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Devoir surveillé 3, d’après CCINP MP 2021 (4h)

Partie I - Quelques exemples

Q 1) Soit A ∈Mn(K).
a) (i) Si A est diagonalisable, (D,N) = (A,0) est la décomposition de Dunford de A.

En effet, D = A est diagonalisable, N = 0 est nilpotente, DN = ND = 0 et A = A + 0 =
D +N .

(ii) Si A est nilpotente, (D,N) = (0,A) est la décomposition de Dunford de A.

En effet, D = 0 est diagonalisable, N = A est nilpotente, DN = ND = 0 et A = 0 +A =
D +N .

b) Soit A une matrice trigonalisable dans Mn(K). Alors il existe P ∈ GLn(K) inver-
sible et T ∈ Mn(K) triangulaire supérieure, telles que P −1AP = T . Les matrices A
et T sont semblables donc ont même polynôme caractéristique : χA = χT . Notons
(λ1, . . . , λn) ∈ Kn les coefficients diagonaux de la matrice T . Puisque T est triangu-
laire, χT (X) = ∏n

i=1 (X − λi) est scindé sur K. Donc χA = χT est scindé sur K. Une
matrice trigonalisable dans Mn(K) vérifie l’hypothèse du théorème donc admet une
décomposition de Dunford.

c) (i) Posons A = ( 1 1
0 2

) ,D′ = ( 1 0
0 2

) et N ′ = ( 0 1
0 0

). D′ est diagonalisable (car

diagonale), N ′ est nilpotente ( car (N ′)2 = 0 ), A = D′ + N ′, cependant D′ et N ′ ne
commutent pas :

D′N ′ = ( 1 0
0 2

)( 0 1
0 0

) = ( 0 1
0 0

) ≠ N ′D′ = ( 0 1
0 0

)( 1 0
0 2

) = ( 0 2
0 0

) .

Donc non : (( 1 0
0 2

) ,( 0 1
0 0

)) n’est pas la décomposition de Dunford de ( 1 1
0 2

)

car ces deux matrices ne commutent pas.

(ii) De plus, la matrice A = ( 1 1
0 2

) ∈M2(R) possède deux valeurs propres distinctes

1 et 2 , donc est diagonalisable dans M2(R), donc (D,N) = (A,0) est la décomposition
de Dunford de A.

Q 2) (i) Soit A telle que χA n’est pas scindé. Par l’absurde si A admet une décomposition de
Dunford alors χA = χD avec D dz et donc χD scindé, donc χA est scindé : contradiction.

Soit la matrice A = ( 0 1
−1 0

) ∈M2(R). Son polynôme caractéristique χA(X) =X2 + 1 n’est

pas scindé sur R donc elle n’admet pas de décomposition de Dunford dans M2(R).

Q 3) Soit A =
⎛
⎜
⎝

3 0 8
3 −1 6
−2 0 −5

⎞
⎟
⎠
∈M3(R). Calculons son polynôme caractéristique, en développant

par rapport à la deuxième colonne :

χA(X) = det (XI3 −A) =
RRRRRRRRRRRRR

X − 3 0 −8
−3 X + 1 −6
2 0 X + 5

RRRRRRRRRRRRR

= (X + 1) ∣ X − 3 −8
2 X + 5 ∣

= (X + 1)3.

Ainsi χA est scindé sur R donc d’après le théorème de l’énoncé, A admet une décomposition
de Dunford. Soit (D,N) le couple de sa décomposition de Dunford. D est diagonalisable et
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χD(X) = χA(X) = (X +1)3 donc Sp(D) = {−1}. La matrice D est semblable à la matrice dia-
gonale avec des -1 sur sa diagonale, donc D est semblable à −I3. Ainsi ∃P ∈ GL3(R), P −1DP =
−I3, d’où D = P (−I3)P −1 = −I3. On a D = −I3, d’où

N = A −D = A + I3 =
⎛
⎜
⎝

4 0 8
3 0 6
−2 0 −4

⎞
⎟
⎠

On vérifie que (D,N) est la décomposition de Dunford de A (sur K = R ou C ) : - (1)
A =D +N . - (2) D = −I3 est diagonale donc diagonalisable. - (3) Par le théorème de Cayley-

Hamilton, χA(A) = 0 = (A + I3)3 = N3 donc N est bien nilpotente. ‘ ‘Remarque : on peut
aussi calculer :

N2 =
⎛
⎜
⎝

4 0 8
3 0 6
−2 0 −4

⎞
⎟
⎠

⎛
⎜
⎝

4 0 8
3 0 6
−2 0 −4

⎞
⎟
⎠
= 0

Donc N est nilpotente d’indice 2, on s’en servira Q4.

