
MP Samedi 18 Janvier 2025

Devoir surveillé 5 : solution�� ��Parties I et II : Centrale PC 2018

N.B. Le sujet de Centrale PC 2018 avait une partie III d’analyse numérique/algèbre linéaire et
une partie IV de proba.

Q 1) a) Trois points à vérifier :

— fonction gσ est continue sur R, étant la composée de fonctions usuelles, en particulier
continue par morceaux,

— D’après le théorème des croissances comparées,

x2gσ(x) =
x2

σ
√
2π

exp(− x
2

2σ2
) ÐÐÐ→

x→+∞
0

Cela signifie que gσ(x) = o (1/x2) au voisinage de +∞. Or la fonction x ↦ 1/x2 est
intégrable au voisinage de +∞ selon l’exemple de Riemann. D’après le théorème de
comparaison pour les fonctions intégrables, gσ est par conséquent intégrable en +∞

— De même, en −∞ par parité.

Les trois points précédentes montrent que gσ ∈L 1(R,R).
b) En effectuant le changement de variable u = x/(σ

√
2), qui s’inverse en x = σ

√
2u, ce qui

donne dx = σ
√
2 du, on a, comme σ > 0 :

∫
+∞

−∞

gσ(x)dx =
1

σ
√
2π
∫
+∞

−∞

exp(− x
2

2σ2
)dx

= 1

σ
√
2π
∫
+∞

−∞

exp (−u2)σ
√
2 du

∫
+∞

−∞

gσ(x)dx =
1√
π
∫
+∞

−∞

e−u
2

du

dont on conclut que

∫
+∞

−∞

gσ(x)dx = 1

c) Pour tout x ∈ R,

g′σ(x) =
1

σ
√
2π
× −2x
2σ2

exp(−x
2

2σ2
) = − x

σ3
√
2π

exp(−x
2

2σ2
)

Pour tout x ∈ R, g′σ(x) est du signe de −x car l’exponentielle est toujours positive. La
fonction gσ crôıt donc sur ] - ∞; 0 [ et décrôıt sur ] 0;+∞[.

d) Pour tout x ∈ R,

g′′σ(x) = −
1

σ3
√
2π
(1 × exp(−x

2

2σ2
) + x × −2x

2σ2
exp(−x

2

2σ2
))

= 1

σ5
√
2π
(x2 − σ2) exp(−x

2

2σ2
)

Celle-ci est du signe de x2 − σ2 : elle est positive sur ] −∞;−σ] ∪ [σ;+∞[, négative sur
[−σ;σ] et s’annule en changeant de signe en −σ et σ. Ces deux points sont donc les
points d’inflexion de la gaussienne.
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e) Outre les points d’inflexion, on remarque la tangente horizontale en 0.

Q 2) a) Soit ξ ∈ R.
— La fonction x ↦ f(x) exp(−i2πξx) est continue par morceaux sur R car f l’est et

exp aussi.

— Pour tout x ∈ R, ∣f(x) exp(−i2πξx)∣ = ∣f(x)∣ et ∣f ∣ est intégrable sur R par hypothèse.

Donc, la fonction x↦ f(x) exp(−i2πξx) est c.p.m. et majorée en module par une fonc-
tion intégrable, elle est donc intégrable sur R pour tout ξ ∈ R.

b) Posons h(x, ξ) = f(x) exp(−i2πξx) pour tous x, ξ ∈ R, et appliquons le théorème de
continuité des intégrales à paramètre.

— Pour tout ξ ∈ R, x↦ h(x, ξ) est continue par morceaux (et même continue).

— Pour tout x ∈ R, ξ ↦ h(x, ξ) est continue.
— Pour tout (x, ξ) ∈ R2, ∣h(x, ξ)∣ = ∣f(x)∣ et cette fonction est intégrable sur R.
Par conséquent La fonction F(f) est continue sur R.

