
D.S. 1 : solutions

Problème : d’après E3A MP 2009

Partie I.

1) .

a) La première égalité est la formule de sommation des suites géométriques de raison −x ≠ 1.
La deuxième vient en intégrant la 1ère entre 0 et x.

b) Il suffit de montrer que In ∶= ∫ x
0

tn

1+t
dt tend vers 0 quand n→∞, à x fixé dans ] − 1,1].

1er cas : x ∈ [0,1] Dans ce cas ∀ t ∈ [0, x] ⊂ [0,1], 0 ≤ tn

1 + t ≤ t
n et donc

0 ≤ ∫
x

0

tn

1 + t dt ≤ ∫
x

0
tndt = xn+1

n + 1 ≤
1

n + 1
Par encadrement, on conclut bien que In Ð→

n→+∞
0.

2ème cas : x ∈] − 1,0]. Dans ce cas ∀ t ∈ [x,0], 0 < 1 + x ≤ 1 + t ≤ 1 donc

0 ≤ 1

1 + t ≤
1

1 + x (∗)

Par inégalité triangulaire sur les intégrales dans ce cas :

∣In∣ ≤ ∫
0

x

∣t∣n
1 + tdt

et donc par (∗)
∣In∣ ≤ 1

1 + x ∫
0

x
∣t∣ndt

Par parité de t ↦ ∣t∣n, on a ∫
0

x
∣t∣ndt = ∫

∣x∣

0
tndt ≤ 1

n + 1 comme dans le premier cas.

Ainsi ici

∣In∣ ≤ 1

(1 + x)(n + 1)
et on conclut encore que In Ð→

n→+∞
0.

c) La 1ère égalité est immédiate en prenant x = 1 dans l’égalité du b).

Pour la seconde, on prend x = −1/2 dans cette même égalité, on obtient :

ln(1/2) =
+∞

∑
k=1

(−1)k−1(−1)k
k2k

Comme ln(1/2) = − ln(2) et (−1)k−1.(−1)k = −1 en simplifiant par (−1) dans les deux
membres de cette égalité, on obtient l’égalité demandée.

2) a) Comme (1/n) tend vers zéro, en décroissant la série ∑ (−1)
k−1

k
vérifie le théorème de

convergence des séries alternées spéciales.

Par majoration du reste donnée par ce théorème, on sait que :

∣RN+1∣ = ∣ln 2 −
N

∑
k=1

(−1)k−1
k

∣ ≤ 1

N + 1
Il suffit donc de prendre un entier N tel que 1

N+1
≤ 10−p, donc N ≥ 10p − 1.

b) Pour tout k ≥ 1, on sait que 1
k2k
≤ 1

2k
, et donc en sommant ∑∞k=n+1 1

k2k
≤ ∑∞k=n+1 1

2k
= 1

2n
.

c) On a ∣ln 2 −∑N ′

k=1
1

k2k
∣ = ∑∞k=N ′+1 1

k2k
≤ 1

2N′
d’après la question précédente. Il suffit de

prendre un entier N ′ tel que 1
2N′
≤ 10−p, et donc tout N ′ ≥ ln 10

ln2
p fait l’affaire.

�� ��La série du c) converge beaucoup plus vite que celle du a) : cf. V et le chapitre sur les séries entières
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Partie II.

3) Comme -1 est racine du polynôme P (−1)−P (X), le polynôme X+1 le divise, d’où l’existence
de φn(P ) (de degrè degP − 1 ), et son unicité par unicité du quotient dans la division
euclidienne.

4) a) Soit P1, P2 ∈Rn[X], λ1, λ2 ∈R.

En multipliant les relations

Pi(−1) − Pi(X) = (X + 1)φn (Pi)
par λi pour i = 1,2 et en les ajoutant, on obtient

(λ1P1 + λ2P2) (−1) − (λ1P1 + λ2P2) (X) = (X + 1) (λ1φn (P1) + λ2φn (P2))
et donc λ1φn (P1)+λ2φn (P2) satisfait la propriété caractérisant le polynôme φn (λ1P1 + λ2P2),
ils sont donc égaux par l’unicité du 3).

b) On a par intégrité de R[X] :

φn(P ) = 0⇔ P (−1) − P (X) = 0⇔ P est constant

d’où Kerφn =R0[X]
Par définition l’image de ϕn est un s.e.v. de Rn−1[X]. Or elle est de dimension n à cause
de la formule du rang, donc de même dimension que Rn−1[X], donc Imφn =Rn−1[X].

