
DS 2 d’après CCINP PSI 2012 : solution

Terminologie : les matrices vérifiant la condition (1) sont appelées matrices stochastiques. Elles
sont importante pour l’étude de processus probabilistes simples. Celles vérifiant (1) et (2) sont les
matrices stochastiques positives.

1) a) Le dessin :

b) On a P = (1,0),Q = (−1/2,
√
3/2) et R = (−1/2,−

√
3/2). On en déduit que

(PQ) ∶ y = − 1√
3
(x − 1)

(PR) ∶ y = 1√
3
(x − 1)

(QR) ∶ x = −1/2

sont les équations des droites (PQ), (PR) et (QR).
c) Une droite d’équation ax+by+c = 0 découpe le plan en deux parties : l’une où ax+by+c > 0

et l’autre où ax + by + c < 0. En testant en l’origine, on sait quelle partie correspond à
quel signe. On trouve alors immédiatement que M(x+ iy) ∈ T si et seulement si les trois
conditions suivantes sont vérifiées :

2x + 1 > 0, x −
√
3y − 1 < 0, x +

√
3y − 1 < 0

2) a) On peut au choix :

● vérifier que det(A−I) = 0 car det(A−I) =
RRRRRRRRRRRRR

a1,1 − 1 a1,2 a1,3
a2,1 a2,2 − 1 a2,3
a3,1 a3,2 a3,3 − 1

RRRRRRRRRRRRR
=
RRRRRRRRRRRRR

0 a1,2 a1,3
0 a2,2 − 1 a2,3
0 a3,2 a3,3 − 1

RRRRRRRRRRRRR
via C1 ← C1 +C2 +C3 puisque la somme des entrées de chaque ligne de A fait 1.

● vérifier que le vecteur (1 1 1)⊺ est propre pour la v.p. 1, ce que l’énoncé fera faire
dans le cas général dans la partie II.

b) Avec l’hypothèse faite sur A les trois valeurs propres 1, λ, λ sont distinctes donc la
matrice A de taille 3 est diagonalisable dans M3(C).

c) Avec le b), on écrit A = P diag(1, λ, λ)P −1 où P ∈ GL3(C) et donc

Tr(A) = 1 + λ + λ = 1 + 2a.

En outre alors A2 = P diag(1, λ, λ)2P −1 = P diag(1, λ2, λ2)P −1 donc

Tr(A2) = 1 + λ2 + λ2 = 1 + 2(a2 − b2)

d) Par hypothèse (2) sur A toutes les entrées (ai,j) sont strictement positives donc

Tr(A) = a1,1 + a2,2 + a3,3 > 0.

En outre pour chaque i ∈ ⟦1,3⟧, on a (A2)
i,i
= ∑3

k=1 ai,kak,i > a2i,i puisque tous les termes

de la somme sont strictement positifs. Donc

Tr (A2) > a21,1 + a22,2 + a33,3.
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e) L’inégalité de Cauchy-Schwarz (u ∣ v)2 ≤ ∥u∥2∥v∥2 pour le p.s. canonique de R3 avec
v = (a1,1, a2,2, a3,3) et u = (1,1,1) donne :

(Tr(A))2 def= (a1,1 + a2,2 + a3,3)2 = (u ∣ v)2 ≤ 3 (a21,1 + a22,2 + a23,3)
parc)
< 3Tr (A2)

f) Par c) Tr(A) = 1 + 2a et par d), Tr(A) > 0 d’où l’inégalité :

2a + 1 > 0

Avec les expressions trouvées au c), l’inégalité Tr(A)2 < 3Tr(A2) de la question précédente
devient :

(1 + 2a)2 < 6(a2 − b2) + 3

autrement dit on sait que :
2a2 − 6b2 − 4a + 2 > 0

ou encore en divisant par 2 :

a2 − 2a − 3b2 + 1 > 0 (∗)

Il se trouve que si on développe le produit (a−
√
3b−1)(a+

√
3b−1) donné par l’énoncé,

on a :
(a −
√
3b − 1)(a +

√
3b − 1) = a2 − 2a − 3b2 + 1

Donc avec (∗) on conclut bien que :

(a −
√
3b − 1)(a +

√
3b − 1) > 0

g) La condition 2a + 1 > 0 indique que M(λ) est à droite du côté (QR).

