
MP Samedi 14 décembre 2024

Devoir surveillé 4 : une solution

Q1 à 7 : d’après CCINP MP 2016, mais beaucoup d’autres sujets sur le même thème à Mines
Centrales aussi, d’où sont extraits aussi les Q 8 et 9.

Q 1) a) Soit x > 0. La fonction hx ∶ t↦ e−ttx−1 est continue sur ]0,+∞[ par produit de fonctions
continues, les fonctions exponentielle et puissances étant bien continues sur ]0,+∞[.
On a hx(t) ∼

t→0+
tx−1 = 1

t1−x
avec 1 − x < 1 et t2e−ttx−1 = tx+1e−t Ð→

t→+∞
0 par croissance

comparée, d’où hx(t) = o
t→+∞

( 1
t2
). Ainsi, par comparaison de fonctions positives et critère

de Riemann en 0 et en +∞, hx ∶ t↦ e−ttx−1 est intégrable sur ]0,+∞[.
On peut ainsi définir la fameuse fonction Gamma d’Euler Γ ∶ x ↦ ∫

+∞
0 e−ttx−1dt, sur

]0,+∞[.
b) Soit x > 0. La fonction hx définie dans la question précédente est continue et stricte-

ment positive sur ]0,+∞[ . La positivité de l’intégrale nous donne ∫
+∞
0 hx(t)dt ≥ 0 et

la continuité de hx implique qu’on ne pourrait avoir ∫
+∞
0 hx(t)dt = 0 que si hx était

identiquement nulle sur ]0,+∞[, ce qui n’est pas le cas. Ainsi Γ(x) = ∫
+∞
0 hx(t)dt > 0,

et ce pour tout x > 0.

Q 2) Pour tout n ≥ 2, on note un = Hn −Hn−1. On a un =
1

n
− ln(n + 1) + ln(n) = 1

n
− ln(1 + 1

n
) =

O(1/n2) par le développement limité du logarithme.

Donc par théorème de comparaison, (un) est terme général de série (absolument) convergente.

Par lien suite série, comme la série ∑(Hn −Hn−1) converge, on conclut que la suite (Hn)
converge.

Q 3) Pour x ∈]0,+∞[ et pour tout entier n ≥ 1, on définit la fonction fn sur ]0,+∞[ par :

fn ∶ t↦ {
(1 − t

n
)n tx−1 si t ∈]0, n]

0 si t > n .

On note Jn = ∫
+∞

0
(1 − t

n
)
n

tx−1dt = ∫
+∞

0
fn(t)dt.

On va montrer que Jn Ð→
n→+∞

Γ(x) à l’aide du théorème de convergence dominée de Lebesgue,

en vérifiant les deux hypothèses ;

(H1) pour chaque t > 0, fn(t) Ð→
n→+∞

e−ttx−1.

En effet (1 − t
n
)n = en ln(1− t

n ) Ð→
n→+∞

e−t d’après le D.L. de ln(1 + u) = u + o
u→0
(u).

(H2) on sait par concavité du logarithme que : ∀x > −1, ln(1 + x) ≤ x, puis

∀x < 1, ln(1 − x) ≤ −x

Donc pour tout n ∈ N∗ et tout t ∈]0, n], ln(1− t
n
) ≤ − t

n
donc par croissance de l’exponentielle

et produit par une quantité positive :

fn(t) ≤ en×(−
t
n
)tx−1 = e−ttx−1

. Enfin fn est nulle sur [n,+∞[ , tandis que la fonction t ↦ e−ttx−1 y est positive, d’où
finalement l’encadrement :

∀t > 0,0 ≤ fn(t) ≤ e−ttx−1.

La fonction majorante t ↦ e−ttx−1 est intégrable sur ]0,+∞[ par la Q1, et indépendante de
n.