5) a) On connâıt l’identité

ap − bp = (a − b)
p−1

∑
k=0

ap−1−kbk

valable, pour tout p ≥ 1, dans n’importe quel anneau commutatif.

Appliquée ici à a = −1 et b =X dans R[X], elle fournit pour P =Xp :

P (−1) − P (X) = −(1 +X)
p−1

∑
k=0

(−1)p−1−kXk

donc

φn (Xp) =
p−1

∑
k=0

(−1)p−kXk

pour tout p tel que 1 ≤ p ≤ n. Puisque φn(1) = 0, la matrice cherchée est donc

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1 ⋯ ⋯ (−1)n
⋮ 0 −1 1 (−1)n−1
⋮ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Plus précisément, M = (mij)(i,j)∈⟦0,n−1⟧×⟦0,n⟧ est une matrice à n lignes et n+1 colonnes,

dans laquelle mij est le coefficient de Xi dans φn (Xj) ; donc mij = 0 si i ≥ j, et vaut

(−1)j−i sinon.
b) On utilise la matrice : pour tout (i, j), ai est la i-ème coordonnée de P dans la base

canonique, et bj la j-ème coordonnée de φn(P ). On a donc, pour tout j,

bj =
n

∑
i=0

mj,iai =
n

∑
i=j+1

(−1)i−jai

qui donne bien le résultat demandé puisque (−1)−j = (−1)j .
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Partie III.

6) a) L’idée est d’essayer d’appliquer le théorème de convergence des séries alternées spéciales :
● Comme f ≥ 0, les termes un(f) dont tous positifs donc ∑(−1)nun(f) est bien d’une
série alternée

● l’inégalité, valide pour t ∈ [0,1],0 ≤ tn+1 ≤ tn donne quant à elle, après multiplication
par f(t) et intégration, que un+1(f) ≤ un(f) donc (un(f)) est décroissante.
● Comme f est une fonction continue sur un segment, elle est bornée. SoitM un majorant
de ∣f ∣ sur [0,1]. On a alors la majoration

0 ≤ un(f) ≤M ∫
1

0
tn dt = M

n + 1
donc un(f) Ð→

n→+∞
0.

Ainsi on a vérifié les hypothèses du théorème et ∑(−1)nun(f) converge.
b) D’après 1a, on sait que pour tout n ∈ N∗,

f(x)
1 + x =

n−1

∑
i=0

(−1)ixif(x) + (−1)
nxnf(x)
1 + x ,

d’où en intégrant

S(f) =
n−1

∑
i=0

(−1)iui(f) + (−1)n ∫
1

0

xnf(x)
1 + x dx.

Il s’agit donc de prouver que le terme intégral tend vers 0 quand n→∞. Or, en notant
M =maxx∈[0,1] ∣f(x)∣, par croissance de l’intégrale :

∣∫
1

0

xnf(x)
1 + x dx∣ ≤M ∫

1

0

xn

1 + x dx ≤M ∫
1

0
xn dx = M

n + 1
avec ce majorant qui tend vers 0, on a la conclusion.

7) a) Par définition de φn, on sait que P (X) − P (−1) = −(1 + X)φn(X). Donc pour tout
x ≠ −1,

P (x) − P (−1)
1 + x f(x) = −φn(P )(x)f(x),

égalité que l’on intègre sur [0,1] en séparant les deux termes au numérateur de la fraction
pour obtenir :

∫
1

0

P (x)f(x)
1 + x dx − P (−1)∫

1

0

f(x)
1 + xdx = −∫

1

0
φn(P )(x)f(x)dx

ce qui donne l’égalité demandée par définition de S(f) :

∫
1

0

P (x)
1 + x f(x)dx = P (−1)S(f) − ∫

1

0
φn(P )(x)f(x)dx.

b) A partir du résultat du a), en divisant par P (−1) :

