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DEVOIR SURVEILLE 3, D’APRES CCINP MP 2021 (4H)

Partie I - Quelques exemples
Q 1) Soit Ae M,(K).
a) (i) Si A est diagonalisable, (D, N) = (A,0) est la décomposition de Dunford de A.
En effet, D = A est diagonalisable, N = 0 est nilpotente, DN = ND=0et A=A+0=
D+ N.
(ii) Si A est nilpotente, (D, N) = (0, A) est la décomposition de Dunford de A.
En effet, D = 0 est diagonalisable, NV = A est nilpotente, DN = ND =0et A=0+A =
D+ N.
b) Soit A une matrice trigonalisable dans M, (K). Alors il existe P € GL,(K) inver-
sible et T € M, (K) triangulaire supérieure, telles que P~'AP = T. Les matrices A
et T sont semblables donc ont méme polyndéme caractéristique : x4 = xr. Notons
(A1y-.,An) € K™ les coefficients diagonaux de la matrice T. Puisque T est triangu-
laire, x7(X) = [Ti-; (X = A;) est scindé sur K. Donc x4 = xr est scindé sur K. Une
matrice trigonalisable dans M, (K) vérifie 'hypothese du théoreme donc admet une
décomposition de Dunford.

. (1 1\, (10 L (o1 o, .
c) (i) PosonsA—(O 2),D —(0 2)etN —(0 0).D est diagonalisable (car

diagonale), N’ est nilpotente ( car (N')? =0 ), A = D' + N’, cependant D' et N’ ne
commutent pas :

ow=(3 2)(8 8 )-(0 )= (38)(5 8)-(5 2)

Donc non : (( 10 ),( 01 )) n’est pas la décomposition de Dunford de ( 11 )

0 2 0 0 0 2
car ces deux matrices ne commutent pas.
(ii) De plus, la matrice A = ( (1) ; € M5(R) possede deux valeurs propres distinctes

1 et 2, donc est diagonalisable dans M5(R), donc (D, N) = (A,0) est la décomposition
de Dunford de A.

Q 2) (i) Soit A telle que x4 n’est pas scindé. Par labsurde si A admet une décomposition de
Dunford alors x4 = xp avec D dz et donc xp scindé, donc x 4 est scindé : contradiction.

Soit la matrice A = ( _01 (1) ) € M5(R). Son polynome caractéristique x 4(X) = X2 +1 n’est
pas scindé sur R donc elle n’admet pas de décomposition de Dunford dans Ms(R).
3 0 8
Q3) SoitA=] 3 -1 6 |eM3(R). Calculons son polynéme caractéristique, en développant
-2 0 -5
par rapport a la deuxieéme colonne :
X-3 0 -8
xa(X)=det(XI;3-A)=| -3 X+1 -6
2 0 X+5
X-3 -8
(XD Ty x s ‘
= (X +1)°

Ainsi x4 est scindé sur R donc d’apres le théoréeme de ’énoncé, A admet une décomposition
de Dunford. Soit (D, N) le couple de sa décomposition de Dunford. D est diagonalisable et



Q 4)

Q5)

xp(X) =xa(X) = (X +1)3 donc Sp(D) = {-1}. La matrice D est semblable & la matrice dia-
gonale avec des -1 sur sa diagonale, donc D est semblable & —I5. Ainsi 3P € GL3(R), P"1DP =
—13, d’ou D = P(—I3)P_1 = —13. OnabD= —13, d’ou

4 0 8
N=A-D=A+I=| 3 0 6
2 0 -4

On vérifie que (D, N) est la décomposition de Dunford de A (sur K =R ou C ) : - (1)
A=D+N.-(2) D=-I est diagonale donc diagonalisable. - (3) Par le théoreme de Cayley-
Hamilton, x4(A4)=0=(A+ I3)3 = N3 donc N est bien nilpotente. * ‘Remarque : on peut

aussi calculer :
4 0 8 4 0 8
N%2=| 3 0 6 3 0 6 |=0
-2 0 -4 -2 0 -4

Donc N est nilpotente d’indice 2, on s’en servira Q4.
- (4) D = -I5 est scalaire donc commute avec N: DN = ND = -N.