La condition (a−
√
3b−1)(a+

√
3b−1) > 0 équivaut à

⎧⎪⎪⎨⎪⎪⎩

ou bien(a −
√
3b − 1) > 0 et (a +

√
3b − 1) > 0

ou bien(a −
√
3b − 1) < 0 et (a +

√
3b − 1) < 0

Or, si par l’absurde (a −
√
3b − 1) > 0 et (a +

√
3b − 1) > 0 alors a2 − 3b2 > 1 > a2 + b2 ce

qui donnerait −3b2 > b2 contradiction.

Donc on a montré que

2a + 1 > 0, (a −
√
3b − 1) < 0 et (a +

√
3b − 1) < 0

La question 1c) nous permet alors d’affirmer que

M(λ) ∈ T

3) a) 2r cos(θ) = λ + λ̄ donne immédiatement

α = 1 + 2r cos(θ)
3

jλ + j2λ̄ = jλ + jλ = 2Re(jλ) = 2r cos(θ + 2π/3) et ainsi

β =
1 + 2r cos (θ + 2π

3
)

3

Enfin, on a de même j2λ + jλ̄ = 2Re (j2λ) = 2r cos(θ + 4π/3) = −2r cos (θ + π
3
) et donc

γ =
1 − 2r cos (θ + π

3
)

3

b) On a immédiatement α + β + γ = 1 car 1 + j + j2 = 0.
La matrice A vérifie donc la propriété (1) (matrice stochastique).

Par ailleurs, en notant encore λ = a + ib avec (a, b) ∈ R2, on a :
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● α = 1 + 2a
3
> 0 par M(λ) ∈ T et 1) c)

● β = 1 + jλ + j̄λ̄
3

= 1 + 2Re(jλ)
3

= 1 − a −
√
3b

3
> 0 encore car M(λ) ∈ T et 1) c).

● Enfin, γ > 0 s’obtient de même avec la troisième condition vue en 1.c) Finalement, A
a bien toutes ses entrées strictement positive d’où la condition (2) des matrices ST > 0.

c) On calcule

J2 =
⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠

et J3 = I3

Ceci montre que le polynôme P = X3 − 1 est annulateur de J . Mieux comme la famille
(I, J, J2) est clairement libre (car les indices correspondant aux entrées non nulles dans
ces matrices forment des ensembles disjoints), on en déduit que X3 − 1 est le polynôme
minimal de J .

On sait donc que les valeurs propres de J sont exactement les racines de P donc SpC(J) =
{1, j, j2}.

d) On a immédiatement

A = αI3 + βJ + γJ2 = P (J) avec P = α + βX + γX2

Comme J est diagonalisable, il existe une matrice inversible Q telle que

Q−1JQ = diag (1, j, j2) =∶∆

Une récurrence simple indique que pour tout entier naturel p,

Q−1JpQ =∆p.

On en déduit, par combinaisons linéaires, que :

Q−1P (J)Q = P (∆)

Donc
Q−1AQ = Q−1P (J)Q = diag (P (1), P (j), P (j2))

Les valeurs propres de A sont donc P (1), P (j) et P (j2).
Or avec les formules du a) et 1 + j + j2 = 0 on a :

P (1) = α + β + γ = 1

3
(1 + λ + λ + (1 + jλ + j2λ) + (1 + j2λ + jλ)) = 1

puis

P (j) = α + jβ + j2γ = 1

3
(1 + λ + λ + j(1 + jλ + j2λ) + j2(1 + j2λ + jλ) = λ

et de même
P (j2) = λ

On a bien montré que SpC(A) = {1, λ, λ}.
Remarque : qu’a-t-on montré dans cette partie ? A la fin du 2) que toute matrice dans ST > 0
ayant à part 1 deux v.p. (forcémenent conjuguées) non réelles de module strictement plus petit que
1 a ces valeurs propres non réelles dans T . En fait le fait que les valeurs propres de A différentes
de 1 soient de module strictement plus petit que 1 va être prouvé pour toutes les matrices ST > 0
en toute dimension dans la partie 2.

La question 3) a exhibé pour chaque λ ∈ T non réel, une matrice particulière dans ST > 0
admettant 1, λ, λ comme v.p.
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4) La i-ième coordonnée de AU est ∑n
j=1 ai,juj = ∑n

j=1 ai,j = 1 d’après (2). On en déduit que

AU = U

c’est à dire que U est vecteur propre de A associé à la valeur propre 1 ( U étant non nul).

