'D.S. 1 : solutions]

Probleme : d’apres E3A MP 2009
Partie 1.

1) .
a) La premiere égalité est la formule de sommation des suites géométriques de raison —z # 1.

La deuxieme vient en intégrant la lere entre O et z.
- [T

= Jo 137 dt tend vers 0 quand n — oo, & = fixé dans | - 1,1].

n

t
ler cas: x€[0,1] Dans ce cas Vte[0,z] c[0,1],0< Te:
+

T 4N x n+1 1
Osf dts[ t”dt:x <
o 1+t 0 n+l n+1

Par encadrement, on conclut bien que I,, — 0.

b) 1l suffit de montrer que I, :

<t" et donc

n—+o0o
2éme cas : x€]-1,0]. Dans ce cas Vte[2,0],0<1+2<1+¢<1 donc
Osis ! (*)

1+t 1+x

Par inégalité triangulaire sur les intégrales dans ce cas :

et donc par (*)

0
|In\g11 [
+ T Jx

0 ||
Par parité de t — [t|™, on a / [t dt = f t"dt <
x 0

Ainsi ici

comme dans le premier cas.
n+

TP
T (1+2)(n+1)
et on conclut encore que I, — 0.

n

—>+00

c) La leére égalité est immédiate en prenant x = 1 dans 1’égalité du b).
Pour la seconde, on prend x = —1/2 dans cette méme égalité, on obtient :

+00 (_1)k—1(_1)k

In(1/2) = —_—t

n(1/2)- 3 S

Comme In(1/2) = —In(2) et (-1)*1.(~1)¥ = -1 en simplifiant par (-1) dans les deux
membres de cette égalité, on obtient ’égalité demandée.

-1 k-1
2) a) Comme (1/n) tend vers zéro, en décroissant la série ) % vérifie le théoreme de
convergence des séries alternées spéciales.

Par majoration du reste donnée par ce théoreme, on sait que :

N (_1)]6*1 1
R =|ln2- <
B 1;1 k N+1
Il suffit donc de prendre un entier N tel que ﬁ <107P, donc N > 107 - 1.
b) Pour tout & > 1, on sait que 2 < 5, et donc en sommant Y521 755 < Xhtpi1 55 = 50

1

c) On a ‘1112— Zszll oF| = Thone1 TF < 5w d’apres la question précédente. 11 suffit de
nl0

prendre un entier N’ tel que ﬁ <107P, et donc tout N’ > lln—Qp fait Daffaire.

[La série du c) converge beaucoup plus vite que celle du a) : cf. V et le chapitre sur les séries entiéres)




Partie I1.

3) Comme -1 est racine du polynéme P(-1)-P(X), le polynéme X +1 le divise, d’on l'existence
de ¢n(P) (de degrée degP —1 ), et son unicité par unicité du quotient dans la division
euclidienne.

4) a) Soit Pl,PQER7L[X:|,A17)\2€R.
En multipliant les relations

Pi(-1) = Pi(X) = (X + 1)on (F)
par A; pour ¢ = 1,2 et en les ajoutant, on obtient
(>\1P1 + )\2P2) (—1) - ()\1P1 + )\2P2) (X) = (X + 1) (/\1(,0n (Pl) + Az(pn (Pg))

et donc A1, (P1)+Aap, (P2) satisfait la propriété caractérisant le polynome @, (A1 Py + Ao Ps),
ils sont donc égaux par I'unicité du 3).
b) On a par intégrité de R[X] :

on(P)=0< P(-1) - P(X) =0 < P est constant

d’ott Ker ¢, = Ro[X]
Par définition 'image de ¢,, est un s.e.v. de R,,_1[X]. Or elle est de dimension n & cause
de la formule du rang, donc de méme dimension que R,,_;[X], donc Im¢,, = R,,_1[X].

5) a) On connait I'identité
p-1
a? —=b? = (a-b) Z a1 Rk
k=0

valable, pour tout p > 1, dans n’importe quel anneau commutatif.
Appliquée ici & a = -1 et b= X dans R[X], elle fournit pour P = X? :

P(-1)-P(X)=-(1 +X)pz_:1(_1)1’—1—’f)(’C
k=0

donc

o (XP) = 3 (1P xH
k=0

pour tout p tel que 1 < p < n. Puisque ¢, (1) =0, la matrice cherchée est donc

0 -1 1 - o (="

S0 -1 1 (-1t
M = SR :

0 -+ o - 0 -1

Plus précisément, M = (mij)(i,j)e[[o,n—l}]x[[o,n]} est une matrice a n lignes et n+1 colonnes,
dans laquelle m;; est le coefficient de X% dans ¢, (Xj); donc m;; =0 si 7> j, et vaut
(=1)77" sinon.

b) On utilise la matrice : pour tout (i,5),a; est la i-eme coordonnée de P dans la base
canonique, et b; la j-eme coordonnée de ¢, (P). On a donc, pour tout j,

n

mj,iai = Z (—l)i_jai

i=j+1

=

I
(e}

bj =

(3

qui donne bien le résultat demandé puisque (-1)77 = (-1)7.



Partie I11.

6)

7

a)

L’idée est d’essayer d’appliquer le théoreme de convergence des séries alternées spéciales :
e Comme f >0, les termes u,(f) dont tous positifs donc » (=1)"u,(f) est bien d’une
série alternée

e I'inégalité, valide pour ¢ € [0,1],0 < #"™1 <" donne quant & elle, aprés multiplication
par f(t) et intégration, que u,41(f) < upn(f) donc (u,(f)) est décroissante.

e Comme f est une fonction continue sur un segment, elle est bornée. Soit M un majorant
de |f| sur [0,1]. On a alors la majoration

1
Ogun(f)gM/ £ dt =
0

n+1
donc u,(f) — 0.
n—+oo
Ainsi on a vérifié les hypotheses du théoréme et Y (=1)"u, (f) converge.