4 0 8 3 0 8
Ainsi||D=-I3,N=| 3 0 6 est la décomposition de Dunfordde A= 3 -1 6
-2 0 -4 -2 0 -5

On a montré que A =D + N ou (D, N) est la décomposition de Dunford de A.
- Puisque D et N commutent, exp(A) = exp(D + N) = exp(D) exp(N).
D = I3 donc Vk € N, D¥ = (=1)*I5. On reconnait le développement en série entiere de exp

en-1:
+00 k +00 (_1)k .
exp(D) =) ED =1 o Is=¢"1I3
k=0 1V k=0~

- Puisque N est nilpotente d’indice 2 , on a Yk > 2, N¥ = 0 et exp(NN) est une somme finie :

+oo 1 1 5 0 8

k k
exp(N)= ) oNF=Y SNF =L, +N=| 3 1 6
k=0 k=0 -2 0 -3

- On conclut que

5 0 8
exp(A) = exp(D)exp(N) = e ( 3 1 6 )
-2 0 -3
Soit A € M, (K) telle que A%(A-1,) =0.
Posons P(X) = X(X-1) Alors P(A?) = A?(A?-1,)=A*(A-1,) (A+1,)=0(A+1,)=0.
Donc le polynéme X (X — 1) annule la matrice A2
Le polynéme X (X —1) est scindé a racines simples sur K et annule A%, donc A2 est diagona-
lisable dans M,,(K). Posons D = A% et N = A— A2, Vérifions que (D, N) est la décomposition
de Dunford de A :
- (1) A= D + N par construction.
- (2) D = A? est diagonalisable.

S (3) N?=(A-A%)* = A2(I, - A)? = A2(A-1,) (A~ 1,) = 0 car A2(A-1,) =0.
N? =0 donc N est nilpotente.

- (4) D et N sont des polynomes en A donc commutent : DN = ND = A% — A%,
Donc (D =A2 N=A- AQ) est la décomposition de Dunford de la matrice A.



Partie II - Un exemple par deux méthodes

3 -1 1
Q 6) Soit A= ( 2 0 1 ) € M3(R). Calculons son polynoéme caractéristique.
1 -1 2
On effectue Cy < Cy + Cs.
X-3 1 -1 X -3 0 -1
Xa(X)=det(XI;-4)  =| -2 X -1 - 2 x-1 -1
-1 1 X-2 -1 X-1 X-2
X-3 0 -1
—(x-1| 2 1 -4
-1 1 X-2

=(X-1D((X-3)(X-1)+1)
= (X -1)(X%-4X +4)

Ainsi x4(X) = (X -1)(X -2)% Donc Sp(4) = {1,2}. On a dim (ker (4 - I3)) = 1. Calculons

dim (ker (A - 2I3)).
1 -1 1
A-2=| 2 2 1
1 -1 0

La matrice (A - 3I3) est de rang 2. Par le théoréme du rang, dim (ker (A —313)) =1 <2 donc
A n’est pas diagonalisable dans M3(R).

Soit u l’endomorphisme de R3 canoniquement associé & A. Par le théoréme de Cayley-

Hamilton, y,, annule u, or x,(X) = (X —1)(X - 2)2. Les polynéomes (X — 1) et (X - 2)?

sont premiers entre eux.

Par le théoréeme de décomposition des noyaux, R? = ker (. (u)) = ker(u —id) @ ker(u — 2id)?.
Q 7) Calculons les noyaux des endomorphismes demandés (dont on sait déja la dimension) :

0
etker (A-1I3) = Vect( 1 )
1

7

2 -1
-1
-1
-1
-2
-1
0 0
(A-2I3)°=| -1 1
-1 1

0 1 0 010
€1 = 1 ,€69 = 1 ,€63 = 0 s P= 1 1 0
1 0 1 1 01

P est la matrice de la famille (ey, ez, e3) dans la base canonique. Comme ker(u —id) @ ker(u -
2id)? = R? Cette famille (ey, ez, e3) est une base de R3. La matrice P € GL3(R) est alors la
matrice de passage de la base canonique de R? & la base (e1, ez, e3).

