P € C,,_1[X] tel que pour tout k € [1;n], P (zx) = Z.

b) Si pour tout k le complexe Zj est dans I’ensemble Z, alors on peut appliquer I’hypothese
sur les z;, aux Zg, on sait donc aussi que pour tout k € [1,n],

P(ER)=zn=2 (1)

n-1 _ n-1
. Pour en déduire que P € R[z], on note P = > az" et P= 3 @z2". On veut donc montrer
k=0 k=0
que P =P.
Par le résultat d’unicité du a), il suffit de montrer que pour tout k € [1,n],
F(Zk) = P(Zk)
et donc avec I’hypothese sur P il suffit de montrer que

P(z) =7 (1)
Or 1’égalité () s’écrit explicitement :

n-1 )

> ai(z)' = 2

=0

donc en conjuguant cette égalité on a :

n-1 .
> @iz =7
i=0

ce qui est exactement ().
Q 14) On suit I'indication de I’énoncé.
e Sisin(f) =0, R(0) = ely, avec € = 1.
Par hypothese dans ce cas P(er) =er (*).
Or ici P(rR(0)) = P(erlz) = P(er)ls donc avec (*);
P(rR(0)) =erly = (rR(0))".
e Sinon, on note x le polynéme caractéristique de rR(6) :
X =X?-2rcos(0)X +1? = (X —re") (X —re™™).

Par le théoréme de division euclidienne, il existe un polynéme @ € R[ X ] et deux réels a et b
tels que

P=xxQ+aX+b. (0)
0.

On évalue cette relation polynomiale avec X — re’
P (reia) =are® +b, (1)
comme par déf. de P, on a :
P (rew) =re”® (2)
on déduit de (1) et (2) que :

arsin(0) = —rsin(0)

{ar cos(0) + b =rcos(6),

et comme 7 >0 et sin(#) # 0, on conclut que :

a=-1 et b=2rcos(0).

Ensuite, grace au théoreme de Cayley-Hamilton, si on évalue la relation polynomiale (0) via
X —>rR(9) :

P(rR(6)) = arR(0)+bI, = —r (ij((gg ‘ij;(;)))+2mos(9)12 :( _7":;);((99)) :::;((Z% ): (rR(6))"



Q 15)

Q 16)

Q17)

Q 18)

Soit A € M,, vérifiant la condition (Cy). A est ORTS & une matrice B de la forme

aq 0 0
0o -
Qg N
R (01) , ol ay,...,ak
0

0 0 TZR (9[)
sont des réels, r1,...,r; des réels strictement positifs, et 61, ...,0; des réels. Notons z1,..., zm
I’ensemble des éléments de la liste [al, o ap, €0 e et Tle_w’]. Les complexes
Z1,-..,2m sont deux a deux distincts, et, d’apres la question 13 , il existe un polynéme P
de C,,-1[X] tel que P (z;) = Z; pour tout j = 1...m. Ainsi P (a;) = a; pour tout j=1...k
et P(rjewf) =r;e"% pour tout j = 1...m. De plus, pour tout k= 1...m, %% € {z1,...,2m}.

Ainsi P est & coefficients réels par la Q13 b). On vérifie alors, par le calcul par blocs et le
résultat de la question 14 , que P(B) = BT, puis que P(A) = A".
Si AB = (C; ), alors, pour tout couple (4, j) d’entiers compris entre 1 et n, C; ; = ¥.7'_; A; 1B j,
et |Ci ] < Yhoq |Aikl|Br,j| € nf|Ale - | Boo, ce qui prouve que [Clleo < n|Afoo - [ Bl €t en
multipliant par n, on a le résultat sur la norme de 1’énoncé.
La suite (S,(A)) est une somme partielle de série dans un espace vectoriel de dimension finie
donc on sait qu’il suffit de montrer qu’elle converge absolument pour une norme de notre
choix. On choisit la norme de la question précédente qui est une norme d’algebre.
Ainsi pour cette norme |A¥|/k! < |A||*/k! et ce majorant est terme général de série conver-
gente, on conclut par le théoreme de comparaison pour les séries a termes positfs.
Si maintenant @ € O,,, et p est un entier naturel,
(QT4Q)"

k!
Q A*Q

T car QTQ =1,

M=

S, (QTAQ)