Q 3) a) Comme f est de classe C1, on sait, par théorème fondamental que pour tout x ∈ R,

f(x) − f(0) = ∫
x

0
f ′(t)dt

Comme f ′ est intégrable sur R, cette intégrale converge lorsque x tend vers +∞. Ainsi,
f possède une limite finie ℓ en +∞, et par continuité de la valeur absolue,

∣f(x)∣ ÐÐÐ→
x→+∞

∣ℓ∣

Par l’absurde, si ℓ ≠ 0, il existe a ∈ R tel que ∣f(x)∣ ⩾ ∣ℓ∣/2 pour tout x ⩾ a. Alors,

∀x ⩾ a ∫
x

a
∣f(t)∣dt ⩾ ∫

x

a

∣ℓ∣
2

dt = ∣ℓ∣
2
(x − a)

Or
∣ℓ∣
2
(x − a) ÐÐÐ→

x→+∞
+∞

car on a supposé ℓ ≠ 0, donc par comparaison :

∫
x

a
∣f(t)∣dtÐÐÐ→

x→+∞
+∞

ce qui contredit l’intégrabilité de f . Par conséquent ℓ = 0, et la fonction f tend vers 0
en +∞. On prouve de même que la fonction f tend vers 0 en −∞.

b) Par définition, pour ξ ∈ R,

F (f ′) (ξ) = ∫
+∞

−∞

f ′(x) exp(−i2πξx)dx

On envisage l’I.P.P. suivante

⎧⎪⎪⎨⎪⎪⎩

u′(x) = f ′(x) ⇐ u(x) = f(x)
v(x) = exp(−i2πξx) ⇒ v′(x) = −2iπξ exp(−i2πξx)

Le terme de bord u(x)v(x) tend vers 0 quand x tend vers +∞ ou −∞ car ∣u(x)v(x)∣ =
∣f(x)∣ et on utilise le a).
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Donc l’I.P.P est possible dans l’intégrale généralisée :

F (f ′) (ξ) = [f(x) exp(−i2πξx)]+∞
−∞
+ ∫

+∞

−∞

2iπξf(x) exp(−i2πξx)dx

Le crochet étant nul, on conclut que

F (f ′) (ξ) = 2iπξF(f)(ξ) pour tout ξ ∈ R

Q 4) a) Soit p ∈ N.
— La fonction x↦ x2p exp (−x2) est continue sur R
— par le théorème des croissances comparées,

x2x2p exp (−x2) ÐÐÐ→
x→±∞

0

donc x2p exp (−x2) = o(1/x2) et on conclut comme au 1) a) par comparaison à
l’exemple de Riemann à l’intégrabilité au voisinage de ±∞.

b) Soit p ∈ N. Dans Mp on envisage une I.P.P.

La quantité x2p+1 exp (−x2) tend vers 0 lorsque x tend vers +∞ et −∞ d’après le théorème
des croissances comparées. On peut donc effectuer l’intégration par parties suivante :

Mp = ∫
+∞

−∞

x2p exp (−x2)dx

= [ x
2p+1

2p + 1
exp (−x2)]

+∞

−∞

− ∫
+∞

−∞

x2p+1

2p + 1
(−2x) exp (−x2)dx

= 2

2p + 1 ∫
+∞

−∞

x2(p+1) exp (−x2)dx

Mp =
2

2p + 1
Mp+1

Autrement dit :

∀p ∈ N,Mp+1 =
2p + 1
2

Mp

Montrons maintenant par récurrence que la propriété :

P(p) ∶Mp =
√
π(2p)!
22pp!

est vraie pour tout p ∈ N.
— P(0) est vraie : en effet M0 = ∫

+∞

−∞
exp (−x2)dx =

√
π d’après le résultat fourni au

début de l’énoncé.

— Hérédité : Soit p ∈ N tel que P(p) est vraie. Alors

Mp+1 =
2p + 1
2

Mp

= 2p + 1
2

√
π(2p)!
22pp!