5) a) Comme BX = 0, sa k-ième coordonnée est nulle : ∑n
j=1 bk,jxj = 0 ce qui donne

bk,kxk = −∑
j≠k

bk,jxj

L’inégalité triangulaire donne (avec la définition de k )

∣bk,k ∣ ∣xk ∣ ≤ ∑
j≠k
∣bk,j ∣ ∣xj ∣ ≤ ∣xk ∣ ∑

j≠k
∣bk,j ∣

Comme ∣xk ∣ > 0 ( X n’est pas nul), on en déduit l’inégalité demandée.

b) B = A−λIn est bien non inversible (puisque λ est valeur propre) et la question précédente
donne (les coefficients non diagonaux de B étant ceux de A )

∣ak,k − λ∣ ≤ ∑
j≠k
∣ak,j ∣

Avec la propriété (ST > 0) on a donc

∣ak,k − λ∣ ≤ ∑
j≠k

ak,j =
⎛
⎝

n

∑
j=1

ak,j
⎞
⎠
− ak,k = 1 − ak,k (∗)

Avec la seconde forme de l’inégalité triangulaire, on en déduit :

∣λ∣ − ak,k ≤ ∣λ − ak,k ∣ ≤ 1 − ak,k

et donc :
∣λ∣ ≤ 1

c) D’après la question précédente, avec λ = eiθ et en mettant les deux membre extrêmes de
l’inégalité (∗) au carré :

∣ak,k − eiθ ∣
2
= (ak,k − cos(θ))2 + sin2(θ) = 1 + a2k,k − 2ak,k cos(θ) ≤ (1 − ak,k)

2 = 1 + a2k,k − 2ak,k

Donc en simplifiant :
0 ≤ 2ak,k(1 − cos(θ)) ≤ 0

donc cos(θ) = 1 carak,k > 0 donc θ = 2kπ avec k ∈ Z et :

λ = 1

6) a) Le déterminant est invariant par transposition et donc A et A⊺ ont le même polynôme
caractéristique donc les mêmes valeurs propres ).

Le rang est aussi invariant par transposition (le rang d’une matrice est égal au rang de
ses colonnes ou de ses lignes). Les images de A − λIn et de A⊺ − λIn ont donc même
dimension. Par théorème du rang, on a alors

dim (Eλ(A)) = n − rg (A − λIn) = n − rg (A⊺ − λIn) = dim (Eλ (A⊺))

b) La i-ième coordonnée de A⊺V est ∑n
j=1 aj,ivj . Elle vaut aussi vi (carA⊺V = V ). Par

inégalité triangulaire, on en déduit que

∣vi∣ =
RRRRRRRRRRR

n

∑
j=1

aj,ivj

RRRRRRRRRRR
≤

n

∑
j=1
∣aj,ivj ∣ =

n

∑
j=1

aj,i ∣vj ∣
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En sommant ces inégalités, on a donc

n

∑
i=1
∣vi∣ ≤

n

∑
i=1

n

∑
j=1

aj,i ∣vj ∣ =
n

∑
j=1
(∣vj ∣

n

∑
i=1

aj,i)

Avec la propriété (1) de l’énoncé
n

∑
i=1

aj,i = 1 , cette inégalité devient une égalité. Toutes

les inégalités intermédiaires sont donc aussi des égalités (car si l’une était stricte, la
somme serait stricte). On a donc

∀i ∈ ⟦1, n⟧, ∣vi∣ =
n

∑
j=1

aj,i ∣vj ∣

c) L’égalité qu’on vient de prouver dit exactement que A⊺∣V ∣ = ∣V ∣.
Si, par l’absurde, il existait un i tel que ∣vi∣ = 0 alors on aurait 0 = ∑n

j=1 ai,j ∣vj ∣ ce qui
donnerait la nullité pour tout j de ai,j ∣vj ∣ (une somme de quantité positives n’est nulle
que si toutes les quantités sont nulles) et donc de tous les vj (car tous les ai,j sont
strictement positifs). Ceci contredit V ≠ 0. Ainsi

∀i, ∣vi∣ > 0

d) Y étant un élément non nul de E1 (A⊺), on sait par la question précédente que : ∀i, yi ≠ 0.
On peut en particulier poser Z =X− x1

y1
Y . C’est un élément de E1 (A⊺), dont la première

coordonnée est nulle. Avec la question précédente (en contraposant), c’est donc le vecteur
nul. X est donc multiple de Y et

dimE1 (A⊺) = 1

e) Soit V un vecteur non nul de E1 (A⊺) et Ω = 1
∑n

i=1∣vi∣
∣V ∣

Par la Q6c) on sait que Ω est un élément de E1(A⊺) dont les coordonnées sont strictement
positive et par construction la somme de ces coordonnées égale à 1 .