T
<

M=

k

A
- @ (S)e

= QTSP(A)Q
—  Q"Exp(A)Q

p—>+oo

I
(=)

le dernier passage a la limite étant justifié par le fait que M € M,, » Q"M Q est une appli-
cation linéaire sur un espace de dimension finie, donc est continue.
Par unicité de la limite, on a bien montré que

Exp (QTAQ) = Q" AQ

a) L’application ® : A € M,, » ATA- AAT est continue par continuité de la transposition
(linéaire en dim. finie) et du produit matriciel. On en déduit que comme &, = ®71({0}), c’est
une partie fermée de M,,. Si A € &, et p est un entier naturel, alors S,(A) € &,,.¢

b) On remarque d’abord que si A € &, alors S,(A4) € &, pour tout p.

En effet ; puisque pour tout k, (A*)T = (AT)*, et pour tout k,I, A¥.(AT)! = (AT)". A donc
on a :

Sp(A)Sp(A)T

M=
=
M=

(AT)lAk
k<pil<p k!
= Sp(A4)7.5(4)



Puisque &, est une partie fermée de M,,, la limite de la suite (S,(A)) est donc encore dans
&, : donc Exp(A) est encore une matrice normale.

Q 19) a) On sait que pour tout k € N, R(6)* = R(kf). Donc pour tout p € N,

p  rFcos(ko) _ Zp ¥ sin(k6)
k=0 1 =0 Rl
R(ke) p ot Si’fl(k@) p  rFcos(k6) . (*)
Zk:O k! k=0 k!

Sp(rR(0)) = Z

kOk'
Or

Pk cos(kh) Pk exp(ik6)
2 ) Re(kzo Z' )

] (Z (rexp(i))t )

—  Re(exp(r exp(z@))) = Re(exp(rcos(0) +irsin(6)))

b
I
(e}

p—>+oo
—  Re(e">® (cos(rsin(f)) +isin(rsin())) = e cos(rsin(0))
p—>+oo
De méme
P
Z sm(k6‘) "5 gin(rsin(6))
=0 p—>+oo

Ainsi, en passant & la limite dans (%), on obtient :

"3 cos(rsin(f)) —e" @ sin(rsin(0))

exp(ri(6)) = e" @ sin(rsin(g)) e cos(rsin(h))

ce qui est la formule demandée.
b) Soit A € &,. Il existe une matrice orthogonale Q telle QT AQ est de la forme

ap 0 0
0o -
ag
B =
T‘1R (91)
0
0 0 mR (91)
ou ay,...,ax sont des réels, rq,...,7r; des réels strictement positifs, et 1, ...,0; des réels.

D’apres les regles du calcul par blocs,

e 0 ’
0o -
Exp(A) =Q - ‘
Xp = exp(r1 R (61))
0
. 0 exp(T’lR (01))
e 0 O
0o -
— eak )
—Q er cos(elR(rl Sin(91))) Q
0
O 0 ereos R (rysin(6;)))

et Exp(A) est bien ORTS & une matrice du type demandé.



Réciproquement, une matrice de la forme

w0 0
0o -
M
a1 R (B1) ’
0
0 0 aR(p)
OU L1, ..., bk, Q1,...,q; sont des réels strictement positifs, et 5q,...,5; des réels, est 'expo-
nentielle de la matrice
al O 0
0o -
ag
B=
r1R(61)
0
0 0 TZR(GI)

ouaj=In(y;),r; =+/In (aj)2 +[3J2 et 0; est un réel vérifiant cos (6;) = % et sin (6;) = ’f—j

D’ou I'équivalence demandée.