=
√
π(2p + 1)!
22p+1p!

2p + 2
2p + 2

Mp+1 =
√
π(2(p + 1))!

22(p+1)(p + 1)!

d’après P(p)

ce qui prouve que P(p + 1) est vraie.
La récurrence est établie.
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c) Soit ξ ∈ R. La fonction cosinus est développable en série entière autour de 0 avec un
rayon de convergence infini, et on a pour tout x ∈ R,

cos(2πξx) =
+∞

∑
p=0

(−1)p

(2p)!
(2πξx)2p

d’où

exp (−x2) cos(2πξx) =
+∞

∑
p=0

(−1)p(2πξ)2p

(2p)!
exp (−x2)x2p

Si on pose, pour tout p ∈ N, cp(ξ) = (−1)
p
(2πξ)2p

(2p)!
, on a bien pour tout ξ ∈ R,

exp (−x2) cos(2πξx) =
+∞

∑
p=0

cp(ξ) exp (−x2)x2p

d) Soit ξ ∈ R. On a déjà vu que les fonctions x ↦ exp (−x2) et x ↦ exp (−x2) exp(−i2πξx)
sont intégrables sur R. L’intégrabilité d’une fonction équivaut à celle de sa partie réelle
et de sa partie imaginaire donc on peut écrire :

∫
+∞

−∞

exp (−x2) exp(−2iπξx)dx = ∫
+∞

−∞

exp (−x2) cos(−2πξx)dx+i∫
+∞

−∞

exp (−x2) sin(−2πξx)dx

La fonction x ↦ exp (−x2) sin(−2πξx) étant impaire, la seconde intégrale est nulle et
par parité de la fonction cos,

∫
+∞

−∞

exp (−x2) exp(−i2πξx)dx = ∫
+∞

−∞

exp (−x2) cos(2πξx)dx

D’après la question précédente,

∫
+∞

−∞

exp (−x2) cos(2πξx)dx = ∫
+∞

−∞

exp (−x2)
+∞

∑
p=0

(−1)p(2πξ)2p

(2p)!
x2pdx

Justifions la permutation de la somme et de l’intégrale. Posons, pour p ∈ N et x ∈ R,

up(x) = exp (−x2)
(−1)p(2πξ)2p

(2p)!
x2p

On sait déjà que la série de fonctions ∑p∈N up converge simplement et sa somme est la
fonction continue

x↦ exp (−x2) cos(2πξx)

Il reste à montrer que la série de terme général

∫
+∞

−∞

∣exp (−x2) (−1)
p(2πξ)2p

(2p)!
x2p∣dx

est convergente. Pour tout p ∈ N,

∫
+∞

−∞

∣exp (−x2) (−1)
p(2πξ)2p

(2p)!
x2p∣dx = (2πξ)

2p

(2p)! ∫
+∞

−∞

x2p exp (−x2)dx

= (2πξ)
2p

(2p)!
Mp

= (2πξ)
2p

(2p)!

√
π(2p)!
22pp!

∫
+∞

−∞

∣exp (−x2) (−1)
p(2πξ)2p

(2p)!
x2p∣dx =

√
π
(π2ξ2)p

p!

4



On reconnâıt à droite le terme général du développement en série entière en 0 de la
fonction ξ ↦

√
π exp (π2ξ2), lequel est de rayon de convergence infini. Cela suffit pour

assurer la convergence, pour tout ξ ∈ R, de la série

∑
p∈N

√
π
(π2ξ2)p

p!

‘ On peut par conséquent intervertir la somme et l’intégrale. Cela donne

∫
+∞

−∞

exp (−x2) cos(2πξx)dx =
+∞

∑
p=0

(−1)p(2πξ)2p

(2p)! ∫
+∞

−∞

x2p exp (−x2)dx

=
+∞

∑
p=0

(−1)p(2πξ)2p

(2p)!

√
π(2p)!
22pp!

