MP Samedi 18 Janvier 2025

DEVOIR SURVEILLE 5 : SOLUTION

(Parties I et 11 : Centrale PC 2018

N.B. Le sujet de Centrale PC 2018 avait une partie III d’analyse numérique/algebre linéaire et
une partie IV de proba.
Q 1) a) Trois points & vérifier :
— fonction g, est continue sur R, étant la composée de fonctions usuelles, en particulier
continue par morceaux,

— D’apres le théoreme des croissances comparées,

9 22 z2
T°0,(x) = ———e -——]—0
g ( ) o/ 2 xP 20’2 T—>+00

Cela signifie que g, (z) = 0(1/2?) au voisinage de +o0. Or la fonction z ~ 1/z% est
intégrable au voisinage de +oo selon 'exemple de Riemann. D’apres le théoreme de
comparaison pour les fonctions intégrables, g, est par conséquent intégrable en +oo

— De méme, en —oo par parité.
Les trois points précédentes montrent que g, € 21 (R,R).

b) En effectuant le changement de variable u = x/(0v/2), qui s’inverse en x = 0v/2u, ce qui
donne dz = 0/2 du, on a, comme ¢ >0 :

+00 1 +00 x2
o (z)de = / . P
[oo Jgo(x)dx o ) exp( 20_2) T

exp (—uz) o2 du

1 /+oo
B oV 2m J-oo
+oo 1 +oo 2
/_oo go(x)da = ﬁ/_m e du

dont on conclut que
+o00
/ go(x)dx =1

c) Pour tout z € R,
() 1 -2z —z2 T —z2
)= ——x ——exp|—]=- exp| —
Jo o2r 202 P 202 o3\ 27 P 202

Pour tout z € R, g/ (x) est du signe de —z car 'exponentielle est toujours positive. La
fonction g, croit donc sur | - o0;0 [ et décroit sur ] 0;+oo].

d) Pour tout z € R,

"(x) L 1xe o +xx 22 e o
)= ———— xp| — | +x x — exp| —
9o o327 Pl 952 202 TP\ 902
B 1 9 9 —z2
_0_5\/%(!% -0 )exp(w

Celle-ci est du signe de x? — 02 : elle est positive sur ] - co;—o] U [o; +oo[, négative sur
[-0;0] et s’annule en changeant de signe en —o et 0. Ces deux points sont donc les
points d’inflexion de la gaussienne.




e)

Q2) a)

Q3) a)

Outre les points d’inflexion, on remarque la tangente horizontale en 0.

Soit £ € R.

— La fonction z — f(x)exp(—i2n&z) est continue par morceaux sur R car f l'est et
exp aussi.

— Pour tout z € R, |f(x) exp(-i2n€x)| = | f(x)]| et | f] est intégrable sur R par hypothese.

Donc, la fonction x — f(z)exp(-i2w€z) est c.p.m. et majorée en module par une fonc-
tion intégrable, elle est donc intégrable sur R pour tout £ € R.

Posons h(z,£) = f(x)exp(-i2n€x) pour tous z,£ € R, et appliquons le théoreme de
continuité des intégrales a parameétre.

— Pour tout £ e R,z — h(x,&) est continue par morceaux (et méme continue).
— Pour tout z € R, ¢ h(z,£) est continue.

— Pour tout (z,&) e R?, |h(x,€)| = |f(x)| et cette fonction est intégrable sur R.
Par conséquent La fonction F(f) est continue sur R.

Comme f est de classe C', on sait, par théoreme fondamental que pour tout z € R,
J@) -1 = [ @t

Comme ' est intégrable sur R, cette intégrale converge lorsque x tend vers +oo. Ainsi,
f possede une limite finie £ en +o00, et par continuité de la valeur absolue,

|f(2)] 2 €]

Par Uabsurde, si £ # 0, il existe a € R tel que |f(z)| > |¢|/2 pour tout x > a. Alors,
Vaora f |f(t)|dt>f %dt:%(a:—a)
¢
Or %(x—a) —— +00

T—>+o00

car on a supposé £ # 0, donc par comparaison :

L1l —— b0

Ir—+o00

ce qui contredit I'intégrabilité de f. Par conséquent ¢ = 0, et la fonction f tend vers 0
en +oo. On prouve de méme que la fonction f tend vers 0 en —ooc.

