DS 2 d’apres CCINP PSI 2012 : solution

Terminologie : les matrices vérifiant la condition (1) sont appelées matrices stochastiques. Elles
sont importante pour 1’étude de processus probabilistes simples. Celles vérifiant (1) et (2) sont les
matrices stochastiques positives.
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Le dessin : —
Ona P=(1,0),Q = (-1/2,4/3/2) et R = (-1/2,-v/3/2). On en déduit que

1
(PQ)~Z/:—$($—1)
1
%(1‘—1)

(QR):x=-1/2

sont les équations des droites (PQ), (PR) et (QR).

Une droite d’équation ax+by+c = 0 découpe le plan en deux parties : I'une ot ax+by+c > 0
et Pautre ol ax + by + ¢ < 0. En testant en l'origine, on sait quelle partie correspond a
quel signe. On trouve alors immédiatement que M (x +iy) € T si et seulement si les trois
conditions suivantes sont vérifiées :

(PR):y =

20+1>0,2-V3y-1<0,2+v3y-1<0

On peut au choix :

aij1—1  aiz ai,3 0 a1z ai,3
o vérifier que det(A-TI) =0 cardet(A-T) =| a2 agg -1 azs |=[0 ag2-1 as3
as1 az2 azz—1] [0 az2 asz3z-—1

via C7 < C7 + C3 + C3 puisque la somme des entrées de chaque ligne de A fait 1.
e vérifier que le vecteur (1 1 1)" est propre pour la v.p. 1, ce que I’énoncé fera faire
dans le cas général dans la partie II.
Avec I'hypothese faite sur A les trois valeurs propres 1,\, A sont distinctes donc la
matrice A de taille 3 est diagonalisable dans M3(C).
Avec le b), on écrit A = Pdiag(1,\,\)P~! ott P e GL3(C) et donc

Tr(A)=1+A+X=1+2a.

En outre alors A% = Pdiag(1, X\, \)?P~!' = Pdiag(1, A2, A2)P~! donc

Tr(A%) =1+ A2+ 22 =1+2(a® - b?)

Par hypothese (2) sur A toutes les entrées (a; ;) sont strictement positives donc

‘ TY(A) =ai1 + a2 2 + as;3 > 0. ‘

%

de la somme sont strictement positifs. Donc

En outre pour chaque i € [1,3], on a (AQ) = Zzzl Qi KOk, > afi puisque tous les termes

Tr (AQ) > ail + a%jg + ag73.




e) L’inégalité de Cauchy-Schwarz (u | v)? < |u|?|v|? pour le p.s. canonique de R® avec

v = (a171,a272,a3,3) et u= (1, 1, 1) donne :

de parc)
(Tr(A))? 2 (a11 +ass +a33)” = (u|v)> <3(ad, +ad, +ad,) "< 3Tr(4%)

f) Par c¢) Tr(A) =1+ 2a et par d), Tr(A4) > 0 d’on l'inégalité :

Avec les expressions trouvées au c), I'inégalité Tr(A)? < 3 Tr(A?) de la question précédente
devient :
(1+2a)*<6(a*-b%)+3

autrement dit on sait que :
2a® - 6b° —4a+2>0

ou encore en divisant par 2 :
a®-2a-3>+1>0 (%)

I se trouve que si on développe le produit (a—+/3b—1)(a++/3b-1) donné par I’énoncé,
on a:

(a—V3b-1)(a+V3b-1)=a*>-2a-3b" +1

Donc avec (*) on conclut bien que :

(a-=v3b-1)(a+V3b-1)>0
g) La condition 2a + 1 > 0 indique que M (\) est & droite du coté (QR).

ou bien(a -v3b-1)>0 et (a+/3b-1)>0
ou bien(a-v3b-1)<0 et (a+/3b-1)<0

Or, si par labsurde (a —\/3b—1) >0 et (a++/3b-1) >0 alors a® - 36 > 1 > a® + b? ce
qui donnerait —3b% > b? contradiction.

La condition (a—v/3b-1)(a+v/3b-1) > 0 équivaut & {

Donc on a montré que
20+1>0, (a-v3b-1)<0 et (a+V3b-1)<0

La question 1¢) nous permet alors d’affirmer que
M\)eT
a) 2rcos(f) = A+ A donne immédiatement

1+2 0
oo + r;:os()

GA+ 32N =N+ A =2Re(j\) = 2rcos(f + 27/3) et ainsi

~ 1+2rcos(0+%’r)
- 3

Enfin, on a de méme 52\ + j\ = 2Re (j2)\) =2rcos(0 + 4m/3) = —2r cos (6’ + g) et donc

1—2rcos(9+ %)
3

"}/:

b) On a immédiatement o+ 3+~ =1 car 1 +j+ 52 =0.
La matrice A vérifie donc la propriété (1) (matrice stochastique).
Par ailleurs, en notant encore A = a + ib avec (a,b) € R?, on a :



1+2
ca=—y a >0 par M(A)eT et 1) ¢)
8 1+jA+jX 1+2Re(j\) 1-a-+/3b
L] = = =
3 3 3
e Enfin, v > 0 s’obtient de méme avec la troisieme condition vue en 1.c) Finalement, A
a bien toutes ses entrées strictement positive d’ott la condition (2) des matrices ST > 0.