=
√
π
+∞

∑
p=0

(−π2ξ2)p

p!

∫
+∞

−∞

exp (−x2) cos(2πξx)dx =
√
π exp (−π2ξ2)

En conclusion,

∀ξ ∈ R ∫
+∞

−∞

exp (−x2) exp(−i2πξx)dx =
√
π exp (−π2ξ2)

N.B. On a ici démontré que la transformée de Fourier de la fonction ”gaussienne”
x↦ exp (−x2) est également une fonction ”gaussienne”. Ce résultat peut s’obtenir d’une
autre manière, plus rapide !, qui constitue un exercice classique. En posant

F(ξ) = ∫
+∞

−∞

exp (−x2) exp(−i2πξx)dx

on peut montrer (après avoir justifié proprement sa dérivabilité) que F vérifie l’équation
différentielle

F′(ξ) + 2π2ξ F(ξ) = 0

Sa résolution (avec la condition initiale F(0) =
√
π ) permet de retrouver l’expression

obtenue précédemment.

e) Soit ξ ∈ R. On a

F (gσ) (ξ) = ∫
+∞

−∞

1

σ
√
2π

exp(− x
2

2σ2
) exp(−i2πξx)dx

Effectuons le changement de variable u = x/(σ
√
2) comme à la question 1) b). Alors

F (gσ) (ξ) =
σ
√
2

σ
√
2π
∫
+∞

−∞

exp (−u2) exp(−i2π(ξσ
√
2)u)du

= 1√
π

√
π exp (−π2(σξ

√
2)2) d’après la question précédente

F (gσ) (ξ) = exp (−2π2σ2ξ2)

Par ailleurs, gσ′(ξ) = 1

σ′
√

2π
exp (− ξ2

2σ′2
)

= 1√
2π/(2πσ)

exp(− ξ2

2/(2πσ)2
)

gσ′(ξ) = σ
√
2π exp (−2π2σ2ξ2)

En posant µ = 1/(σ
√
2π), on en déduit que

Il existe µ ∈ R tel que F (gσ) = µgσ′
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f) Pour σ = 1/
√
2π, on a σ′ = σ et gσ est un vecteur propre de F pour la valeur propre 1 :

gσ est égale à sa transformée de Fourier, ce qui est un résultat important.

Q 5) Posons, pour tout (t, x) ∈ R∗
+
×R,

B(t, x) = g√
σ2+2t

(x) = 1√
2π
(σ2 + 2t)−1/2 exp(− x2

2σ2 + 4t
)

- Montrons que la fonction B satisfait (i). Étant le produit et la composée de fonctions
usuelles, elle admet des dérivées partielles en tout (t, x) ∈ R∗

+
×R et

∂B

∂t
(t, x) = 1√

2π
(−2

2
(σ2 + 2t)−3/2 + (σ2 + 2t)−1/2 4x2

(2σ2 + 4t)2
) exp(− x2

2σ2 + 4t
)

= 1
√
2π (σ2 + 2t)5/2

(x2 − (σ2 + 2t)) exp(− x2

2σ2 + 4t
) (1)

Par ailleurs, si t est fixé, on a pour tout x ∈ R,

∂2 B

∂x2
(t, x) = g′′√

′′+2t
(x)

= 1
√
2π (σ2 + 2t)5/2

(x2 − (σ2 + 2t)) exp(− x2

2σ2 + 4t
) (2)

en remplaçant σ par
√
σ2 + 2t dans le résultat du calcul de la question 1) c).

En comparant (1) et (2), on a bien

∂B

∂t
(t, x) = ∂

2 B

∂x2
(t, x)

-Montrons que B satisfait (iii) : pour tout x ∈ R, la fonction B(⋅, x) est la composée de
fonctions continues en 0 , elle est donc continue en 0 , d’où

B(t, x) Ð→
t→0+

B(0, x) = 1

σ
√
2π

exp(− x
2

2σ2
) = gσ(x)

ce qui signifie que la condition (iii) est également satisfaite.

