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Les candidates et candidats attacheront la plus grande importance à la clarté, à la précision et à
la concision de la rédaction. Si une personne est amenée à repérer ce qui peut lui sembler être une
erreur d’énoncé, elle le signalera sur sa copie et devra poursuivre sa composition en expliquant les
raisons des initiatives qu’elle a été amenée à prendre.

RAPPEL DES CONSIGNES

— Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition ;
d’autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la
mise en évidence des résultats.

— Ne pas utiliser de correcteur.

— Écrire le mot FIN à la fin de votre composition.

— Les calculatrices sont interdites.

Notation : K désigne R ou C.
On admet au I et II, le théorème suivant qu’on démontrera au III et IV.

Théorème de décomposition de Dunford : si A est une matrice de Mn( K) telle que
son polynôme caractéristique χA soit scindé sur K , alors il existe un unique couple (D,N)
de matrices de Mn( K) vérifiant les quatre propriétés :

(1) A =D +N ;

(2) D est diagonalisable dans Mn( K) (pas nécessairement diagonale) ;

(3) N est nilpotente ;

(4) DN = ND.

De plus, D et N sont des polynômes en A et χA = χD. Le couple (D,N) s’appelle la
décomposition de Dunford de A.

Partie I - Quelques exemples

Q 1) a) Donner le couple de la décomposition de Dunford d’une matrice A de Mn( K) lorsque
A est diagonalisable, puis lorsque la matrice A de Mn( K) est nilpotente.

b) Justifier qu’une matrice trigonalisable vérifie l’hypothèse du théorème, admettant ainsi
une décomposition de Dunford.

c) Le couple de matrices (( 1 0
0 2

) ,( 0 1
0 0

)) est-il la décomposition de Dunford de la

matrice ( 1 1
0 2

) ? Si non, préciser cette décomposition.

Q 2) Montrer que si χA n’est pas scindé dans Mn( K) alors A n’admet pas de décomposition de
Dunford dans Mn( K). Donner un exemple d’une matrice de M2(R) n’admettant pas de
décomposition de Dunford dans M2(R).

Q 3) Soit la matrice A =
⎛
⎜
⎝

3 0 8
3 −1 6
−2 0 −5

⎞
⎟
⎠
. Calculer son polynôme caractéristique χA, puis donner

le couple (D,N) de la décomposition de Dunford de A.

Q 4) Application : pour A ∈Mn( K), exp(A) = ∑+∞k=0 1
k!
Ak est l’exponentielle de la matrice A.

On admet ici que si M et N sont deux matrices de Mn( K) qui commutent,

exp(M +N) = (expM)(expN).

Déduire de la question précédente l’exponentielle de la matrice A définie en Q 3).

Q 5) Soit A ∈Mn( K) telle que A2 (A − In) = 0. Justifier que le polynôme X(X −1) est annulateur
de la matrice A2. Démontrer que le couple ( D,N ) de la décomposition de Dunford de la
matrice A est donné par : D = A2 et N = A −A2.
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Partie II - Un exemple par deux méthodes

Soit la matrice A =
⎛
⎜
⎝

3 −1 1
2 0 1
1 −1 2

⎞
⎟
⎠
. On note u l’endomorphisme de R3 canoniquement associé à

la matrice A. On notera id l’application identité de R3.

Q 6) La matrice A est-elle diagonalisable dans M3(R) ?
Démontrer qu’on a la somme directe : R3 = ker(u − id) ⊕ ker(u − 2id)2.

Q 7) Déterminer une base (e1, e2, e3) de R3 telle que : ker(u−id) = vect{e1} ,ker(u−2id) = vect{e2}
et ker(u − 2id)2 = vect{e2, e3}. Écrire la matrice B de u dans la base (e1, e2, e3) de R3.

Q 8) Déterminer le couple de la décomposition de Dunford de la matrice B et en déduire le couple
(on calculera ces matrices) de la décomposition de Dunford de la matrice A.

Q 9) Décomposer en éléments simples la fraction 1
(X−1)(X−2)2 et en déduire deux polynômes U et

V tels que :

(X − 1)U(X) + (X − 2)2V (X) = 1 avec degU < 2 et degV < 1

Q 10) On pose les endomorphismes : p = V (u)○(u−2id)2 et q = U(u)○(u− id). Calculer p(x)+q(x)
pour tout x vecteur de R3. Démontrer que p est le projecteur sur ker(u− id) parallèlement à
ker(u − 2id)2 et q est le projecteur sur ker(u − 2id)2 parallèlement à ker(u − id).

Q 11) On pose d = p+ 2q. Écrire la matrice de d dans la base (e1, e2, e3) de R3 (de la question Q7).
Déterminer le couple de la décomposition de Dunford de la matrice A en exprimant D et N
comme polynômes de la matrice A (sous forme développée).