Avec (H1) et (H2) on applique le théorème de convergence dominée :

∫
n

0
(1 − t

n
)
n

tx−1dt Ð→
n→+∞

Γ(x),
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Q 4) a) (i) Soient n ∈ N∗ et x > 0.
La fonction α ∶ u↦ (1 − u)nux−1 est bien définie et continue sur ] 0,1].
De plus, α(u) ∼

u→0+
ux−1 = 1

u1−x , avec 1 − x < 1, donc α est intégrable sur ]0, 1] par

comparaison de fonctions positives et critère de Riemann.

Cela assure la bonne définition de In(x).
(ii) On définit maintenant sur ]0,1] les fonctions α1 ∶ u ↦ (1 − u)n et α2 ∶ u ↦ ux

x
. Ces

fonctions sont de classe C1, et on a α1(u)α2(u) qui admet une limite finie pour uÐ→ 0+,
en l’occurrence 0 . On en déduit, par intégration par parties :

In(x) = ∫
1

0
α1(u)α′2(u)du = α1(1)α2(1) − lim

u→0+
α1(u)α2(u) − ∫

1

0
α′1(u)α2(u)du

= 0 − 0 + n
x
∫

1

0
(1 − u)n−1uxdu = n

x
In−1(x + 1)

b) Soit x > 0.
On a I0(x) = ∫

1
0 u

x−1du = [u
x

x
]
1

0
= 1

x
. Soit n ≥ 1. On a, par une récurrence immédiate,

In(x) =
n

x
In−1(x+1) =

n

x
×n − 1
x + 1

In−2(x+2) =
n!

x(x + 1)⋯(x + n − 1)
I0(x+n) =

n!

x(x + 1)⋯(x + n)
.

c) La fonction t ↦ t
n
réalise une bijection strictement croissante et de classe C1 de ]0, n]

sur ]0, 1]. Via le changement de variable u = t
n
, on obtient donc :

∫
n

0
(1 − t

n
)
n

tx−1dt = ∫
1

0
(1 − u)n(nu)x−1ndu = nx ∫

1

0
(1 − u)nux−1du = nxIn(x)

Le résultat de la Q3) se réécrit ainsi : Γ(x) = limn→+∞ n
xIn(x). Et le calcul de la question

précédente permet de conclure :

Γ(x) = lim
n→+∞

nx × n!

x(x + 1)⋯(x + n)
= lim

n→+∞
n!nx

∏n
k=0(x + k)

Q 5) L’indication donnée (fallait-il la prouver ?) est immédiate en remarquant qu’on a :

exHn = ex∑
n
k=1

1
k e−x ln(n) = (

n

∏
k=1

e
x
k ) × 1

nx
.

On remarque que :

∏n
k=0(x + k)
n!nx

= x

nx
× ∏

n
k=1(k + x)
∏n

k=1 k
= x

nx

n

∏
k=1
(1 + x

k
) .

Grâce à l’indication fournie, on en déduit que :

∏n
k=0(x + k)
n!nx

= xexHn

n

∏
k=1
[(1 + x

k
) e−

x
k ] .

Donc d’après la formule établie à la question précédente, on en déduit :

1

Γ(x)
= lim

n→+∞
xexHn

n

∏
k=1
[(1 + x

k
) e−

x
k ] .

Or Hn Ð→
n→+∞

γ donc, par continuité de l’exponentielle, exHn Ð→
n→+∞

exγ . Par produit de limite

avec e−xHn , on en déduit que ∏n
k=1 [(1 + x

k
) e− x

k ] converge et :

1

Γ(x)
= xeγx lim

n→+∞

n

∏
k=1
[(1 + x

k
) e−

x
k ] .
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Q 6) a) On note qu’on pourrait répondre directement à la question de l’existence de g(x) à l’aide
d’un DL d’ordre 2. Le t.g. est un O(1/k2).
Si l’on veut rester dans les clous du sujet, on commence par réécrire la formule précédente :

n

∏
k=1
[(1 + x

k
) e−

x
k ] Ð→

n→+∞
1

Γ(x)xeγx

Par continuité de ln, on en déduit :

ln(
n

∏
k=1
[(1 + x

k
) e−

x
k ]) Ð→

n→+∞
ln( 1

Γ(x)xeγx
) , i. e.

n

∑
k=1
[ln(1 + x

k
) − x

k
] Ð→
n→+∞

− ln (Γ(x)xeγx) .

