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Les calculatrices et autres appareils électroniques (téléphones etc.), l’usage de stylo à encre effaçable
et des blancs de correction sont interdits. Les couleurs autorisées sont le bleu, le noir et le rouge est
toléré pour les encadrés. Encadrez ou soulignez vos résultats, séparez clairement vos questions, la
clarté de votre présentation est un élément important d’appréciation.

Questions de cours à traiter en début de copie

Q0 a) Citer la formule de Taylor reste intégral avec ses hypothèses, et en déduire que :

∀x ∈ R+, ∀n ∈ N, exp(x) ≥
n

∑
k=0

xk

k!

Q0 b) Citer la formule de Taylor-Lagrange avec ses hypothèses, et en déduire que pour tout x ∈ [0,1] :

n

∑
k=1

(−1)k−1

k
xk Ð→

n→+∞
ln(1 + x)

Problème :

Partie I :

1) a) Soit x ∈] − 1,1] et n ∈ N∗. Justifier que 1

1 + x
=

n−1
∑
i=0
(−1)ixi + (−1)

nxn

1 + x
, puis que

ln(1 + x) =
n

∑
k=1

(−1)k−1xk

k
+ (−1)n ∫

x

0

tn

1 + t
dt.

b) En déduire que pour tout x ∈] − 1,1], on a ln(1 + x) =
∞
∑
k=1

(−1)k−1xk

k
.

N.B La démonstration attendue est donc différente de celle de la Q0 b). Ici, on majorera

simplement
tn

1 + t
dans la formule du a) de sorte à traiter le terme en intégrale.

c) En déduire que ln 2 =
∞
∑
k=1

(−1)k−1

k
=
∞
∑
k=1

1

k2k
.

2) On fixe un entier p ∈ N.

a) Déterminer un entier N tel que ∣ ln 2 −
N

∑
k=1

(−1)k−1

k
∣ ≤ 10−p.

b) Prouver que pour tout n ∈ N,
∞
∑

k=n+1

1

k2k
≤ 1

2n
.

c) En déduire un entier N ′ tel que ∣ ln 2 −
N ′

∑
k=1

1

k2k
∣ ≤ 10−p.

Partie II :

3) On fixe ici n ∈ N∗. Soit P ∈ Rn[X]. Démontrer l’existence et unicité d’un polynôme φn(P ) ∈ Rn−1[X]
tel que P (−1) − P (X) = (X + 1)φn(P ).

4) a) Soit φn l’application de Rn[X] dans Rn−1[X] ainsi obtenue. Démontrer que φn est linéaire.

b) Déterminer ker φn et Im φn.

5) a) Calculer explicitement φn(Xk) pour k ∈ [[ 0, n ]] et expliciter la matrice de φn dans les bases
canoniques ordonnées suivant les puissances croissantes de X.

b) Soit P =
n

∑
i=0

aiX
i. Montrer que φn(P ) =

n−1
∑
j=0

bjX
j où pour tout j ∈ [[ 0, n − 1 ]], bj = (−1)j

n

∑
i=j+1
(−1)iai.

Partie III :
On se donne ici f ∈ C([0,1],R) et on note S(f) = ∫

1

0

f(x)
1 + x

dx et un(f) = ∫
1

0
xnf(x)dx pour tout n ∈ N.

6) On souhaite étudier la nature de la série ∑(−1)nun(f).
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a) Sous l’hypothèse supplémentaire que f est positive sur [0,1], justifier la convergence de∑(−1)nun(f),
sans chercher à en expliciter la somme.

b) On revient au cas général. En adaptant la méthode proposée en question 1b, prouver que

∑(−1)nun(f) converge et a pour somme S(f).
7) On se donne de plus P ∈ Rn[X] tel que P (−1) ≠ 0.

a) Montrer : ∫
1

0

P (x)
1 + x

f(x)dx = P (−1)S(f) − ∫
1

0
φn(P )(x)f(x)dx.

b) Soit M(P ) =maxx∈[0,1] ∣P (x)∣. Montrer que

∣S(f) − 1

P (−1) ∫
1

0
φn(P )(x)f(x)dx∣ ≤

M(P )S(∣f ∣)
∣P (−1)∣

Partie IV :

On considère la suite de polynômes (Tn) définie par :

⎧⎪⎪⎨⎪⎪⎩

T0 = 1, T1 = 1 − 2X
∀n ∈ N, Tn+2 = 2(1 − 2X)Tn+1 − Tn.

8) Démontrer que (Tn) est une suite de Z[X]. Que vaut degTn pour tout n ?

9) a) On pose vn = Tn(−1). Exprimer vn+2 en fonction de vn+1 et vn.

b) En déduire vn en fonction de n.

c) Le réel −1 est-il racine de Tn ?

10) a) Démontrer que, pour tout n ∈ N et tout θ ∈ R, Tn(sin2 θ) = cos(2nθ).
b) Déterminer M(Tn) =maxx∈[0,1] ∣Tn(x)∣

11) En utilisant les résultats de la question 7b et en choisissant judicieusement P et f , construire une

suite (tn) de rationnels tels que ln 2 − tn = O(
1

(3 +
√
8)n
)

Partie V :
On revient dans cette partie aux résultats de la question 2 de la partie I pour tenter d’expliquer la

différence entre les valeurs de N et N ′ obtenues alors. On note ici Rn =
∞
∑

k=n+1

(−1)k−1

k
et R′n =

∞
∑

k=n+1

1

k2k
.

Estimation de Rn.

12) Montrer que Rn = (−1)n ∫
1

0

xn

1 + x
dx.

13) En intégrant par parties, déterminer un réel λ et un entier β tels que Rn = λ
(−1)n

nβ
+ O

n→∞
( 1

nβ+1 ) .

14) En déduire un équivalent de Rn. Que dire de la nature de ∑Rn ? Justifiez.

Estimation de R′n.
15) Démontrer que R′n = o(2−n).

Plus généralement, soit f ∈ C1([1,+∞[,R) telle que ∀x ≥ 1, f(x) > 0 et
f ′(x)
f(x)

Ð→
x→+∞

µ < 0.

16) Démontrer que lim
n→∞

( ln f(n + 1) − ln f(n)) = µ.
On pourra utiliser le théorème des accroissements finis.

17) En déduire (le a) et le b) sont indépendants) :

a) ln(f(n)) ∼
n→+∞

µn.

b) lim
n→+∞

f(n + 1)
f(n)

.

18) En déduire alors la nature de ∑ f(n).
19) Montrer qu’il existe une constante ν à préciser telle que f(n + 1) − f(n) ∼

n→+∞
νf(n).

20) Déduire de ce qui précède une constante α telle que R′n ∼
α

n2n
.

21) a) Montrer que l’intégrale ∫
+∞

1

1

2t
dt est bien définie et calculer sa valeur. On ne demande pas de

justifier ici (c’est immédiat) que cela entrâıne la convergence de ∫
+∞

1

1

t2t
dt et ∫

+∞

1

1

t22t
dt

b) Démontrer que ∫
+∞

n

1

t22t
dt = O

n→+∞
( 1

n22n
).

c) À l’aide d’une intégration par parties en déduire un équivalent de ∫
+∞

n

1

t2t
dt.

d) A-t-on R′n ∼
n→+∞ ∫

+∞

n

1

t2t
dt ?
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