Par définition, pour £ € R,
FUN©= [ 1) exp(-iznge)de

(W) = f(@) < ua) = f(a)
On envisage I'I.P.P. suivante {v(m) _ exp(—i2nEx) = v/ (x) = ~2in€ exp(—i2n€x)

Le terme de bord u(z)v(z) tend vers 0 quand z tend vers +oo ou —oo car |u(x)v(z)| =
|f(2)] et on utilise le a).



Donc I'ILP.P est possible dans l'intégrale généralisée :

F()(© = @y exp(-iznen)) =+ [ 2iméf(x) exp(-i2neo)ds

Le crochet étant nul, on conclut que

F(f) (&) = 2imEF(£)(€) pour tout £ € R
Q4) a) SoitpeN.

— La fonction z - 2% exp (-z%) est continue sur R
— par le théoreme des croissances comparées,

22 exp (—xz) —0

Tr—>+00
donc z? exp (-2?) = o(1/z%) et on conclut comme au 1) a) par comparaison a
I'exemple de Riemann a 'intégrabilité au voisinage de +oo.

b) Soit p e N. Dans M, on envisage une L.P.P.

La quantité ?P*! exp (—:172) tend vers 0 lorsque x tend vers +oo et —oo d’apres le théoreme

des croissances comparées. On peut donc effectuer l'intégration par parties suivante :

M, = f+°° %P exp (—x2)dx

$2p+1 +oo +oo $2p+1
= [2 T OXP (—xg)] - f (—2x) exp (—x2) dx
p —

oo oo 2p+1
+ oo
= 2 f 227D exp (—xQ)dx
2p+ 1 J-
2
Propr1 P
Autrement dit : S
+
VpeN, My = 2~ M,

Montrons maintenant par récurrence que la propriété :

V7(2p)!
3”(29)=Mp:2Tp]?

est vraie pour tout p € N.
— 2(0) est vraie : en effet Mg = [~ exp (-2?) dz = /7 d’aprés le résultat fourni au
début de I’énoncé.
— Hérédité : Soit p € N tel que & (p) est vraie. Alors
2p+1
M
_2p+1/7(2p)!
2 22
VT(2p+1)!12p+2
S 22+lpl 9p 42
A D)!
P+l = oo
22(p+1) (p + 1)!

Mp+1 =

d’apres Z(p)
ce qui prouve que Z(p + 1) est vraie.

La récurrence est établie.



c) Soit £ € R. La fonction cosinus est développable en série entiere autour de 0 avec un
rayon de convergence infini, et on a pour tout x € R,

cos(2néx) = f (-1)" (2méx)?P
p=0 (2]))!
d’ou
+oo (_1)P(9 2p
exp (—x2) cos(2méx) = ), M exp (—xQ) z%P
p=0 (2p)
Si on pose, pour tout p e N, ¢, (&) = W, on a bien pour tout £ € R,
+ 00
exp (—xz) cos(2méx) = ) ¢,y (€) exp (—xQ) z?P
p=0

d) Soit £ € R. On a déja vu que les fonctions z — exp (—x2) et x — exp (—1’2) exp(-i2n&x)
sont intégrables sur R. L’intégrabilité d’une fonction équivaut a celle de sa partie réelle
et de sa partie imaginaire donc on peut écrire :

+o00

[+oo exp (—x2) exp(—2iméx)dx = [

+o00o

exp (—x2) cos(—2w&x)dx+i [ exp (—x2) sin(-2wéx)dx

La fonction x — exp (—xQ)sin(—27r§x) étant impaire, la seconde intégrale est nulle et
par parité de la fonction cos,

+ 00

/:W exp (—IQ) exp(—i2n€x)dx = / exp (—:1:2) cos(2wéx)dx

D’apres la question précédente,

[:o exp (—xz)cos(%r{x)dx = /_:o exp(—xQ)g(_l)é;(Wx%dx

Justifions la permutation de la somme et de I'intégrale. Posons, pour p € N et x € R,

(-1)P(2mE)*P 2
(2p)!