Par construction, on a u(e1) = e et u(ez) = 2es. De plus

0 1
u(es)=Aes=A| 0 |=| 1 |=e2+2e3
1 2

Ecrivons la matrice de u dans la base (ey,es,e3) de R :

A-1Is =

A-2I5= etker (A —21I3) = Vect

— N = =N

OO0 O, K H PR

~—— O =
—_o o
v
\——/

1
etker (A - 213)° = vect (( 1
0

Posons alors

OO =
o N O

B= Mat(ehe%eg)(u) = (

N = O
SN —



Q 8) (i) Montrons que :

1 0 0 0 0O 1 0 0
D= 0 2 0 |,Ny=] 0 0 1 est la décomposition de Dunford de B=| 0 2 1 |.
0 0 2 0 0 0 0 0 2

En effet : B = Dy + Ny; D, est diagonale donc diagonalisable; N2 = 0 donc N; est nilpotente ;
Dy et Ny commutent car D1 Ny = N1 Dy =2N;.

(ii) Puisque A et B représentent la matrice du méme endomorphisme u dans la base canonique
et dans la base B, on a la formule de changement de base P"'AP = B i.e. A= PBP~!. De
plus on obtient I'inverse de P en remarquant que :

1 0 0 -1 1 0
0 |=-e1+es+es,| 1 |=e1—-e3.] 0 |=e5. P1=] 1 0 0
0 0 1 1 -1 1

(iii) On pose D = PD1P™' et N = PN;P~'. Montrons que (D, N) est la décomposition de
Dunford de A :

e A=PBP'=P(Dy+N,)P'=PD,P'+PN,P'=D+N.

e N2 = (PN;LP‘l)2 = PN12P‘1 =0 donc N est nilpotente. « D et N commutent car Dy et Ny
commutent :

DN =(PD,P") (PN, P™")=P(DiN,) P™' =P(N\D,) P = (PN, P7") (PD:P')=ND

Donc (D, N) est la décomposition de Dunford de A.
(iv) Calculons ces matrices :

01 0 1 00 -1 1 0 2 0 0
D=PD:P'=|1 1 0 0 20 1 0 O0J=11 1 O
1 0 1 00 2 1 -1 1 1 -1 2
Puis :
010 0 00 -1 1 0 1 -1 1
=PN,P =1 1 0 0 0 1 1 0 o0 }=11 -1 1.
1 0 1 0 0 0 1 -1 1 0 0 0
2 0 0 1 -1 1
Finalement | D =] 1 1 0 |,N=1 1 -1 1 est la décomposition de Dunford de A.
1 -1 2 0 0 0

Q 9) On décompose la fraction en éléments simples.

1 a A I

(X-1)(X-22 X-1 (X-2)2 (X-2)

En regroupant les deux derniers termes, il existe (a, b, c) € R3 tels que

1 a bX+c  (a+b)X%*+(c-b-4a)X +4a—c

(X—l)(X—2)2_X—1+(X—2)2_ (X -1)(X -2)2

Par unicité de I’écriture polynomiale :

a+b =0 a =1
c-b-4a =0 <<{ b =-1
da-c =1 c =3
Donc
1 1 -X+3

(X-1)(X-22 X-1 (X-2)?



Q 10)

Q 11)

On en déduit par multiplication par (X —1)(X -2)? que
1=(X-2)2+(-X+3)(X-1).
Posons U(X)=-X+3, V(X)=1. Onadeg(U)=1<2,deg(V)=0<1et
(X -DUX)+ (X -2)*V(X)=1.