∣S(f) − 1

P (−1) ∫
1

0
φn(P )(x)f(x)dx∣ = ∣ 1

P (−1) ∫
1

0

P (x)
1 + x f(x)dx∣ (1)

puis par inégalité triangulaire et croissance de l’intégrale

∣ 1

P (−1) ∫
1

0

P (x)f(x)
1 + x dx∣ ≤ 1

∣P (−1)∣ ∫
1

0

∣f(x)∣∣P (x)∣
1 + x ≤ M

∣P (−1)∣ ∫
1

0

∣f(x)∣
1 + x dx = M

∣P (−1)∣S(∣f ∣) (2)

Avec (1) et (2), on a la conclusion.
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Partie IV.

8) On note H(n) la propriété Tn ∈ Z[X] et degTn = n. On va montrer par récurrence double
que pour tout n ∈ N, H(n) est vraie.
● Initialisation : H(0) et H(1) sont vraies par la forme explicite donnée par l’énoncé.

● Hérédité : Supposons que pour un n ≥ 0, H(n) et H(n + 1) sont vraie. Montrons que
H(n + 2) est vraie.
Comme Z[X] est un anneau et que les polynômes Tn, Tn+1 et 2(1− 2X) sont dans Z[X], on
déduit de la formule Tn+2 = 2(1 − 2X)Tn+1 − Tn que Tn+2 ∈ Z[X].
D’autre part si on note an,nX

n le monôme dominant de Tn et an+1,n+1X
n+1 le monôme

dominant de Tn+1 la même relation dit que le monôme dominant de Tn+2 est

2(−2X)an+1,n+1Xn+1 = −4an+1,n+1Xn+2

ce qui montre bien (puisque ce coefficient n’est pas nul) que deg(Tn+2) = n + 2.
Ainsi H(n + 2) est vraie.
La récurrence est établie.

9) a) En utilisant la relation de récurrence vérifiée par (Tn) évaluée en −1, on obtient pour
tout n ∈ N :

vn+2 = 6vn+1 − vn.
b) La suite (vn) vérifie donc une relation de récurrence linéaire d’ordre 2 à coefficients

constants ; son polynôme caractéristique X2 − 6X + 1 ayant deux racines simples 3+√8
et 3 −√8, on sait qu’il existe deux réels λ,µ tels que :

∀n ∈ N, vn = λ(3 +
√
8)n + µ(3 −√8)n

Enfin compte-tenu du fait que v0 = 1 et v1 = 3, on obtient :

∀ n ∈ N, vn = (3 +
√
8)n + (3 −√8)n

2

c) Par Tn(−1) = vn et par la question précédente comme 3−√8 > 0 on sait que vn > 0 donc
non (−1) n’est pas racine de Tn.

10) a) Par récurrence double, on note Hn la propriété : ∀ θ ∈ R, Tn(sin2 θ) = cos(2nθ).
● Initialisation : Soit θ ∈ R. On a bien T0 (sin2 θ) = 1 = cos(2 ⋅ 0 ⋅ θ) et T1 (sin2 θ) =
1 − 2 sin2 θ = cos(2θ).
● Soit n ∈ N tel que H(n) et H(n + 1) sont vraies. Alors

Tn+2 (sin2 θ) = 2 cos(2θ) cos(2(n + 1)θ) − cos(2nθ) = cos(2(n + 2)θ)
en utilisant 2 cosa cos b = cos(a + b) + cos(a − b), donc H(n + 2) est vraie.
La récurrence (double) est établie

b) Comme x ∈ [0,1], on peut choisir θ ∈ [0, π/2] tel que √x = sin θ. On a alors

∣Tn(x)∣ = ∣Tn (sin2 θ)∣ = ∣ cos(2nθ)∣ ≤ 1
. De plus, pour x = 0, on a θ = 0 donc ∣Tn(x)∣ = 1. On a donc Mn = 1.