- (4) D = −I3 est scalaire donc commute avec N ∶DN = ND = −N .

Ainsi
⎛
⎜
⎝

⎛
⎜
⎝
D = −I3,N =

⎛
⎜
⎝

4 0 8
3 0 6
−2 0 −4

⎞
⎟
⎠

⎞
⎟
⎠
est la décomposition de Dunford deA =

⎛
⎜
⎝

3 0 8
3 −1 6
−2 0 −5

⎞
⎟
⎠
.

Q 4) On a montré que A =D +N où (D,N) est la décomposition de Dunford de A.

- Puisque D et N commutent, exp(A) = exp(D +N) = exp(D) exp(N).
D = −I3 donc ∀k ∈ N,Dk = (−1)kI3. On reconnâıt le développement en série entière de exp
en -1 :

exp(D) =
+∞

∑
k=0

1

k!
Dk = (

+∞

∑
k=0

(−1)k

k!
) I3 = e−1I3

- Puisque N est nilpotente d’indice 2 , on a ∀k ≥ 2,Nk = 0 et exp(N) est une somme finie :

exp(N) =
+∞

∑
k=0

1

k!
Nk =

1

∑
k=0

1

k!
Nk = In +N =

⎛
⎜
⎝

5 0 8
3 1 6
−2 0 −3

⎞
⎟
⎠

- On conclut que

exp(A) = exp(D) exp(N) = e−1
⎛
⎜
⎝

5 0 8
3 1 6
−2 0 −3

⎞
⎟
⎠

Q 5) Soit A ∈Mn(K) telle que A2 (A − In) = 0.
Posons P (X) =X(X −1) Alors P (A2) = A2 (A2 − In) = A2 (A − In) (A + In) = 0 (A + In) = 0.
Donc le polynôme X(X − 1) annule la matrice A2.

Le polynôme X(X −1) est scindé à racines simples sur K et annule A2, donc A2 est diagona-
lisable dans Mn(K). Posons D = A2 et N = A−A2. Vérifions que (D,N) est la décomposition
de Dunford de A :

- (1) A =D +N par construction.

- (2) D = A2 est diagonalisable.

- (3) N2 = (A −A2)2 = A2 (In −A)2 = A2 (A − In) (A − In) = 0 car A2 (A − In) = 0.

N2 = 0 donc N est nilpotente.

- (4) D et N sont des polynômes en A donc commutent : DN = ND = A3 −A4.

Donc (D = A2,N = A −A2) est la décomposition de Dunford de la matrice A.
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Partie II - Un exemple par deux méthodes

Q 6) Soit A =
⎛
⎜
⎝

3 −1 1
2 0 1
1 −1 2

⎞
⎟
⎠
∈M3(R). Calculons son polynôme caractéristique.

On effectue C2 ← C2 +C3.

χA(X) = det (XI3 −A) =
RRRRRRRRRRRRR

X − 3 1 −1
−2 X −1
−1 1 X − 2

RRRRRRRRRRRRR
=
RRRRRRRRRRRRR

X − 3 0 −1
−2 X − 1 −1
−1 X − 1 X − 2

RRRRRRRRRRRRR

= (X − 1)
RRRRRRRRRRRRR

X − 3 0 −1
−2 1 −1
−1 1 X − 2

RRRRRRRRRRRRR
= (X − 1)((X − 3)(X − 1) + 1)
= (X − 1) (X2 − 4X + 4)

Ainsi χA(X) = (X − 1)(X − 2)2. Donc Sp(A) = {1,2}. On a dim (ker (A − I3)) = 1. Calculons
dim (ker (A − 2I3)).