.- On pose p = V(u)o (u-2id)? et ¢ = U(u) o (u—id). On a obtenu & la question Q9 la
relation U(X)(X - 1) + V(X)(X -2)? = 1. On évalue cette égalité en 'endomorphisme w :

p+q=U(u)o (u—-id)+V(u)o (u-2id)? = 1(u) = id

Donc p + ¢ = id. - Posons F =ker(u —id) et G = ker(u - 2id)?.
Soit x € F. Alors (u—1id)(z) =0, donc :
q(x) = U(u) o (u-id)(z) =0
p(z) =p(z) +q(x) =id(z) =

Donc Vz € F,p(z) = z,q(x) = 0. Soit € G. Alors (u—id)?(z) = 0, donc :

p(a) =V (u) o (u~2id)*(z) = 0
q(x) = p(z) +q(z) =id(z) = =
Donc Vz € G,p(z) = 0,q(x) = . Puisque F = F & G, tout = € E s’écrit de maniére unique
r=2p+2xqg avec F € F et xg € G. On obtient :
p(x) =p(zp) +p(g) =2p +0=ap
q(x) =q(zr) +q(z4) = 0t+zc =20
On a montré que p est le projecteur sur F = ker(u —id) parallélement & G = ker(u - 2id)? et
q est le projecteur sur G = ker(u - 2id)? parallelement & F = ker(u - id).
On pose d = p+2q. On a d(er1) = p(e1) +2q(e1) = e1,d(e2) = 2e5 et d(e3) = 2es, donc la

100
matrice de d dans la base (e1,eq,e3) s’écrit | 0 2 0 |, ainsi d est diagonalisable. d est un
0 0 2

polynéme en u car p et ¢ le sont. Posons n = u — d, la matrice de n dans la base (e, e2,e3)

0 00

s’écrit | 0 0 1 |, donc n est nilpotente, d et n commutent car ce sont des polynoémes de
0 0O

U.

En fait, on vient de réaliser la décomposition de Dunford au niveau des endomorphismes.

Si on note N et D les matrices, respectivement, de n et u dans la base canonique de R3. De ce
qui précede (D, N) est la décomposition de Dunford de la matrice A. Onad=p+2q=id+q

donc
d=1id+U(u)o (u—id)

=id + (u - 3id) o (u - id)
=u? — 4y + 4id

et n=u—d=-u?+5u - 4id, ce qui donne

D=A2-4A+4I5 et N=-A%+5A-4I;



Partie III - Une preuve de l’existence de la décomposition
Q 12) Soit F un K-e.v. et u € L(E) tel que x, soit scindé : x, = [T,21 p(X = \;)™ (hyp. toujours
vérifiée si K = C).
Alors le théoréme de Cayley-Hamilton donne x,,(u) = 0 et donc par Théoréme de Décomposition
des noyaux (T.D.N) :

P
E = @ker(u-\;id)™
i=1

Q 13) Le résultat admis par ’énoncé fait en réalité partie du T.D.N. Pour chaque i € [1, p]], on note
C; :=ker(u — \;id)™ appelée s.e.v. caractéristique pour la v.p. A;.
Notons w; ’endomorphisme induit par u sur le s.e.v. caractéristique C;. En notant v; =
u; — A;id¢c, on sait que v; est nilpotent d’indice < m;.
A partir de cette écriture u; = A;id¢, +v; et des projecteurs 7;, on peut écrire :

p p p
u=Yy (Nidg, +v;) o = Y- A+ ) viom;
i=1 i=1 i=1

P P P
On pose alors d = z AT € K[u] et v = Zvi om; = Z(u - \;id) om; € K[u].

i=1 i=1 i=1
On a bien d dz, v nilpotent et d o v = v o d puisqu’ils sont dans K[u].
Enfin on a bien x, = x4 puisque dans une base adaptée a (*) d est représenté par une matrice
diagonale et donc x4 = [Tj2q (X = A;)™.

Partie IV - Une preuve de 1'unicité de la décomposition

Q 14) (i) D’apres le cours lorsque deux endomorphismes commutent, le noyau de 'un est stable par
lautre.
Ici v commute avec u donc avec u — \;id, on en déduit que Ej, (u) = ker (u — A\;id) est stable
par v.
(ii) Soit v; = v By, (u)- Comme v est diagonalisable, donc le polynéme minimal 7, est scindé a
racines simples, 7, annule v; par suite v; est diagonalisable, soit B; une base de E}, (u) formée
de vecteurs propres de v;, qui sont aussi et des vecteurs propres de v. Or u est diagonalisable
alors E = @Y Ey,(u), donc (By,...,B,) est une base de E formée de vecteurs qui sont
propres a la fois a u et a v, c’est une base commune de diagonalisation pour u et v.