On sait déja que la série de fonctions ¥,y u, converge simplement et sa somme est la
fonction continue

up () = exp (-2°)

Z > exp (—:1:2) cos(2wéx)

Il reste a montrer que la série de terme général

I (1P @R ,,

(2p)!
est convergente. Pour tout p e N,

(-DP@2r)* ,,

exp (—mQ) dx

oo 2 a (2mE)?P e 2% 2
[m exp(—x ) 2p)! dr = )] [m T exp(—x )dx
_ (@re)*
2p)! 7
_ (2m9)* /7(2p)!
(2p)!  22ppl
reo (C1P@rO* o), (7€)
[oo exp(—xz) 2p)! 2| dx = /7 ol




On reconnailt a droite le terme général du développement en série entiere en 0 de la
fonction £ — /T exp (7?252), lequel est de rayon de convergence infini. Cela suffit pour
assurer la convergence, pour tout £ € R, de la série

Zf( 252)

peN

¢ On peut par conséquent intervertir la somme et I'intégrale. Cela donne

+o0 P(QrE)2P
[ exp (- )cos(27r§x)dx = Z ~ (CDP@rE)™ [Oo %P exp (—xQ) dz

had p=0 (2]))'
Z( 1P (2m€)* /7(2p)!
0 (2p)! 22pp)
s oy

— \/_ Z
[m exp (—xz) cos(2néx)dx = /7 exp (—71'252)

[}

En conclusion,
+o00
VEeR [ exp(—xQ)eXp(—iQW&E)dx = ﬁexp(—w2§2)

N.B. On a ici démontré que la transformée de Fourier de la fonction ”gaussienne”
T~ exp (—xQ) est également une fonction ”gaussienne”. Ce résultat peut s’obtenir d’une
autre maniere, plus rapide!, qui constitue un exercice classique. En posant

F(¢) = /_:o exp(—x2)exp(—127r§m)dx

on peut montrer (apreés avoir justifié proprement sa dérivabilité) que F vérifie ’équation
différentielle

F/(€) + 27%€ F(€) = 0
Sa résolution (avec la condition initiale F(0) = \/7 ) permet de retrouver I’expression

obtenue précédemment.
Soit £ € R. On a

exp(-i2méx)dx

+00 .7;2
Fan©- [ exp(—w)

Effectuons le changement de variable u = #/(0+/2) comme & la question 1) b). Alors

o3
\/_

=— ﬁexp (—7r2 (Uf\/§)2 ) d’apres la question précédente

NG
F (9o) (&) = exp (-27°0>¢)

F(95) (&) = " exp (—u?) exp(—i2r(Eov/2)u)du

. £
Par ailleurs,  g,/(€) = 27r CXP( gr2)

IS S (N SO
" Var/(2m0) p( 2/<2m>2)
gor (&) = o/ 2mexp (—27720252)

En posant p =1/(ov/27), on en déduit que

Il existe p € R tel que F (g, ) = (190



f) Pour o =1/V/2m, on a ¢’ = o et g, est un vecteur propre de F pour la valeur propre 1 :
go est égale a sa transformée de Fourier, ce qui est un résultat important.

Q 5) Posons, pour tout (¢,z) € RY xR,

1, 172 z?
B(t,2) = 9, /5275 (%) = NG (* +2t) “exp T 902 1 4t

- Montrons que la fonction B satisfait (i). Etant le produit et la composée de fonctions
usuelles, elle admet des dérivées partielles en tout (¢,z) e RT xR et

0B 1 2, 5 -3/2 9 -1/2 4 x?

(t,z)= — -2 2t 2) T — —

ot (47) \/271’( (7 r2t) (e 2t) (202 +41)2) P\ 202 v at
1

NG (o2 + 2t)5/2

Par ailleurs, si t est fixé, on a pour tout x € R,

(2* - (0% +2t)) exp (—205"_2%) (1)

9’ B
W(t’ r) = g:’/ﬁ+2t(x)
1 T

= —\/%(0—2 N 2t)5/2 (,1;2 _ (0'2 + 2t)) exp (—20_2 n 4t) (2)

en remplagant o par vV o? + 2t dans le résultat du calcul de la question 1) ¢).
En comparant (1) et (2), on a bien