Q 6) a) Soient t > 0, ξ ∈ R et T > t de sorte que t ∈]0;T[. Alors :

— la fonction x↦ f(t, x) exp(−i2πξx) est continue par morceaux sur R,
— pour tout x ∈ R,

∣f(t, x) exp(−i2πξx)∣ = ∣f(t, x)∣ ⩽ ϕT(x)

avec ϕT est intégrable sur R.

On en déduit bien que la fonction x↦ f(t, x) exp(−i2πξx) est intégrable sur R.
b) Soit ξ ∈ R. Pour tout t > 0,

f̂(t, ξ) = ∫
+∞

−∞

f(t, x) exp(−i2πξx)dx

On souhaite appliquer le théorème de convergence dominée, à paramètre continu.

On fixe un T > 0 et on considère la fonction ; t ∈]0, T [↦ f̂(t, ξ).

— on sait que ∀x ∈ R, f(t, ξ) exp(−i2πξx) Ð→
t→0

gσ(x) exp(−i2πξx)
— on sait aussi que :

∀ t ∈]0, T [, ∣f(t, ξ) exp(−i2πξx)∣ = ∣f(t, ξ)∣ ≤ ΦT (x)

avec ΦT intégrable indépendante de t.
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Donc le théorème de convergence dominée à paramètre continu s’applique :

f̂(t, ξ) Ð→
t→0
∫
+∞

−∞

gσ(x) exp(−i2πξx)dx. = ĝσ(ξ).

Q 7) a) Soient ξ ∈ R et T > 0. Posons, pour tout (t, x) ∈ R∗
+
×R,

φ(t, x) = f(t, x) exp(−i2πξx)

et appliquons le théorème sur le caractère C1 des intégrales à paramètre à la fonction
f̂(⋅, ξ) sur l’intervalle ]0;T[.

(H0) Pour tout t > 0, x↦ φ(t, x) est intégrable sur R d’après la question 6) a)

(H1) Pour tout x ∈ R, t↦ φ(t, x) est de classe C1 sur R∗
+
par composition et

∂φ

∂t
(t, x) = ∂f

∂t
(t, x) exp(−i2πξx)

et pour tout t > 0, x↦ ∂φ
∂t
(t, x) est continue par morceaux sur R.

(H2) Pour tout (t, x) ∈]0;T[×R, d’après (i) et (ii),

∣∂φ
∂t
(t, x)∣ = ∣∂f

∂t
(t, x)∣ = ∣∂

2f

∂x2
(t, x)∣ ⩽ ψT(x)

avec ψT intégrable, indépendante de t ∈]0, T [.
La fonction f̂ est donc de classe C1 sur ]0 ; T[ pour tout T > 0, c’est-à-dire qu’elle est de
classe C1 sur R∗

+
, et

∀t > 0, ∂f̂

∂t
(t, ξ) = ∫

+∞

−∞

∂f

∂t
(t, x) exp(−i2πξx)dx

b) Soient ξ ∈ R, t > 0 et T > t. Les fonctions

∂f

∂x
(t, ⋅) et

∂2f

∂x2
(t, ⋅)

sont continues sur R car f est de classe C2, et d’après (ii), elles sont aussi intégrables
sur R car dominées respectivement par les fonctions intégrables χT et ψT donc les
transformées de Fourier de ces deux fonctions sont bien définies. Alors :

∂f̂

∂t
(t, ξ) = ∫

+∞

−∞

∂f

∂t
(t, x) exp(−i2πξx)dx par a)

= F (∂f
∂t
(t, ⋅)) (ξ) par déf.,

= F (∂
2f

∂x2
(t, ⋅)) (ξ) par la condition i

= 2iπξ F (∂f
∂x
(t, ⋅)) (ξ) d’après la question 3) b)

= (2iπξ)2 F(f(t, ⋅))(ξ) toujours d’après la question 3) b)