Partie III - Une preuve de l’existence de la décomposition

Q 12) Montrer que si E est un K-espace vectoriel de dimension finie et u ∈ L (E) est tel que
χu = ∏p

i=1(X − λi)mi avec λ1, . . . , λp distinctes alors E = ⊕p
i=1 ker(u − λi idE)mi (∗).

Q 13) En notant π1, . . . , πp les projecteurs associés à la décomposition (∗), on admet que ces pro-
jecteurs sont dans K[u]. En déduire une démonstration de l’existence d’un couple (D,N)
vérifiant toutes les conclusions dans le théorème de décomposition de Dunford.

Partie IV - Une preuve de l’unicité de la décomposition

Q 14) Soit E un K-espace vectoriel de dimension n. Soient u et v deux endomorphismes diagona-
lisables de E qui commutent. On note λ1, λ2, . . . , λp les valeurs propres de u et pour tout
1 ≤ i ≤ p,Eλi(u) le sous-espace propre de u associé à la valeur propre λi. Démontrer que
tout sous-espace propre de u est stable par v. En déduire qu’il existe une base commune de
diagonalisation pour u et v. Pour tout 1 ≤ i ≤ p, on pourra noter vi l’endomorphisme induit
par v sur Eλi(u).

Q 15) Soient A et B deux matrices diagonalisables de Mn( K) qui commutent. Démontrer que la
matrice A −B est diagonalisable.

Q 16) Soient A et B deux matrices nilpotentes de Mn( K) qui commutent, démontrer que la matrice
A −B est nilpotente.

Q 17) Établir l’unicité du couple ( D,N ) dans la décomposition de Dunford.

Partie V - Non continuité de l’application A↦D

Q 18) On note D l’ensemble des matrices de Mn(C) qui sont diagonalisables. D est-il un espace
vectoriel ? Si P est une matrice inversible de Mn(C), justifier que l’application de Mn(C)
vers Mn(C),M ↦ PMP −1 est continue.

Q 19) On admet que D est dense dans Mn(C). Si (D,N) est le couple de la décomposition de
Dunford d’une matrice A, on note φ l’application de Mn(C) dans D qui à la matrice A associe
la matrice D. Justifier que φ est l’application identité sur D et en déduire que l’application
φ n’est pas continue.
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Partie VI : à la maison une approche via la méthode de Newton

Q 20) La méthode de Newton pour la recherche des zéros d’une fonction d’une variable
réelle : Hypothèses : soient a < b deux réels et on f ∶ [a, b] → R de classe C2 qui vérifie
les conditions suivantes :

● f ′ ne s’annule pas sur [a, b], donc f est strictement monotone sur [a, b].
● f(a).f(b) < 0 de sorte que f admet un unique zéro r dans [a, b].
● f ′′ garde un signe constant sur [a, b].

N.B. Pour simplifier pour la suite on supposera f ′ > 0 et f ′′ > 0 sur [a, b], les autres cas se
traitant mutatis mutandis.

On fixe un x0 ∈ I tel que f(x0) > 0.
Montrer que

a) La suite (xn) définie par ce x0 et pour tout n ∈ N, xn+1 = xn −
f(xn)
f ′(xn)

est bien définie

pour tout n ∈ N et est décroissante. Le sens géométrique de cette formule est donné par
le dessin ci-dessous.

b) Cette suite (xn) converge vers l’unique zéro de f sur [a, b].

Q 21) Adaptation de cette méthode dans le cadre matriciel pour trouver la matriceD de la décomposition
de Dunford d’une matrice A.

Soit A ∈Mn(C) qu’on décompose en A =D +N avec D dz et N nilpotente, avec DN = ND.

On pose P = χA

χA ∧ χ′A
et l’on considère la suite (Ar)r∈N de matrices donnée par :

A0 = A, ∀, r ∈ N, Ar+1 = Ar − P (Ar).P ′(Ar)−1

On va montrer que cette suite est bien définie, et qu’elle est constante égale à D à partir d’un
certain rang.

Pour cela, on va montrer par récurrence sur r ≥ 0 les trois prop. suivantes :

(P1) La matrice P (Ar) est nilpotente d’indice de nilpotence νr ≤ 1 +
n − 1
2r

,

(P2) la matrice P ′(Ar) est inversible,
(P3) la matrice Ar+1 est bien définie et appartient à C[A].

a) Si χA(X) = ∏s
i=1(X − λi)mi avec λ1, . . . , λs deux à deux distinctes, expliciter P =

χA

χA ∧ χ′A
en fonction des λi.

b) Initialisation : montrer que les trois propriétés (P1), (P2), (P3) sont vraies pour r = 1.
c) On admet la formule suivante, conséquence de la formule de Taylor pour les polynômes.
∀P,S ∈ C[X] ∃ Q ∈ C[X] ∶

P (X + S(X)) = P (X) + S(X)P ′(X) + S(X)2Q(X)

A l’aide de cette formule, en supposant que les trois propriétés (Pi) sont vraies pour un
r ≥ 1, montrer que (P1) est vraie pour r + 1.

d) Finir la récurrence.

e) Conclure.
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