En particulier, on a prouvé que la série ∑k≥1 [ln (1 + x
k
) − x

k
] converge. Ceci ayant été

démontré pour tout x > 0, on a établi la convergence simple de la série de fonctions

∑k≥1 gk sur ]0,+∞[ , où l’on pose gk ∶ x↦ ln (1 + x
k
) − x

k
.

N.B. L’égalité g(x) = − ln (Γ(x)xeγx) sera utile au c).

b) (M1) On note g = ∑+∞k=1 gk sur ]0,+∞[.
(H1) On a la convergence simple de ∑k>1 gk vers g établie à la question précédente.

(H2) Les fonctions gk sont toutes de classe C1 sur ]0,+∞[.
(H3) Pour tout k ≥ 1, pour tout x > 0, g′k(x) =

1
k+x −

1
k
= − x

k(k+x) .

Soit [a, b] un segment de R∗+. On a donc 0 < a ≤ b. Alors pour tout k ≥ 1 et tout
x ∈ [a, b], ∣g′k(x)∣ ≤

b
k2 et, comme ∑k≥1

b
k2 converge, on a établi la convergence normale,

donc uniforme, de ∑k≥1 g
′
k sur [a, b].

Par le théorème sur le caractère C1 d’une limite, on en déduit :

(C) que g est de classe C1, avec

∀x > 0, g′(x) =
+∞
∑
k=1

g′k(x) =
+∞
∑
k=1
( 1

k + x
− 1

k
) .

(M2) Si on sait (après le chapitre I3 sur les intégrales à paramètres) que Γ est C1
(et même C∞) grâce à l’écriture intégrale, l’expression g(x) = − ln (Γ(x)xeγx) donne
immédiatement le caractère C1 de g, mais pas son écriture comme somme.

c) Par la question 6.a., on a, pour tout x > 0,

g(x) = − ln (Γ(x)xeγx) = − ln(Γ(x)) − ln(x) − γx.

Dérivant cette relation sur R∗+, on obtient :

g′(x) = −Γ
′(x)
Γ(x)

− 1

x
− γ,

c’est-à-dire, vu que ψ = Γ′

Γ
, ψ(x) = −g′(x) − 1

x
− γ. Comme −g′(x) = −∑+∞k=1 ( 1

k+x −
1
k
) =

∑+∞k=1 (− 1
k+x +

1
k
), on a finalement établi :

∀x > 0, ψ(x) = − 1
x
− γ +

+∞
∑
k=1
(1
k
− 1

k + x
) .

Q 7) a) Posant x = 1 dans la formule précédente, on trouve : ψ(1) = −1 − γ + ∑+∞k=1 ( 1k −
1

k+1),
d’où, par télescopage,

ψ(1) = −1 − γ + 1 = −γ.

De plus Γ(1) = ∫
+∞
0 e−tdt = limX→+∞ [−e−t]

X

0
= limX→+∞ 1 − e−X = 1 donc, vu que

ψ(1) = Γ′(1)
Γ(1) , on obtient Γ′(1) = −γ. Mais en reprenant l’expression obtenue à la question

1.c., on constate que Γ′(1) = ∫
+∞
0 e−t ln(t)dt, d’où finalement :

∫
+∞

0
e−t ln(t)dt = −γ
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b) (M1) D’après la formule de la question 6.c., on a, pour tout x > 0,

ψ(x + 1) − ψ(x) = − 1

x + 1
+ 1

x
+
+∞
∑
k=1
(1
k
− 1

k + x + 1
) −

+∞
∑
k=1
(1
k
− 1

k + x
)

= 1

x
− 1

x + 1
+
+∞
∑
k=1
(1
k
− 1

k + x + 1
− 1

k
+ 1

k + x
)

par somme de séries convergentes. Et donc : ψ(x+1)−ψ(x) = 1
x
− 1

x+1+∑
+∞
k=1 ( 1

k+x −
1

k+x+1) =
∑+∞k=0 ( 1

k+x −
1

k+x+1) =
1
x
.