= −4π2ξ2f̂(t, ξ) c.q.f.d.

c) Soit ξ ∈ R. D’après la question précédente, la fonction t↦ f̂(t, ξ) vérifie sur R∗
+
l’équation

différentielle linéaire homogène du premier ordre à coefficients constants

y′ + 4π2ξ2y = 0

donc il existe une constante K(ξ) telle que pour tout t > 0, f̂(t, ξ) = K(ξ) exp (−4π2ξ2t).
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Q 8) a) D’une part, pour tout ξ ∈ R, par continuité de exp :

f̂(t, ξ) = K(ξ) exp (−4π2ξ2t) ÐÐÐ→
t→0+

K(ξ). (1)

D’autre part, d’après la question 6) c), pour tout ξ ∈ R

f̂(t, ξ) Ð→
t→0+

ĝσ(ξ). (2)

Enfin, on a vu à la question 4) e), que pour tout ξ ∈ R,

ĝσ(ξ) = exp (−2π2σ2ξ2) . (3)

Par unicité de la limite, avec (1), (2),3), on conclut que, pour tout ξ ∈ R,

K(ξ) = exp (−2π2σ2ξ2) .

b) Il suit des questions précédentes que, pour tous ξ ∈ R et t > 0,

f̂(t, ξ) =K(ξ) exp (−4π2ξ2t)
= exp (−2π2σ2ξ2) exp (−4π2ξ2t)
= exp (−2π2 (σ2 + 2t) ξ2)

d’où la conclusion demandée avec tout simplement νσ = 1.
Scholie A ce stade, on a prouvé que pour f vérifiant i,ii, iii, sa transformée de Fourier f̂ était
déterminée de façon unique. La question qui reste permet de revenir de f̂ à f .

Q 9) a) On a prouvé à la fin de la partie I que, pour tout σ > 0, il existe µ ∈ R tel que :

ĝσ = µg 1
2πσ

.

En remplaçant σ par
√
σ2 + 2t : il existe µt,σ ∈ R tel que pour tout ξ ∈ R,

ĝ√
σ2+2t

(ξ) = µt,σ exp

⎛
⎜⎜
⎝
− ξ2

2 1

(2π
√

σ2+2t)
2

⎞
⎟⎟
⎠
= µt,σ exp (−2π2 (σ2 + 2t) ξ2)

c’est-à-dire que
ĝ√

σ2+2t
= µt,σ f̂(t, ⋅)

Mais par linéarité de l’intégrale et donc de la transformée de Fourier, ce résultat se
réécrit :

F (g√
σ2+2t

) = F (µt,σf(t, ⋅)) .

Par le théorème d’injectivité de F donné dans l’énoncé, on obtient l’égalité de fonctions :

g√
σ2+2t

= µt,σf(t, ⋅).

En outre, µt,σ ≠ 0 puisque g√
σ2+2t

> 0. En posant λt,σ = 1/µt,σ, il vient finalement

f(t, ⋅) = λt,σg
√
σ2 + 2t

b) Remarquons que I(t) = f̂(t,0) pour tout t > 0. Le résultat de la question 7 b) prouve
que la fonction I est dérivable avec pour tout t > 0,

I′(t) = ∂f̂
∂t
(t,0) = −4π2 × 02f̂(t,0) = 0

La dérivée de I est identiquement nulle, par conséquent la fonction I est constante sur
l’intervalle ]0,+∞[.
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c) Les fonctions f(t, ⋅) et g√
σ2+2t

étant intégrables sur R, on a pour tout t > 0,

∫
+∞

−∞

f(t, x)dx = λt,σ ∫
+∞

−∞

g√
σ2+2t

(x)dx = λt,σ

en se rappelant que d’après la question 1) b) ,

∫
+∞

−∞

g√
σ2+2t

(x)dx = 1.