>0 encore car M(A) €T et 1) c).

¢) On calcule

0 0 1
J2= 1 0 0 et JP=14
01 0

Ceci montre que le polynéme P = X2 — 1 est annulateur de J. Mieux comme la famille
(I,J,J?%) est clairement libre (car les indices correspondant aux entrées non nulles dans
ces matrices forment des ensembles disjoints), on en déduit que X3 -1 est le polynome
minimal de J.

On sait donc que les valeurs propres de J sont exactement les racines de P donc Sp(J) =
{1,5.5°}.
d) On a immédiatement

A=als+BJ+vJ?=P(J) avec P=a+ X +vX?
Comme J est diagonalisable, il existe une matrice inversible @ telle que
Q'JQ =diag(1,5,5%) = A
Une récurrence simple indique que pour tout entier naturel p,
Q7'JPQ = AP.

On en déduit, par combinaisons linéaires, que :

Q'P())Q=P(A)

Donc

Q'AQ = Q'P(J)Q = diag (P(1), P(j), P (5%))

Les valeurs propres de A sont donc P(1), P(j) et P(52).
Or avec les formules du a) et 1+j+52=0on a:

1 _ _ _
P(l):a+6+7:5(1+)\+)\+(1+j/\+j2)\)+(1+j2)\+j)\)):1
puis
P(j):a+j5+j27:é(1+/\+X+j(1+j>\+j2X)+j2(1+j2/\+jX):X

et de méme

P(j*) = A
On a bien montré que Spg(A4) = {1,\, A}

Remarque : qu’a-t-on montré dans cette partie? A la fin du 2) que toute matrice dans ST > 0
ayant & part 1 deux v.p. (forcémenent conjuguées) non réelles de module strictement plus petit que
1 a ces valeurs propres non réelles dans T. En fait le fait que les valeurs propres de A différentes
de 1 soient de module strictement plus petit que 1 va étre prouvé pour toutes les matrices ST > 0
en toute dimension dans la partie 2.

La question 3) a exhibé pour chaque A € T non réel, une matrice particuliere dans ST > 0
admettant 1, \, \ comme v.p.



4) La i-ieme coordonnée de AU est Y7 ; a; ju; = ¥4 a; j =1 d’apres (2). On en déduit que
AU =U
c’est & dire que U est vecteur propre de A associé a la valeur propre 1 ( U étant non nul).

5) a) Comme BX =0, sa k-ieme coordonnée est nulle : Y7_; by, jz; = 0 ce qui donne

bkl = — Y. b T;

j+k
L’inégalité triangulaire donne (avec la définition de k )

ok el [ < D 1w gl | < o] D b 4

Jj*k J*k

Comme |zx| >0 ( X n’est pas nul), on en déduit 'inégalité demandée.
b) B = A-\I, est bien non inversible (puisque A est valeur propre) et la question précédente
donne (les coefficients non diagonaux de B étant ceux de A )

lakk = Al < ) lak, ]
Jj*k

Avec la propriété (ST > 0) on a donc
n
lark =A< Y ar; = Y kg |- akk=1-arp (*)
j£k 7=1
Avec la seconde forme de I'inégalité triangulaire, on en déduit :
|)\| —ag g < |/\ - ak7k| <1- ag.k

et donc :
Al <1

c) D’apres la question précédente, avec A\ = e’ et en mettant les deux membre extrémes de
l'inégalité (*) au carré :

012
|a;€7;C - ew| = (ag,k - cos(ﬂ))2 +sin?(0) =1+ az’k - 2ay ,cos(0) < (1- ak,k)2 =1+ az’k - 2ay k
Donc en simplifiant :
0<2ay,(1-cos(0)) <0

donc cos(d) = 1carag, >0 donc 6 = 2kmw avec k€ Z et :
A=1

6) a) Le déterminant est invariant par transposition et donc A et AT ont le méme polynome
caractéristique donc les mémes valeurs propres ).
Le rang est aussi invariant par transposition (le rang d’une matrice est égal au rang de
ses colonnes ou de ses lignes). Les images de A — A\I,, et de AT — AI,, ont donc méme
dimension. Par théoréme du rang, on a alors

dim (Ex(A))=n-rg(A-A,)=n-r1g (AT - )Jn) = dim (Ek (AT))

b) La i-ieme coordonnée de ATV est Y7 aj;,v;. Elle vaut aussi v; (car AV =V). Par
inégalité triangulaire, on en déduit que

n n
.V
=1

n
< Y lagivil =Y agilvsl
= '

j=1

vil =




En sommant ces inégalités, on a donc

Sl 3 bl = 3 (1S a)

1=17=1

n
Avec la propriété (1) de ’énoncé Z aj; =1, cette inégalité devient une égalité. Toutes
i=1
les inégalités intermédiaires sont donc aussi des égalités (car si I'une était stricte, la
somme serait stricte). On a donc

Vie[l,n], |vi] = Z aj,i|vjl

J=1

L’égalité qu'on vient de prouver dit exactement que AT|V|=|V]|.