(M2) On aurait aussi pu procéder ainsi :

ψ(x + 1) − ψ(x) = Γ′(x + 1)
Γ(x + 1)

− Γ′(x)
Γ(x)

= d

dx
(ln(Γ(x + 1)

Γ(x)
)) .

Or, il est bien connu que Γ(x + 1) = xΓ(x) (il suffit d’intégrer par parties), donc

ψ(x + 1) − ψ(x) = d

dx
(ln(x)) = 1

x
.

En particulier, pour tout k ∈ N∗, ψ(k + 1) − ψ(k) = 1
k
. Il s’ensuit, pour tout entier n ≥ 2,

ψ(n) = ψ(1) +
n−1
∑
k=1
(ψ(k + 1) − ψ(k)) = −γ +

n−1
∑
k=1

1

k

c) On peut réécrire jk,x(y) = k+y+x−k−y−1
(k+y+1)(k+y+x) =

x−1
(k+y+1)(k+y+x) donc,

∀y > 0, ∣jk(y)∣ ≤
∣x − 1∣

(k + 1)(k + x)
majorant indépendant de y.

Comme ∑k>0
∣x−1∣

(k+1)(k+x) est une série convergente, vu que ∣x−1∣
(k+1)(k+x) ∼

k→+∞
∣x−1∣
k2 , on a la

convergence normale, donc uniforme, de ∑k≥0 jk,x sur ]0,+∞[ comme demandé.

Ensuite, reprenant la formule de 6.c., on a, pour tout n ∈ N∗,

ψ(x + n) − ψ(1 + n) = − 1

x + n
+ 1

n
+
+∞
∑
k=1
(1
k
− 1

k + x + n
) −

+∞
∑
k=1
(1
k
− 1

k + 1 + n
) ,

et selon le même principe de calcul qu’à la question précédente, on aboutit à :

ψ(x + n) − ψ(1 + n) =
+∞
∑
k=0
( 1

k + 1 + n
− 1

k + x + n
) =

+∞
∑
k=0

jk,x(n).

Or, pour tout k ∈ N, jk,x(n) Ð→
n→+∞

0 donc, par le théorème de la double limite (qui

s’applique ici car la série de fonctions étudiée converge uniformément sur un voisinage
de +∞),

lim
n→+∞

(ψ(x + n) − ψ(1 + n)) =
+∞
∑
k=0

lim
n→+∞

jk(n) = 0.

d) . Par analyse-synthèse :

● Analyse : Soit f vérifiant (1), (2), (3). On va montrer que f vérifie la formule de ψ
établie en 6.c., à savoir :

∀x > 0, f(x) = − 1
x
− γ +

+∞
∑
k=1
(1
k
− 1

k + x
)
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Puisque 1
t
= f(t + 1) − f(t) pour tout t > 0, on a, pour tout n ∈ N∗ :

n

∑
k=1
(1
k
− 1

k + x
) =

n

∑
k=1
(f(k + 1) − f(k) − f(k + x + 1) + f(k + x))

=
n

∑
k=1
(f(k + 1) − f(k)) +

n

∑
k=1
(f(k + x) − f(k + x + 1))

= f(n + 1) − f(1)
±
=−γ

+f(1 + x) − f(n + x + 1)

Compte-tenu de l’hypothèse (3), on peut passer à la limite quand n → +∞ dans cette
égalité, pour obtenir :