A − 2I3 =
⎛
⎜
⎝

1 −1 1
2 −2 1
1 −1 0

⎞
⎟
⎠

La matrice (A − 3I3) est de rang 2. Par le théorème du rang, dim (ker (A − 3I3)) = 1 < 2 donc
A n’est pas diagonalisable dans M3(R).
Soit u l’endomorphisme de R3 canoniquement associé à A. Par le théorème de Cayley-
Hamilton, χu annule u, or χu(X) = (X − 1)(X − 2)2. Les polynômes (X − 1) et (X − 2)2
sont premiers entre eux.

Par le théorème de décomposition des noyaux, R3 = ker (χu(u)) = ker(u− id) ⊕ ker(u− 2id)2.
Q 7) Calculons les noyaux des endomorphismes demandés (dont on sait déjà la dimension) :

A − I3 =
⎛
⎜
⎝

2 −1 1
2 −1 1
1 −1 1

⎞
⎟
⎠

et ker (A − I3) = vect
⎛
⎜
⎝

0
1
1

⎞
⎟
⎠

A − 2I3 =
⎛
⎜
⎝

1 −1 1
2 −2 1
1 −1 0

⎞
⎟
⎠

et ker (A − 2I3) = Vect
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

(A − 2I3)2 =
⎛
⎜
⎝

0 0 0
−1 1 0
−1 1 0

⎞
⎟
⎠

et ker (A − 2I3)2 = vect
⎛
⎜
⎝

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

⎞
⎟
⎠

Posons alors

e1 =
⎛
⎜
⎝

0
1
1

⎞
⎟
⎠
, e2 =

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠
, e3 =

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
, P =

⎛
⎜
⎝

0 1 0
1 1 0
1 0 1

⎞
⎟
⎠
.

P est la matrice de la famille (e1, e2, e3) dans la base canonique. Comme ker(u− id)⊕ker(u−
2 id)2 = R3 Cette famille (e1, e2, e3) est une base de R3. La matrice P ∈ GL3(R) est alors la
matrice de passage de la base canonique de R3 à la base (e1, e2, e3).
Par construction, on a u (e1) = e1 et u (e2) = 2e2. De plus

u (e3) = Ae3 = A
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
=
⎛
⎜
⎝

1
1
2

⎞
⎟
⎠
= e2 + 2e3

Ecrivons la matrice de u dans la base (e1, e2, e3) de R3 :

B =Mat(e1,e2,e3)(u) =
⎛
⎜
⎝

1 0 0
0 2 1
0 0 2

⎞
⎟
⎠
.

3



Q 8) (i) Montrons que :

⎛
⎜
⎝
D1 =

⎛
⎜
⎝

1 0 0
0 2 0
0 0 2

⎞
⎟
⎠
,N1 =

⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠

⎞
⎟
⎠

est la décomposition de Dunford de B =
⎛
⎜
⎝

1 0 0
0 2 1
0 0 2

⎞
⎟
⎠
.

En effet : B =D1 +N1;D1 est diagonale donc diagonalisable ; N2
1 = 0 donc N1 est nilpotente ;

D1 et N1 commutent car D1N1 = N1D1 = 2N1.

(ii) Puisque A et B représentent la matrice du même endomorphisme u dans la base canonique
et dans la base B, on a la formule de changement de base P −1AP = B i.e. A = PBP −1. De
plus on obtient l’inverse de P en remarquant que :

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
= −e1 + e2 + e3,

⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
= e1 − e3,

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
= e3. P −1 =

⎛
⎜
⎝

−1 1 0
1 0 0
1 −1 1

⎞
⎟
⎠
.

(iii) On pose D = PD1P
−1 et N = PN1P

−1. Montrons que (D,N) est la décomposition de
Dunford de A :

● A = PBP −1 = P (D1 +N1)P −1 = PD1P
−1 + PN1P

−1 =D +N .