0B 0’ B

E(t,x) = o2 (t,x)

-Montrons que B satisfait (iii) : pour tout x € R, la fonction B(-,x) est la composée de
fonctions continues en 0 , elle est donc continue en 0 , d’ou

1 x?
B(t, z) o B(0,z) = o exp (_M) =g, ()

ce qui signifie que la condition (iii) est également satisfaite.
Q 6) a) Soient t>0,£ €R et T >t de sorte que t €]0; T[. Alors :

— la fonction z — f(¢,x)exp(-i2w€x) est continue par morceaux sur R,
— pour tout = € R,
|f (¢, ) exp(-i2n&x)| = | f (L, 2)| < ()

avec ¢ est intégrable sur R.

On en déduit bien que la fonction = — f(t,x) exp(—i27€x) est intégrable sur R.
b) Soit £ € R. Pour tout ¢ > 0,

— +o00
(1.9 = [ ft.0)exp(-i2nga)da
On souhaite appliquer le théoreme de convergence dominée, & parametre continu.
On fixe un T > 0 et on considere la fonction; ¢ €]0, T[~ 7(t,6).
— on sait que Va €R, f(¢,&)exp(-i2n&x) v Jo (x) exp(—i27&x)
— on sait aussi que :
Viel0, T |f () exp(-i2ngx)| = [ f (¢, §)| < Pr(x)

avec ¢ intégrable indépendante de t.



Q)

Donc le théoreme de convergence dominée a parametre continu s’applique :

—

+o00
7.9 — [ go(@)exp(-iznca)da. = G5 (6).
a) Soient £ € R et T > 0. Posons, pour tout (¢,z) € R} xR,

@(tv Jf) = f(ta .I‘) exp(—i27r§x)
et appliquons le théoreme sur le caractere C' des intégrales & parametre & la fonction
F (&) sur Vintervalle ]0; TY.
(HO) Pour tout t > 0,z — ¢(t,x) est intégrable sur R d’apres la question 6) a)
(H1) Pour tout x € R, = o(t,z) est de classe C' sur R* par composition et

9 _of ior
57 (to) = = (tw) exp(—i2nr)

et pour tout ¢t >0,z — %—f(t, x) est continue par morceaux sur R.
(H2) Pour tout (t,z) €]0; T[xR, d’apres (i) et (ii),
<Pr(w)

00 |2 o ol |
2 k)| | )| = | 5x ()

avec ¢ intégrable, indépendante de t €]0, T[.

La fonction fest donc de classe C! sur |0; T[ pour tout T > 0, c’est-a-dire qu’elle est de
classe C! sur RY, et

F +o00
Vi >0, %(t,g) - [m g—{(t,x)exp(—ﬂﬂfx)dm
b) Soient £ e R,t >0 et T >¢. Les fonctions
of 0 f
Lty et S5
sont continues sur R car f est de classe C?, et d’aprés (ii), elles sont aussi intégrables

sur R car dominées respectivement par les fonctions intégrables yT et T donc les
transformées de Fourier de ces deux fonctions sont bien définies. Alors :

of k)
8—{(1&,5) = /:oo a—{(t,x) exp(—i2n€x)dx par a)
0
- f(a—{(t,')) (€) par déf.,
= 7—"(2?;(@ )) (¢) par la condition i

= 2in¢ f(%(t’ )) (¢) d’apres la question 3) b)

= (22 F(f(t,))(€) toujours d’apres la question 3) b)
= A% f(t,€) c.qfd.

c) Soit £ € R. D’apres la question précédente, la fonction ¢ — T, &) vérifie sur R} I'équation
différentielle linéaire homogene du premier ordre a coefficients constants

y' +4r?ey =0

donc il existe une constante K(€) telle que pour tout ¢ > 0, f(¢,€) = K(&) exp (—47725275).