+∞
∑
k=1
(1
k
− 1

k + x
) = f(x + 1) − γ

En réutilisant l’hypothèse (2), on obtient :

f(x) = − 1
x
− γ +

+∞
∑
k=1
(1
k
− 1

k + x
),

autrement dit, vu 6)c) que :
∀x > 0, f(x) = ψ(x)

● Synthèse : La seule solution éventuelle au problème est donc ψ. Mais on a prouvé
en 7.a., 7.b. et 7 .c. que ψ satisfait les trois conditions voulues, donc finalement ψ est
solution, et c’est la seule.

Q 8) a) Pour tout n ∈ N∗ et tout x ∈]0,+∞[, on a

fn(x) = ln(n + x) − lnn + lnn

−
n

∑
k=1

1

k
+

n

∑
k=1

1

k
− 1

x
−

n−1
∑
k=1

1

k + x

= ln(n + x
n
) −Hn +

1

n
− 1

x
+

n−1
∑
k=1
(1
k
− 1

k + x
)

Ainsi par somme de limites :

fn(x) Ð→
n→+∞

−γ − 1

x
+
+∞
∑
k=1
(1
k
− 1

k + x
) = ψ(x).

b) Pour encadrer
n

∑
k=1

1

k + x
on utilise la méthode d’encadrement par des intégrales : La

fonction t↦ 1
t+x est continue, positive et décroissante sur [0,+∞[. Par encadrement, on

obtient

∫
k+1

k

dt

t + x
⩽ 1

k + x
pour tout k ⩾ 0

et, par sommation de 0 à n − 1, on a

∫
n

0

dt

t + x
⩽

n−1
∑
k=0

1

k + x

De même, par encadrement, on obtient

1

k + x
⩽ ∫

k

k−1

dt

t + x
pour tout k ⩾ 1

et, en sommant de 1 à n − 1, on a

n−1
∑
k=0

1

k + x
⩽ ∫

n−1

0

dt

t + x
+ 1

x
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Ainsi, pour tout x > 0 et tout n ∈ N∗, on a

∫
n

0

dt

t + x
⩽

n−1
∑
k=0

1

k + x
⩽ ∫

n−1

0

dt

t + x
+ 1

x

ln( n + x
n − 1 + x

) + lnx − 1

x
⩽ fn(x) ⩽ lnx

pour tout x > 0 et tout n ∈ N∗. En faisant tendre n vers +∞, on obtient

lnx − 1

x
⩽ ψ(x) ⩽ lnx pour tout x > 0

Q 9) a) Avec l’encadrement précédent 8) b), par théorème des gendarmes pour les équivalents,
on a bien ψ(x) ∼

x→+∞
ln(x).

b) Le a) montre en particulier que ψ(x) Ð→
x→+∞

+∞ et donc qu’on a un x0 tel que ψ∣[x0,∞[ > 0.

Or ψ = Γ′/Γ et on a montré que Γ > 0 sur R+∗ donc Γ′∣[x0,∞[ > 0 ce qui donne bien la

première conclusion : Γ est strictement croissante sur [x0,+∞[.
Comme Γ est strictement croissante, par théorème de la limite monotone, on sait que
Γ(x) Ð→

x→+∞
ℓ ∈ [0,+∞].

Mais alors par composition des limites Γ(n + 1) Ð→
n→+∞

ℓ. Or comme précisé par l’énoncé

Γ(n + 1) = n! donc ℓ = +∞ et la conclusion : Γ(x) Ð→
x→+∞

+∞.

Remarque : on verra un argument beaucoup plus simple à partir de la seule écriture
intégrale de Γ au chapitre I3.

c) Comme Γ′(x) = Γ(x)ψ(x), on conclut que Γ′(x) Ð→
x→+∞

+∞ par produit dont les deux

facteurs tendent vers +∞.