Si, par 'absurde, il existait un i tel que [v;| = 0 alors on aurait 0 = ¥7_; a; ; |[v;| ce qui
donnerait la nullité pour tout j de a; j|v;| (une somme de quantité positives n’est nulle
que si toutes les quantités sont nulles) et donc de tous les v; (car tous les a;; sont
strictement positifs). Ceci contredit V' # 0. Ainsi

Vi, |’U1| >0

Y étant un élément non nul de E; (A"), on sait par la question précédente que : Vi,y; # 0.
On peut en particulier poser Z = X — %Y' C’est un élément de E; (AT), dont la premiére
coordonnée est nulle. Avec la question précédente (en contraposant), ¢’est donc le vecteur
nul. X est donc multiple de Y et

dimE; (A7) =1

Soit V' un vecteur non nul de E; (A7) et Q= ﬁ|V|
i=11Yi

Par la Q6¢) on sait que  est un élément de E7(A™) dont les coordonnées sont strictement
positive et par construction la somme de ces coordonnées égale a 1 .
Q est le seul élément ayant ces propriétés car tout autre élément de Eq (AT) est multiple
de Q (et la somme des coordonnées est multiple dans le méme rapport).
Par a), on sait que dim F1(A) = dim E1 (A7) et par d), dim E; (A7) = 1. Donc dim E; (4) =
1 et par 4), on sait que U = (1...1)7 est dans F1(A) donc (U) est une base de E1(A).

C’est immédiat : N(AX) = Y w;|A||zi] = |\ D wilz;| = AN (X).
i=1 i=1

Si AX = AX alors N(AX) = |\|N(X) par le a).

z @i,j Tj

étant donnée par l’megahte trlangulalre et la positivité des a; ;. Donc en permutant les
sommes :

n n

Mais N(AX) = ZwA(AX) | = Zwl <Hw Z a; jlxz;| la derniere inégalité
i7

N(AX) < i(iwiai,j)w (+)

n

Comme par définition de Q, ATQ = Q donc pour tout j, Z a; jw; = wj, ce qui, dans (*)
i=1

donne :

N(AX) < ilelzrjl - N(X)

Donc si AX =)X, on a:
[AIN(X) < N(X)

et pour X # 0, vecteur propre associé a A, on a N(X) # 0 et donc :

|A[<1.



8) a) Soit X € M,,1(C). Posons Y = AX, alors pour tout i € [1,n], y; = ¥7_; a; jz; et donc

@(AX)zZn:wiyz Zzwza”:ﬁg i(iai,y‘wi)% (*)

i=1 i=1j=1 j=1 i=1

n

Or par définition de €2, on sait que A™Q = Q et donc pour chaque j, Zai’jwi = wj, ce
i=1

qui, dans (*) donne :

D(AX) = i = ®(X)

b) Si X € ker(®) n E1(A) alors X € Vect(U) et ®(X) = 0. Il existe donc A € C tel que
X=Xet0=0(X)=P(ANU) =AY w; =\ Donc X =0.
Les sous-espaces E71(A) et ker(®) sont ainsi en somme directe.
Par ailleurs, dim (E1(A)) = 1 et dim(ker(®)) = n -1 (le noyau d’une forme linéaire
non nulle est un hyperplan). La somme de ces dimensions est égale a la dimension de
M.,,.1(C). Des deux arguments précédents, on tire

Mp1(C) = E1(A) @ ker(®)

¢) On suppose AX =AX et A+ 1. On a alors ?(X) = P(AX) = P(AX) = A®(X). Donc si
A#1 on en déduit ®(X) =0 c’est a dire que X € ker(P).

d) Soit f 'endomorphisme de M,, 1(C) canoniquement associé a A.
Le a) montre que ker(®) est stable par f car si ®(X) =0 alors $(AX) =0
Bien str F;(A) est aussi stable par f.
Dans une base adaptée By a la décomposition M, 1(C) = E1(A) @ Ker(®), la matrice
de f est donc diagonale par bloc :

Mats, (=5 )

Si 1 était valeur propre de B alors F;(A) serait de dimension > 2 (on aurait deux
vecteurs propres de f indépendants, 'un étant dans E1(A) et Pautre dans ker(®) ce
qui est exclu).
Donc 1 n’est donc pas racine de xg. Or x5 = (X -1)xp (déterminant diagonal par blocs)
et 1 est donc racine simple de ). Finalement, la valeur propre 1 est de multiplicité 1
dans xf = xa.

Remarque : dans les processus stochastiques en probabilité on itere ’action de A, donc on étudie
les suites (A*X). Le point de vue des normes initié & la Q 7) est alors important pour faire de
I’analyse, quand k — +oco et trouver des limites.