N.B. Ces polynômes Tn sont des variantes des polynômes de Tchebychev lesquels sont définis,
pour les polynômes de première espèce, par Tn(cos(θ)) = cos(nθ) et ceux de deuxième espèce
par :

11) Vu les questions précédentes, on applique le 7) b) à P = Tn (possible car Tn est de degré n, et
ne s’annule pas en -1 ) et f = 1 (car grâce à la partie 1 , on sait qu’alors S(f) = S(∣f ∣) = ln 2).
La question 7 b de la Partie III. nous donne alors

∣S(1) − 1

Tn(−1) ∫
1

0
φn (Tn) (x)dx∣ ≤ M (Tn)S(∣1∣)

∣Tn(−1)∣ = ln 2

vn
≤ 2 ln 2

(3 +√8)n (∗)
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Remarque cruciale : comme Tn ∈ Z[X] et comme le coefficient dominant de X + 1 est
1 le quotient φn(Tn) de la division euclidienne de Tn par X + 1 est encore dans Z[X]. Une
primitive Φn de φn est alors dans Q[X] et donc :

∫
1

0
φn(Tn) = [Φn]10 ∈ Q

Ainsi en posant tn = 1

Tn(−1) ∫
1

0
φn(Tn), on a bien tn ∈ Q et par (∗), ln 2−tn = O( 1

(3 +√8)n )

Partie V.

12) On évalue l’égalité de la question 1a) en x = 1, on a bien :

ln(2) =
n

∑
k=1

(−1)k−1
k

+ (−1)∫
1

0

tn

1 + tdt

ce qui donne la formule demandée pour Rn.

13) Par I.P.P. où on dérive 1
1+x

et on primitive xn, il vient

∫
1

0

xn

1 + x dx = 1

2(n + 1) −
1

n + 1 ∫
1

0

xn+1

(1 + x)2 dx (∗)

Or

0 ≤ ∫
1

0

xn+1

(1 + x)2 dx ≤ ∫
1

0
xn+1 dx = 1

n + 2
ce qui donne que le dernier terme dans (∗) est un O (1/n2).
Et d’autre part

1

2(n + 1) =
1

2n
+O (1/n2)

Ainsi avec (∗), on obtient :

Rn = (−1)
n

2n
+O (1/n2)

et donc λ = 1/2 et β = 1.
14) Par le résultat précédent, on a Rn ∼ (−1)

n

2n
. Attention cependant, contrairement à ce que la

question pourrait le laisser penser ce n’est pas l’équivalent qui va donner la nature de la série
puisque ce terme général est de signe variable.

En revanche avec le résultat précédent Rn est somme de (−1)
n

2n
, terme général d’une série

convergente par le théorème sur les séries alternées spéciales, et de O (1/n2) terme général
d’une série ACV.

15) On sait que 1
k2k
= o (2−k), et comme 2−k ≥ 0, terme général d’une série convergente, par

théorème de sommation des o() dans le cas convergent, on sait que :

R′n = o(
∞

∑
k=n+1

2−k) = 2−n.

16) La fonction ln ○f étant D1 sur ]n,n + 1 [ et C0 sur[n,n + 1], il existe cn ∈]n,n + 1 [ tel que

ln f(n + 1) − ln f(n) = f ′

f
(cn). Par composition (la suite (cn) tend vers +∞ par minoration),

on a bien
lim
n→∞
(ln f(n + 1) − ln f(n)) = µ.
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17) a) Le terme général xn = ln f(n + 1) − ln f(n) est équivalent à yn = µ, terme général de
signe constant (négatif) d’une série divergente. Par sommation des équivalents dans le cas
divergent, on a donc :

n−1

∑
k=1

ln(f(k + 1)) − ln(f(k)) ∼
n→+∞

n−1

∑
k=1

yk = µ(n − 1) ∼
n→+∞

µn (1)

Mais par télescopage

n−1

∑
k=1

ln(f(k + 1)) − ln(f(k)) = ln(f(n)) − ln(f(1)) (2)

et par divergence vers −∞ de ces sommes partielles, on sait que

ln(f(n) − ln f(1) ∼
n→+∞

ln(f(n) (3)

Avec (1), (2), (3), on a bien :
ln(f(n)) ∼

n→+∞
µ.n

b) Question plus facile :

f(n + 1)/f(n) = exp(ln f(n + 1) − ln f(n)) Ð→
n→+∞

eµ

par continuité de exp.