Autrement dit, avec la notation du b)

∀ t > 0, λt,σ = I(t)

et la fonction I étant constante,

λt,σ = lim
t→0+

I(t) = lim
t→0+

f̂(t,0) = ĝσ(0) = ∫
+∞

−∞

gσ(x)dx = 1

où on a également appliqué le résultat de la question 6) b). Par conséquent,

∀ t > 0, f(t, ⋅) = g√
σ2+2t

est l’unique solution à l’équation de la chaleur pour la condition initiale gaussienne gσ.

Partie III : formule d’inversion de Fourier

Q 10) Question faite en T.D où on avait commencé par le faire pour x = 0 puis un changement de
variable.

Ici, on reprend la même rédaction pour x quelconque Soit x ∈ R et ε > 0.

(f ∗ un) (x) − f(x) = (un ∗ f) (x) − f(x)

= ∫
R
un(t)(f(x − t) − f(x))dt

La fonction f est continue au point x, donc il existe δ > 0 tel que ∣f(x − t) − f(x)∣ ⩽ ε pour
tout t ∈ [−δ, δ]. En utilisant l’inégalité triangulaire et la positivité de l’intégrale, on obtient
alors

∣(un ∗ f) (x) − f(x)∣ ⩽∫
−δ

−∞

un(t)∣f(x − t) − f(x)∣dt

+ ∫
δ

−δ
εun(t)dt + ∫

+∞

δ
un(t)∣f(x − t) − f(x)∣dt (†)

D’autre part

∫
−δ

−∞

un(t)∣f(x − t) − f(x)∣dt ⩽ 2∥f∥∞ ∫
−δ

−∞

un(t)dt

par définition de l’approximation de l’unité, on obtient donc par majoration que

lim
n→+∞

∫
−δ

−∞

un(t)∣f(x − t) − f(x)∣dt = 0

et de même :

lim
n→+∞

∫
+∞

δ
un(t)∣f(x − t) − f(x)∣dt = 0

Ainsi, avec (†) il existe n0 ∈ N tel que, pour tout n ⩾ n0, on a

∣(un ∗ f) (x) − f(x)∣ ⩽ 2ε + ε∫
δ

−δ
un(t)dt ≤ 3ε (‡)

la dernière inégalité étant obtenue en majorant ∫
δ
−δ un(t)dt par ∫R

un = 1 puisque un ≥ 0.s

La majoration (‡) donne la conclusion (f ∗ un)(x) Ð→
n→+∞

f(x).
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Q 11) a) Si x ≠ 0, alors

F (kn) (x) = ∫
n

−n
(1 − ∣t∣

n
) e−ixt dt

= ∫
n

0
(1 − t

n
)(e−ixt + eixt)dt

= 2∫
n

0
(1 − t

n
) cos(xt)dt

et une intégration par parties donne

F (kn) (x) = 2 [(1 −
t

n
) sin(xt)

x
]
n

0

+ 2

nx
∫

n

0
sin(xt)dt

= 2

nx
[−cos(xt)

x
]
n

0

= 2

nx2
(1 − cos(nx))

d’où

F (kn) (x) =
4

nx2
sin2 (nx

2
)

= nφ(nx
2
)

Si x = 0, alors
F (kn) (x) = 2∫

n

0
(1 − t

n
)dt = n.

En conclusion, pour tout x ∈ R,

F (kn) (x) = nφ(
nx

2
) .

b) Idée : On relie les deux avec une I.P.P à partir de I pour avoir le t2 en bas, après un
peu de trigonométrie nous donnera de sin2(t) en haut.

Soit I(x) = ∫
x

0

sin(t)
t

dt. Avec une I.P.P. :

⎧⎪⎪⎨⎪⎪⎩

u(t) = 1/t⇒ u′(t) = −1/t2,
v′(t) = sin(t) ⇐ v(t) = 1 − cos(t)

(il est

important de prendre la primitive qui s’annule en zéro pour ne pas créer une explosion
en zéro).