● N2 = (PN1P
−1)2 = PN2

1P
−1 = 0 donc N est nilpotente. ● D et N commutent car D1 et N1

commutent :

DN = (PD1P
−1) (PN1P

−1) = P (D1N1)P −1 = P (N1D1)P −1 = (PN1P
−1) (PD1P

−1) = ND

Donc (D,N) est la décomposition de Dunford de A.

(iv) Calculons ces matrices :

D = PD1P
−1 =
⎛
⎜
⎝

0 1 0
1 1 0
1 0 1

⎞
⎟
⎠

⎛
⎜
⎝

1 0 0
0 2 0
0 0 2

⎞
⎟
⎠

⎛
⎜
⎝

−1 1 0
1 0 0
1 −1 1

⎞
⎟
⎠
=
⎛
⎜
⎝

2 0 0
1 1 0
1 −1 2

⎞
⎟
⎠
.

Puis :

N = PN1P
−1 =
⎛
⎜
⎝

0 1 0
1 1 0
1 0 1

⎞
⎟
⎠

⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

−1 1 0
1 0 0
1 −1 1

⎞
⎟
⎠
=
⎛
⎜
⎝

1 −1 1
1 −1 1
0 0 0

⎞
⎟
⎠
.

Finalement
⎛
⎜
⎝
D =
⎛
⎜
⎝

2 0 0
1 1 0
1 −1 2

⎞
⎟
⎠
,N =

⎛
⎜
⎝

1 −1 1
1 −1 1
0 0 0

⎞
⎟
⎠

⎞
⎟
⎠
est la décomposition de Dunford de A.

Q 9) On décompose la fraction en éléments simples.

1

(X − 1)(X − 2)2
= a

X − 1
+ λ

(X − 2)2
+ µ

(X − 2)

En regroupant les deux derniers termes, il existe (a, b, c) ∈ R3 tels que

1

(X − 1)(X − 2)2
= a

X − 1
+ bX + c
(X − 2)2

= (a + b)X
2 + (c − b − 4a)X + 4a − c
(X − 1)(X − 2)2

Par unicité de l’écriture polynomiale :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a + b = 0
c − b − 4a = 0

4a − c = 1
⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a = 1
b = −1
c = 3

Donc
1

(X − 1)(X − 2)2
= 1

X − 1
+ −X + 3
(X − 2)2
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On en déduit par multiplication par (X − 1)(X − 2)2 que

1 = (X − 2)2 + (−X + 3)(X − 1).

Posons U(X) = −X + 3, V (X) = 1. On a deg(U) = 1 < 2,deg(V ) = 0 < 1 et

(X − 1)U(X) + (X − 2)2V (X) = 1.

Q 10) . - On pose p = V (u) ○ (u − 2id)2 et q = U(u) ○ (u − id). On a obtenu à la question Q9 la
relation U(X)(X − 1) + V (X)(X − 2)2 = 1. On évalue cette égalité en l’endomorphisme u :

p + q = U(u) ○ (u − id) + V (u) ○ (u − 2id)2 = 1(u) = id

Donc p + q = id. - Posons F = ker(u − id) et G = ker(u − 2id)2.
Soit x ∈ F . Alors (u − id)(x) = 0, donc :

q(x) = U(u) ○ (u − id)(x) = 0
p(x) = p(x) + q(x) = id(x) = x

Donc ∀x ∈ F, p(x) = x, q(x) = 0. Soit x ∈ G. Alors (u − id)2(x) = 0, donc :

p(x) = V (u) ○ (u − 2id)2(x) = 0
q(x) = p(x) + q(x) = id(x) = x

Donc ∀x ∈ G,p(x) = 0, q(x) = x. Puisque E = F ⊕G, tout x ∈ E s’écrit de manière unique
x = xF + xG avec xF ∈ F et xG ∈ G. On obtient :

p(x) = p (xF ) + p (xg) = xF + 0 = xF

q(x) = q (xF ) + q (xg) = 0 + xG = xG

On a montré que p est le projecteur sur F = ker(u − id) parallèlement à G = ker(u − 2id)2 et
q est le projecteur sur G = ker(u − 2id)2 parallèlement à F = ker(u − id).