Ω est le seul élément ayant ces propriétés car tout autre élément de E1 (A⊺) est multiple
de Ω (et la somme des coordonnées est multiple dans le même rapport).

f) Par a), on sait que dimE1(A) = dimE1(A⊺) et par d), dimE1(A⊺) = 1. Donc dimE1(A) =
1 et par 4), on sait que U = (1 . . .1)⊺ est dans E1(A) donc (U) est une base de E1(A).

7) a) C’est immédiat : N(λX) =
n

∑
i=1

ωi∣λ∣∣xi∣ = ∣λ∣
n

∑
i=1

ωi∣xi∣ = ∣λ∣N(X).

b) Si AX = λX alors N(AX) = ∣λ∣N(X) par le a).

Mais N(AX) =
n

∑
i=1

ωi∣(AX)i∣ =
n

∑
i=1

ωi

RRRRRRRRRRR

n

∑
j=1

ai,jxj

RRRRRRRRRRR
≤

n

∑
i=1

ωi

n

∑
j=1

ai,j ∣xj ∣ la dernière inégalité

étant donnée par l’inégalité triangulaire et la positivité des ai,j . Donc en permutant les
sommes :

N(AX) ≤
n

∑
j=1
(

n

∑
i=1

ωiai,j)∣xj ∣ (∗)

Comme par définition de Ω, A⊺Ω = Ω donc pour tout j,
n

∑
i=1

ai,jωi = ωj , ce qui, dans (∗)

donne :

N(AX) ≤
n

∑
j=1

ωj ∣xj ∣ = N(X)

Donc si AX = λX, on a :
∣λ∣N(X) ≤ N(X)

et pour X ≠ 0, vecteur propre associé à λ, on a N(X) ≠ 0 et donc :

∣λ∣ ≤ 1.
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8) a) Soit X ∈ Mn,1(C). Posons Y = AX, alors pour tout i ∈ ⟦1, n⟧, yi = ∑n
j=1 ai,jxj et donc

Φ(AX) =
n

∑
i=1

ωiyi =
n

∑
i=1
∑
j=1

ωiai,jxj =
n

∑
j=1
(

n

∑
i=1

ai,jωi)xj (∗)

Or par définition de Ω, on sait que A⊺Ω = Ω et donc pour chaque j,
n

∑
i=1

ai,jωi = ωj , ce

qui, dans (∗) donne :

Φ(AX) =
n

∑
j=1

ωjxj = Φ(X)

b) Si X ∈ ker(Φ) ∩ E1(A) alors X ∈ Vect(U) et Φ(X) = 0. Il existe donc λ ∈ C tel que
X = λU et 0 = Φ(X) = Φ(λU) = λ∑n

i=1 ωi = λ. Donc X = 0 .

Les sous-espaces E1(A) et ker(Φ) sont ainsi en somme directe.

Par ailleurs, dim (E1(A)) = 1 et dim(ker(Φ)) = n − 1 (le noyau d’une forme linéaire
non nulle est un hyperplan). La somme de ces dimensions est égale à la dimension de
Mn,1(C). Des deux arguments précédents, on tire

Mn,1(C) = E1(A) ⊕ ker(Φ)

c) On suppose AX = λX et λ ≠ 1. On a alors Φ(X) = Φ(AX) = Φ(λX) = λΦ(X). Donc si
λ ≠ 1 on en déduit Φ(X) = 0 c’est à dire que X ∈ ker(Φ).

d) Soit f l’endomorphisme deMn,1(C) canoniquement associé à A.

Le a) montre que ker(Φ) est stable par f car si Φ(X) = 0 alors Φ(AX) = 0 .

Bien sûr E1(A) est aussi stable par f .

Dans une base adaptée B1 à la décomposition Mn,1(C) = E1(A) ⊕Ker(Φ), la matrice
de f est donc diagonale par bloc :

MatB1(f) = (
1 0
0 B

)

Si 1 était valeur propre de B alors E1(A) serait de dimension ≥ 2 (on aurait deux
vecteurs propres de f indépendants, l’un étant dans E1(A) et l’autre dans ker(Φ) ce
qui est exclu).

Donc 1 n’est donc pas racine de χB . Or χf = (X−1)χB (déterminant diagonal par blocs)
et 1 est donc racine simple de χf . Finalement, la valeur propre 1 est de multiplicité 1
dans χf = χA.

Remarque : dans les processus stochastiques en probabilité on itère l’action de A, donc on étudie
les suites (AkX). Le point de vue des normes initié à la Q 7) est alors important pour faire de
l’analyse, quand k → +∞ et trouver des limites.
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