Q 10) a) Question qui demande une bonne mâıtrise des ε

La suite (an+1 − an)n∈N est positive bornée, donc il existe un ⩾ 0 tel que

0 < an+1 − an ⩽M pour tout n ∈ N.

Soit ε > 0. Puisque limn→+∞H (an) = ℓ, il existe n0 ∈ N tel que

∀n ⩾ n0, ∣H (an) − ℓ∣ ⩽ ε′ ∶=
ε

M + 1

Par ailleurs, on a limx→+∞H
′(x) = 0, donc il existe A > an0 tel que ∣H ′(x)∣ ⩽ ε′ pour

tout x ⩾ A. En appliquant l’inégalité des accroissements finis :

∀(x, y) ∈ [A,+∞[2, ∣H(x) −H(y)∣ ⩽ ε′.∣x − y∣

La suite (an)n∈N étant strictement croissante, pour chaque x ∈ [A,+∞[, il existe un
unique entier q ⩾ n0 tel que aq ⩽ x < aq+1, ce qui donne

∣H(x) − ℓ∣ = ∣H(x) −H (aq) +H (aq) − ℓ∣
⩽ ∣H(x) −H (aq)∣ + ∣H (aq) − ℓ∣
⩽ ε′ ∣x − aq ∣ + ε′

⩽ ε′ (aq+1 − aq) + ε′

⩽ (M + 1)ε′ = ε.

Finalement, on a montré que, pour tout ε > 0, il existe A ⩾ 0 tel quepour tout x ⩾ A,
∣H(x) − ℓ∣ ⩽ ε donc lim

x→+∞
H(x) = ℓ.

b) Pour tout x > 0,

F (x) = ln(Γ(x + 1)e
x

xx+1/2
)

= ln(Γ(x + 1)) + x − (x + 1

2
) lnx
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On a admis plus haut que Γ était C1 et Γ > 0 donc F est bien définie, donc par théorème
d’opération F est C1 et :

∀x > 0, F ′(x) = Γ′(x + 1)
Γ(x + 1)

+ 1 − ln(x) −
x + 1

2

x

Donc par déf. de ψ = Γ′/Γ, on a :

∀x > 0, F ′(x) = − 1

2x
− lnx + ψ(x + 1)

Or l’encadrement du 8 b) donne :

∀x > 0, ln(1 + x) − 1

x + 1
≤ ψ(x + 1) ≤ ln(x + 1)

ce qui dans l’expression de F ′(x) donne :

ln(1 + 1

x
) − 1

x + 1
− 1

2x
⩽ F ′(x) ⩽ ln(1 + 1

x
) − 1

2x

pour tout x > 0.
Une étude de fonction montre que ∀x > 0, ln (1 + 1

x
) − 1

x+1 ≥ 0 ce qui montre l’encadre-
ment demandé :

− 1

2x
⩽ F ′(x) ⩽ ln(1 + 1

x
) − 1

2x

c) On déduit de l’encadrement précédent que F ′(x) Ð→
x→+∞

0.

On pose an = n pour tout n, ce qui en fait une suite strictement croissante qui tend vers
+∞ et (an+1 − an) est constante égale à 1 donc bornée.

D’après la Q10 a) on sait donc que si F (an) Ð→
n→+∞

ℓ alors F (x) Ð→
x→+∞

ℓ.

Or

F (an) = ln(
Γ(n + 1)en

nn+1/2
)

= ln( n!e
n

nn+1/2
) Ð→

n→+∞
ln(
√
2π)

par la formule de Stirling en variable n ∈ N. Donc la Q10 a) permet de conclure que :

F (x) →
x→+∞

ln(
√
2π)

, donc par continuité de exp :

Γ(x + 1)ex

xx+1/2
→

x→+∞

√
2π,

et, puisque
√
2π ≠ 0,Γ(x + 1) ∼

√
2πe−xxx+1/2 lorsque x tend vers +∞.
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