Q 11) On pose d = p + 2q. On a d (e1) = p (e1) + 2q (e1) = e1, d (e2) = 2e2 et d (e3) = 2e3, donc la

matrice de d dans la base (e1, e2, e3) s’écrit
⎛
⎜
⎝

1 0 0
0 2 0
0 0 2

⎞
⎟
⎠
, ainsi d est diagonalisable. d est un

polynôme en u car p et q le sont. Posons n = u − d, la matrice de n dans la base (e1, e2, e3)

s’écrit
⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠
, donc n est nilpotente, d et n commutent car ce sont des polynômes de

u.

En fait, on vient de réaliser la décomposition de Dunford au niveau des endomorphismes.

Si on note N et D les matrices, respectivement, de n et u dans la base canonique de R3. De ce
qui précède (D,N) est la décomposition de Dunford de la matrice A. On a d = p+ 2q = id+ q
donc

d = id +U(u) ○ (u − id)
= id + (u − 3id) ○ (u − id)
= u2 − 4u + 4id

et n = u − d = −u2 + 5u − 4id, ce qui donne

D = A2 − 4A + 4I3 et N = −A2 + 5A − 4I3
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Partie III - Une preuve de l’existence de la décomposition

Q 12) Soit E un K-e.v. et u ∈ L(E) tel que χu soit scindé : χu = ∏i=1 p(X − λi)mi (hyp. toujours
vérifiée si K = C).
Alors le théorème de Cayley-Hamilton donne χu(u) = 0 et donc par Théorème de Décomposition
des noyaux (T.D.N) :

E =
p

⊕
i=1

ker(u − λi id)mi

Q 13) Le résultat admis par l’énoncé fait en réalité partie du T.D.N. Pour chaque i ∈ ⟦1, p⟧, on note
Ci ∶= ker(u − λi id)mi appelée s.e.v. caractéristique pour la v.p. λi.

Notons ui l’endomorphisme induit par u sur le s.e.v. caractéristique Ci. En notant vi =
ui − λi idCi on sait que vi est nilpotent d’indice ≤mi.

A partir de cette écriture ui = λi idCi +vi et des projecteurs πi, on peut écrire :

u =
p

∑
i=1

(λi idCi +vi) ○ πi =
p

∑
i=1

λiπi +
p

∑
i=1

vi ○ πi

On pose alors d =
p

∑
i=1

λiπi ∈ K[u] et v =
p

∑
i=1

vi ○ πi =
p

∑
i=1

(u − λi id) ○ πi ∈ K[u].

On a bien d dz, v nilpotent et d ○ v = v ○ d puisqu’ils sont dans K[u].
Enfin on a bien χu = χd puisque dans une base adaptée à (∗) d est représenté par une matrice
diagonale et donc χd = ∏m

i=1(X − λi)mi .

Partie IV - Une preuve de l’unicité de la décomposition

Q 14) (i) D’après le cours lorsque deux endomorphismes commutent, le noyau de l’un est stable par
l’autre.

Ici v commute avec u donc avec u − λiid, on en déduit que Eλi(u) = ker (u − λiid) est stable
par v.

(ii) Soit vi = v∣Eλi
(u). Comme v est diagonalisable, donc le polynôme minimal πv est scindé a

racines simples, πv annule vi par suite vi est diagonalisable, soit Bi une base de Eλi(u) formée
de vecteurs propres de vi, qui sont aussi et des vecteurs propres de v. Or u est diagonalisable
alors E = ⊕p

i=1Eλi(u), donc (B1, . . . ,Bp) est une base de E,formée de vecteurs qui sont
propres à la fois a u et a v, c’est une base commune de diagonalisation pour u et v.

Q 15) Soient u et v les endomorphismes canoniquement associés, respectivement, à A et B, donc ils
sont diagonalisables et commutent, il existe donc une base commune de diagonalisation pour
u et v. Dans cette base la matrice de u − v est diagonale comme différence de deux matrices
diagonales. Ce qui montre que la matrice A −B est diagonalisable.