Alors I(x) = [1 − cos(t)
t

]
x

0

+ ∫
x

0

1 − cos(t)
t2

dt.

En écrivant 1 − cos(t) = 2 sin2(t/2) dans l’intégrale de droite et en faisant tendre x vers

l’infini, on a I = 0 + ∫
+∞

0

2 sin2(t/2)
t2

dt.

Par changement de variable u = t/2, et parité on a la conclusion.

c) (cf T.D. sur Weierstrass pour cette question aussi).

L’application φ est continue sur R. De plus, au voisinage de +∞ ou −∞, ∣φ(x)∣ ⩽ 1
x2 ,

donc φ est intégrable au voisinage de +∞ et de −∞.

Donc, pour tout n ∈ N, la fonction Kn est positive, continue et intégrable sur R. En
utilisant le changement de variable u = nx

2
, on obtient

∫
R
Kn(x)dx =

n

2π
∫
R
φ(nx

2
)dx = 1

π
∫
R
φ(u)du = 1

De même, si δ est un réel strictement positif donné, alors

∫
+∞

δ
Kn(x)dx =

n

2π
∫
+∞

δ
φ(nx

2
)dx = 1

π
∫
+∞

nδ/2
φ(u)du
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La fonction φ est intégrable sur R et limn→+∞
nδ
2
= +∞, donc

lim
n→+∞

∫
+∞

nδ/2
φ(u)du = 0

et il s’ensuit que

lim
n→+∞

∫
+∞

δ
Kn(x)dx = 0

De même, on montre que limn→+∞ ∫
−δ
−∞

Kn(x)dx = 0, ce qui prouve que (Kn)n∈N∗ est
une approximation de l’unité.

Q 12) a) La fonction F(f) est continue et kn est nulle en dehors du segment [−, n, n] donc In(x)
a bien un sens en tant qu’intégrale d’une fonction continue sur le segment [−n,n] et l’on
a

In(x) =
1

2π
∫
R
kn(ζ) (∫

R
f(y)eiζy dy) e−ixζ dζ

L’application (ζ, y) ↦ kn(ζ)f(y)eiζ(y−x) est continue, ainsi que l’application

ζ ↦ kn(ζ) (∫
R
f(y)eiζy dy) e−ixζ

et le théorème de Fubini montre que

In(x) =
1

2π
∫
R
(∫

R
kn(ζ)f(y)eiζ(y−x)dy)dζ

= 1

2π
∫
R
(∫

R
kn(ζ)f(y)eiζ(y−x)dζ) dy

= 1

2π
∫
R
f(y) (∫

R
kn(ζ)eiζ(y−x)dζ) dy

= 1

2π
∫
R
f(y)F(kn)(x − y)dy

= (f ∗Kn)(x).

b) La suite (Kn)n⩾1 est une approximation de l’unité, ce qui assure qu’à x fixé,

lim
n→+∞

(f ∗Kn) (x) = f(x). (1)

Par ailleurs, la suite de fonctions continues (jn)n⩾1 définies sur R par

jn(ζ) =
1

2π
kn(ζ)F(f)(−ζ)e−ixζ

converge simplement vers la fonction (elle aussi continue)

j ∶ ζ ↦ 1

2π
F(f)(−ζ)e−ixζ

et, pour tout n ∈ N∗ et tout ζ ∈ R, on a l’hypothèse de domination

∣jn(ζ)∣ ⩽
1

2π
∣F(f)(−ζ)∣

et F(f) est intégrable sur R. Le théorème de convergence dominée donne

lim
n→+∞

In(x) =
1

2π
∫
R
F(f)(−ζ)e−ixζ dζ

soit, avec le changement de variable y = −ζ,

lim
n→+∞

In(x) =
1

2π
∫
R
F(f)(y)eixy dy (2)

Par unicité de la limite, avec (1) et (2) on obtient donc la formule d’inversion de Fourier :

f(x) = 1

2π
∫
R
F(f)(ζ)eixζ dζ
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