Q 8) a) D’une part, pour tout £ € R, par continuité de exp :

F(t.€) = K(&) exp (-4n?€%t) —— K(&). (1)

t—0*
D’autre part, d’apres la question 6) ¢), pour tout £ € R
Ft.8) — 3(8). (2)
Enfin, on a vu & la question 4) e), que pour tout £ € R,
75(€) = exp (-2n°07¢?) . (3)
Par unicité de la limite, avec (1), (2),3), on conclut que, pour tout & €R,
K(¢) =exp (—27r202§2) .
b) Il suit des questions précédentes que, pour tous £ € R et ¢ > 0,
F(1,6) = K(©) exp (-4°2)
= exp (—27r202§2) exp (—47r2§2t)
= exp (—271'2 (02 + 2t) §2)
d’otu la conclusion demandée avec tout simplement v, = 1.

Scholie A ce stade, on a prouvé que pour f vérifiant i,ii, iii, sa transformée de Fourier f était
déterminée de facon unique. La question qui reste permet de revenir de f a f.

Q 9) a) On a prouvé & la fin de la partie I que, pour tout o > 0, il existe u € R tel que :

Jo = Hg -

2wo

En remplacant o par Vo2 + 2t : il existe u¢ » € R tel que pour tout € € R,

2
T/om5:(8) = 1,0 €XD —2671 = o exp (-27° (0% +2t) €7)
(27'r\/a'2+2t)2

c’est-a~-dire que
Tyamior = Mo f(t,°)
Mais par linéarité de l'intégrale et donc de la transformée de Fourier, ce résultat se
rééerit :
F (9 z7551) = F (o f(t,2)) .
Par le théoreme d’injectivité de F donné dans 1’énoncé, on obtient ’égalité de fonctions :
9 /ozar = Mo [ (L)
En outre, p , # 0 puisque g /—5; > 0. En posant A, = 1/4t,0, 11 vient finalement

f(t,) = A ogVo?+2t

b) Remarquons que I(t) = ]?(t,O) pour tout ¢t > 0. Le résultat de la question 7 b) prouve
que la fonction I est dérivable avec pour tout ¢ > 0,

I'(t) = %(t, 0) = —4n? x 02f(£,0) = 0

La dérivée de I est identiquement nulle, par conséquent la fonction I est constante sur
I'intervalle ]0, +oo[.



c) Les fonctions f(¢,-) et 9/o755; €tant intégrables sur R, on a pour tout ¢ > 0,

+ 00 +o0
[ f(t, I)dl’ = At,o‘ [ gm(l’)dx = )\t,a

[}

en se rappelant que d’apres la question 1) b) ,

+o00
Autrement dit, avec la notation du b)
Vit> 07 )\t,o' = I(t)

et la fonction I étant constante,

— + 00
Mo = Jim 1) = lim F(6,0)=5,(0) = [~ go(@)do=1
ol on a également appliqué le résultat de la question 6) b). Par conséquent,

Vt>0,f(t) =9 /5075

est I'unique solution a I’équation de la chaleur pour la condition initiale gaussienne g, .

Partie III : formule d’inversion de Fourier

Q 10) Question faite en T.D o on avait commencé par le faire pour z = 0 puis un changement de
variable.

Ici, on reprend la méme rédaction pour x quelconque Soit x € R et € > 0.
(f *un) (x) = f(x) = (up * f) (x) = f(2)
- [un (@~ f(@))at

La fonction f est continue au point z, donc il existe § > 0 tel que |f(x -t) — f(z)| < € pour
tout ¢ € [-0,d]. En utilisant I'inégalité triangulaire et la positivité de I'intégrale, on obtient
alors

&
(G * £) (@) = f@) < [ un®lf o =) - f(@)ldt

. f Ssun(t)dt+ [T u@lr -0 - p@lae ()

D’autre part

[ w0 - f@lat <21l [ una

par définition de I'approximation de 'unité, on obtient donc par majoration que

lim _: un (O)|f(x=t) - f(x)|dt =0

n—>+o0o

et de méme : .

lim U ()| f(x=1t) = f(x)|dt =0
n—+oo J§
Ainsi, avec (1) il existe ng € N tel que, pour tout n > ng, on a

4
(o + ) (@) = f(@)] <2642 [ un(D)dt <32 (§)

la derniere inégalité étant obtenue en majorant [_66 uy, (t)dt par f U, = 1 puisque u, > 0.s
R

La majoration (1) donne la conclusion (f * w,)(z) ol fx).