18) (M1) Le plus simple est de s’appuyer sur la règle de d’Alembert, qui assure l’absolue conver-
gence de la série des f(n) : en effet, l∣f(n + 1)/f(n)∣ Ð→

n→+∞
eµ ∈ [0,1[ par 17 b).

(M2) On peut aussi raisonner ainsi, à la Riemann : on a n2f(n) = exp(2 lnn+ ln f(n)).
Comme 2 lnn + ln f(n) ∼ µn par croissance comparée, et que µn → −∞, on a n2f(n) → 0 et
donc f(n) est négligeable devant 1/n2, d’où la CVA de ∑ f(n).
N.B. Il est faux par contre de dire que f(n) ∼ exp(µn), car on ne peut pas composer par
exp des équivalents.

19) On écrit comme f ne s’annule pas sur [1,+∞[

f(n + 1) − f(n) = f(n)(f(n + 1)
f(n) − 1) .

Puis, f(n+1)
f(n)

Ð→
n→+∞

eµ par Q 17 b), après composition par exp, continue en µ, donc

f(n + 1) − f(n) ∼
n→+∞

f(n)(eµ − 1)

d’où le résultat demandé avec ν = eµ − 1.
20) Continuons encore un peu avec le cas général : par positivité des termes, la convergence de

∑ f(n) et par l’équivalence f(n) ∼ 1
eµ−1
(f(n + 1) − f(n)) on peut appliquer le théorème de

sommation des équivalents aux restes :

∞

∑
k=n+1

f(k) ∼
n→+∞

1

eµ − 1
∞

∑
k=n+1

(f(k + 1) − f(k)) = 1

1 − eµ f(n + 1) (∗)

On applique maintenant ce résultat à la fonction f ∶ t ↦ f(t) = 2−t

t
, qui est bien C1 avec

f > 0 sur [1,+∞[
On calcule f ′(t) = − ln 2f(t) − 1

t
f(t), donc f ′(t)

f(t)
Ð→
t→+∞

µ = − ln 2.
Ainsi toutes les hypothèses qui précèdent la question 16 sont vérifiées par f . Donc par (∗)
du début de cette question, appliquée à f , on a :

R′n ∼
n→+∞

1

1 − eµ f(n + 1) = 2
1

(n + 1)2n+1 ∼
n→+∞

1

n2n

donc le α de l’énoncé est égal à 1.
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21) a) Soit X > 1
∫

X

1
e−t ln(2)dt = [− 1

ln(2)e
−t ln(2)]X1 Ð→

X→+∞

1

2 ln(2)
Ce qui montre que

∫
+∞

1
e−t ln(2)dt = 1

2 ln(2)
b) Pour tout t ∈ [n,+∞[, on a 1

t22t
≤ 1

n2
1
2t
, et on intègre cette inégalité (puisque ces

intégrales convergent) :

0 ≤ ∫
+∞

n

1

t22t
dt ≤ 1

n2 ∫
+∞

n

1

2t
dt = 1

n2
[− 1

ln(2)e
−t ln(2)]+∞n = 1

ln(2)n22n

Cette majoration montre le résultat voulu.

c) Par I.P.P. avec

⎧⎪⎪⎨⎪⎪⎩
u′(t) = 1

2t
= exp(−t ln(2)) ⇐ u(t) = − 1

ln(2)
1
2t

v(t) = 1
t
⇒ v′(t) = −1/t2 comme le terme de bord

u(t)v(t) = − 1
ln(2)t2t

Ð→
t→+∞

0, on peut faire l’I.P.P dans les intégrales entre n et+∞ et on

obtient :

∫
+∞

n

1

t2t
dt = 1

ln(2)n2n +
1

ln(2) ∫
+∞

n

1

t22t
dt

Donc par le résultat du b),

∫
+∞

n

1

t2t
dt = 1

ln(2)n2n +O(
1

n22n
)

Ceci donne l’équivalent :

∫
+∞

n

1

t2t
dt ∼

n→+∞

1

ln(2)n2n

d) Non, pas ici, puisque ∫ +∞n
1

t22t
dt ∼ 1

ln(2)n2n
alors qu’on a montré que R′n ∼

n→+∞

1

n2n
.
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