Q 16) Si A et B sont deux matrices nilpotentes d’indice de nilpotence, respectivement, p et q. A
et B commutent donc,

(A −B)p+q =
p+q

∑
k=0

(p + q
k
)Ak(−B)p+q−k

remarquons que si k ≥ p alors Ak = 0n et k < p alors p + q − k > q et Bp+q−k = 0n, ainsi
(A −B)p+q = 0n, A −B est donc nilpotente.

Q 17) Soit (D,N) et (D′,N ′) vérifiant les conditions (1), (2), (3), (4) et tels que D,N,D′ et N
soient des polynômes en A. On a : D+N =D+N ′ donc D−D′ = N ′−N . Or D commute avec
D′ et N commute avec N ′, car elles sont des polynômes en A, donc D−D′ est diagonalisable
et N ′ −N est nilpotente. Or la seule matrice à la fois dz et nilpotente est la matrice nulle
donc ici comme D −D′ = N ′ −N , on a D −D′ = N ′ −N = 0 ce qui donne D = D′ et N ′ = N ,
d’où l’unicité de (D,N).
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Partie IV - Non continuité de l’application A↦D

Q 18) (i) Soit D l’ensemble des matrices diagonalisables de Mn(C). On considère les matrices sui-
vantes A et B de Mn(C) :

A = Diag(1,0, . . . ,0), B =
⎛
⎜⎜⎜
⎝

−1 1 0 . . . 0
0 0 . . . . . . 0
⋮ ⋮
0 . . . . . . . . . 0

⎞
⎟⎟⎟
⎠
, C = A+B =

⎛
⎜⎜⎜
⎝

0 1 0 . . . 0
0 0 . . . . . . 0
⋮ ⋮
0 . . . . . . . . . 0

⎞
⎟⎟⎟
⎠

La matrice A est diagonale donc diagonalisable.

On a χB(X) = (X +1)Xn−1,Sp(B) = {0,−1},dim (ker (B + In)) = 1. Puisque B est de rang 1
, on a dim(ker(B)) = n− 1 par le théorème du rang, donc dim (ker (B + In))+dim(ker(B)) =
(n − 1) + 1 = n donc B est diagonalisable.

La matrice C est T.S.S. donc nilpotente non nulle, donc non diagonalisable.

Finalement, A et B sont dans D mais C = A+B ∉ D. Donc D n’est pas stable par combinaison
linéaire et D n’est pas un espace vectoriel.

(ii) Par théorème sur les produits de limites dans une algèbre bornée si Mk Ð→
k→+∞

M , on a

PMkP
−1 Ð→

k→+∞
PMP −1.

Par caractérisation séquentielle de la continuité, l’application M ↦ PMP −1 est donc bien
continue sur Mn(K).

Q 19) Pour A ∈ Mn(C), son polynôme caractéristique χA est scindé sur C donc A admet une

unique décomposition de Dunford (D,N). On note φ ∶
Mn(C) → D

A↦D
. D’après la question Q2,

la décomposition de Dunford de A diagonalisable est (D,N) = (A,0). Donc ∀A ∈ D, φ(A) = A
i.e. φ est l’application identité sur D. Supposons par l’absurde que φ soit continue sur Mn(C).
Soit A ∈Mn(C). CommeD est dense dansMn(C), donc il existe une suite (Bk)k≥0 de matrices
diagonalisables qui converge vers A. Puisque Bk ∈ D, on a φ (Bk) = Bk. Par continuité de φ :

φ(A) = lim
k→+∞

φ (Bk) = lim
k→+∞

Bk = A

donc ∀A ∈Mn(C), φ(A) = A et φ est l’application identité sur Mn(C). Montrons que ceci est
absurde. Soit N ∈Mn(C) une matrice nilpotente non nulle. Par exemple, la matrice suivante
est nilpotente (carχN(X) = Xn ) et non nulle :

N =
⎛
⎜⎜⎜
⎝

0 1 . . . 0
0 0 ⋮
⋮ ⋱ ⋮
0 . . . . . . 0

⎞
⎟⎟⎟
⎠

D’après la question Q2, φ(N) = 0 ≠ N . Donc φ ne peut pas être l’application identité sur
Mn(C). On a montré que φ n’est pas continue sur Mn(C).
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