Q11)

a)

Si x # 0, alors

F (k) (2) = f (1 )‘”tdt
(1_7) mist 4 ¢int) gt

=2 fo (1 - E) cos(zt)dt

et une intégration par parties donne

f(kn)(x):2[(1—2)Sin(m:|:+;fonsin(xt)dt

T

_2 [_ cos(xt) ]n
0

nx T

= %(1 - cos(nz))

d’ou

F (kn) (z) = i sin? (n;)
(3)

F k) () =2 0"(1-3)dt:n.

n

Si z =0, alors

En conclusion, pour tout x € R,

ne
F (kp) (x) =nep (?) .
Idée : On relie les deux avec une LP.P & partir de I pour avoir le > en bas, aprés un
peu de trigonométrie nous donnera de sin?(t) en haut.
u(t) =1/t = u'(t) = -1/¢3,

v'(t) =sin(t) < v(t) = 1 - cos(t)
important de prendre la primitive qui s’annule en zéro pour ne pas créer une explosion
en zéro).

1-cos(t) " z 1 —cos(t

Alors I(z) = 1= cos(t) + f 7()1115

t o Jo 12
En écrivant 1 - cos(t) = 2sin?(¢/2) dans l'intégrale de droite et en faisant tendre z vers

+o0 25in?(t/2
Iinfini, on a I =0+ f %dt.
0

Par changement de variable u = t/2, et parité on a la conclusion. O

Soit I(x) = f smt(t) dt. Avec une 1.P.P. { (il est
0

(cf T.D. sur Weierstrass pour cette question aussi).

L’application ¢ est continue sur R. De plus, au voisinage de +oo ou —oo, [p(z)| < I%,
donc ¢ est intégrable au voisinage de +oo et de —oo.

Donc, pour tout n € N, la fonction K, est positive, continue et intégrable sur R. En

utilisant le changement de variable u = %F, on obtient

fRKn(z)dx:%/ﬂégp(%)dz:%/ﬂ%w(u)duzl

De méme, si § est un réel strictement positif donné, alors

+o00 +00 nr 1 +00
K = - -
[ e 2 [ o Lt

10



La fonction ¢ est intégrable sur R et lim,, o0 %‘S = +o0, donc

+0oo
lim e(u)du=0
n—+oo n5/2
et il s’ensuit que
+oo
lim K,(x)dz=0
n—+oo J§

De méme, on montre que lim,_, oo f:oi K, (z)dz = 0, ce qui prouve que (K,), - st
une approximation de 'unité.

Q 12) a) La fonction F(f) est continue et &, est nulle en dehors du segment [-,n,n] donc I,(z)
a bien un sens en tant qu’intégrale d’une fonction continue sur le segment [-n,n] et I'on

a 1@ =5 [ [ 5 dy)e=< ag

L’application (C,y) = kn(C)f(y)e*W=*) est continue, ainsi que I'application

Cro ka1 ay) e

et le théoréme de Fubini montre que

L) = Qi L ([ m@smecoay)ac
_ i¢(y-x)
- o [ ([ r@rmeseac) ay
- i¢(y—=)
- o L1 ([ Rn©erac) a
- o [ F@FR) G-y
= (f * Kn)(z).

b) La suite (K,),, est une approximation de I'unité, ce qui assure qu'a x fixé,
lim (£ + K,) () = £ (@), 1)

Par ailleurs, la suite de fonctions continues () définies sur R par

nx1
. 1 —ix
in(C) = 5 kn(QF(N)(=Q)e
converge simplement vers la fonction (elle aussi continue)
. 1 i
jiCm o F(0e
s
et, pour tout n € N* et tout ( € R, on a I’hypothese de domination
. 1
(O] < 5 IF D)
™

et F(f) est intégrable sur R. Le théoréme de convergence dominée donne

lim_ I, (x) = 5 ffﬂ(@ﬁ“@

n—>+o0o

soit, avec le changement de variable y = —C

lim I, (x) = 5 ffﬂ@ﬁ”@ 2)

n—+o0o

Par unicité de la limite, avec (1) et (2) on obtient donc la formule d’inversion de Fourier :

J@ =5 [F©Qe ac
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