Q 15) Soient u et v les endomorphismes canoniquement associés, respectivement, & A et B, donc ils
sont diagonalisables et commutent, il existe donc une base commune de diagonalisation pour
u et v. Dans cette base la matrice de u — v est diagonale comme différence de deux matrices
diagonales. Ce qui montre que la matrice A — B est diagonalisable.

Q 16) Si A et B sont deux matrices nilpotentes d’indice de nilpotence, respectivement, p et q. A
et B commutent donc,
E(P+a\ 4k K
(A-By =3 (7 1) an ey
o\ k
remarquons que si k > p alors A*¥ = 0,, et k < p alors p+q—-k > ¢ et BP*97% = 0,,, ainsi
(A-B)P*9 =0,, A- B est donc nilpotente.
Q 17) Soit (D,N) et (D', N') vérifiant les conditions (1), (2), (3), (4) et tels que D,N,D’ et N
soient des polynéomesen A. Ona: D+N = D+ N’ donc D-D"= N'-N. Or D commute avec
D' et N commute avec N’, car elles sont des polynomes en A, donc D - D’ est diagonalisable
et N’ — N est nilpotente. Or la seule matrice & la fois dz et nilpotente est la matrice nulle
donc ici comme D—-D'=N'"-N,ona D-D'=N'-N =0 ce qui donne D=D"et N' =N,
d’ott 'unicité de (D, N).



Partie IV - Non continuité de I’application A~ D

Q 18)

Q 19)

(i) Soit D I’ensemble des matrices diagonalisables de M,,(C). On considére les matrices sui-
vantes A et B de M,,(C) :
-1 1 0 ... 0 0 1 0 ... 0
A=Dingt0e0y, 3| © 0 0| om0 0 0
0o ... ... ... 0 0o ... ... ... 0

La matrice A est diagonale donc diagonalisable.

On a xp(X)=(X+1)X"" Sp(B) ={0,-1},dim (ker (B + I,,)) = 1. Puisque B est de rang 1
, on a dim(ker(B)) =n—1 par le théoréme du rang, donc dim (ker (B + I,,)) + dim(ker(B)) =
(n—-1)+1=n donc B est diagonalisable.

La matrice C est T.S.S. donc nilpotente non nulle, donc non diagonalisable.

Finalement, A et B sont dans D mais C' = A+ B ¢ D. Donc D n’est pas stable par combinaison
linéaire et D n’est pas un espace vectoriel.

(ii) Par théoreme sur les produits de limites dans une algébre bornée si My, . M, on a
PM;, P! o PMP

Par caractérisation séquentielle de la continuité, I'application M + PMP~! est donc bien
continue sur M, (K).

Pour A € M,(C), son polynéme caractéristique x4 est scindé sur C donc A admet une
M,(C)-D

A~ D
la décomposition de Dunford de A diagonalisable est (D, N) = (4,0). Donc VA e D,p(A)=A
i.e. p est Papplication identité sur D. Supposons par absurde que ¢ soit continue sur M,,(C).
Soit A € M,,(C). Comme D est dense dans M,,(C), donc il existe une suite (By),,, de matrices
diagonalisables qui converge vers A. Puisque By € D, on a ¢ (By) = By. Par continuité de ¢ :

unique décomposition de Dunford (D, N). On note ¢ : . D’apres la question Q2,

p(A)= lim @(Bg)= lim By=A
k—+o00 k—+o0

donc VA € M, (C),p(A) = A et ¢ est 'application identité sur M, (C). Montrons que ceci est
absurde. Soit N € M,,(C) une matrice nilpotente non nulle. Par exemple, la matrice suivante
est nilpotente (car yny(X)= X" ) et non nulle :

0 1 0
vl U0
0 ... ... 0

D’apres la question Q2, o(N) = 0 # N. Donc ¢ ne peut pas étre 'application identité sur
M, (C). On a montré que ¢ n’est pas continue sur M, (C).