D’apres la, on sait que pour tout n € N*,

f(:r) & i (-1)"a" f(x)
Z( )'a" f(x) + T 1+z

i

d’ol en intégrant

L)

l+x

S()= 3 () + (1" [

Il s’agit donc de prouver que le terme intégral tend vers 0 quand n — oo. Or, en notant
M = max,eo,17|f(2)], par croissance de I'intégrale :

1y
f <Mf x<Mf z" dm—
0 1+a: l+z

avec ce majorant qui tend vers 0, on a la conclusion.

Par définition de ¢,,, on sait que P(X) - P(-1) = =(1 + X)p,(X). Donc pour tout
T #+ -1,

P(z) - P(- 1)
1+x

f(x) = —on(P)(2)f(2),

égalité que l'on integre sur [0, 1] en séparant les deux termes au numérateur de la fraction
pour obtenir :

[ME@I gy pay [T D [ ()@ s

l+x

ce qui donne ’égalité demandée par définition de S(f) :

[ ayin = P0)S(G) - [[pn(P)@) @)

A partir du résultat du a), en divisant par P(-1) :

! P(ﬂf)
- ‘P(—l) f oo (@)de

puis par inégalité triangulaire et croissance de l'intégrale

LP()f(z) f@IP@)| @),
‘P( 1)/ l+a ‘ 1)|/ T+ S P(-1 |/ vz CTP(- 1)|5(|f|)

Avec (1) et (2), on a la conclusion.

5()- 5y ) P @01 1)

(2)



Partie IV.

8)

9)

10)

11)

On note H(n) la propriété T,, € Z[X] et degT,, = n. On va montrer par récurrence double
que pour tout n € N, H(n) est vraie.

e Initialisation : H(0) et H(1) sont vraies par la forme explicite donnée par 1’énoncé.

e Hérédité : Supposons que pour un n > 0, H(n) et H(n + 1) sont vraie. Montrons que
H(n+2) est vraie.

Comme Z[X ] est un anneau et que les polynomes 7, Tj,+1 et 2(1-2X) sont dans Z[X], on
déduit de la formule Th,40 = 2(1 = 2X)T41 — Ty que Thyo € Z[X].

D’autre part si on note a,,X" le monéme dominant de T}, et ans1,pne1 X 7+l e mondme
dominant de T,,,1 la méme relation dit que le monéme dominant de T},,5 est

2(_2X)an+1,n+1Xn+1 = _4an+1,n+1)(nJr2

ce qui montre bien (puisque ce coefficient n’est pas nul) que deg(Ty42) =n + 2.
Ainsi H(n +2) est vraie.
La récurrence est établie.

a) En utilisant la relation de récurrence vérifiée par (7)) évaluée en -1, on obtient pour
tout n e N :

VUp42 = BUpy1 — Upy.

b) La suite (v,) vérifie donc une relation de récurrence linéaire d’ordre 2 & coefficients
constants ; son polynome caractéristique X2 —6X + 1 ayant deux racines simples 3 + /8
et 3-+/8, on sait qu’il existe deux réels X, u tels que :

VneN, v, = A(3+V8)" + u(3-V8)"

Enfin compte-tenu du fait que vy = 1 et v1 = 3, on obtient :

(3+VE)"+(3-VB)"
2

VneN, v, =

¢) Par T,,(~1) = v, et par la question précédente comme 3 —+/8 > 0 on sait que v,, >0 donc
non (—1) n’est pas racine de T,,.

a) Par récurrence double, on note H, la propriété : ¥ 8 € R, T}, (sin’#) = cos(2n8).
e Initialisation : Soit 8 € R. On a bien Tj (sin2 0) =1=cos(2-0-6) et T} (Sin2 9) =
1-2sin?6 = cos(26).
e Soit n € N tel que H(n) et H(n+ 1) sont vraies. Alors

T2 (sin2 0) =2cos(26) cos(2(n + 1)8) - cos(2n) = cos(2(n + 2)6)

en utilisant 2cosacosb = cos(a + b) + cos(a —b), donc H(n +2) est vraie.
La récurrence (double) est établie
b) Comme z € [0,1], on peut choisir 8 € [0, 7/2] tel que \/z =sinf. On a alors

T, ()| = | T}, (sin® )] = | cos(2nd)| < 1

. De plus, pour 2 =0, on a § =0 donc |T,(x)| = 1. On a donc M, = 1.
N.B. Ces polynomes T}, sont des variantes des polynémes de Tchebychev lesquels sont définis,
pour les polynomes de premiere espece, par Ty, (cos(0)) = cos(nf) et ceux de deuxieme espece
par :
Vu les questions précédentes, on applique le 7) b) & P = T,, (possible car T,, est de degré n, et
ne s’annule pas en -1 ) et f =1 (car grace & la partie 1 , on sait qu’alors S(f) = S(|f]) =1n2).
La question 7 b de la Partie III. nous donne alors

M(T,)S(|1]) h172 < 2In2
T (1) S oun (3+\/§)n

<

()

‘S(l)—Tn(l_l) [Olson (T,) (2)da



Remarque cruciale : comme T,, € Z[X] et comme le coefficient dominant de X + 1 est
1 le quotient ¢, (T},) de la division euclidienne de T,, par X + 1 est encore dans Z[X]. Une
primitive ®,, de ¢,, est alors dans Q[X] et donc :

[ en@=[ei e

1 1 1
Ainsi tt :7f T,), on a bien ¢ t ,In2-t, =0 ———
insi en posant t,, 71 Jo on(Ty), on abien t, € Q et par (), In2-t¢, ((3+\/§)n)

Partie V.

12)

13)

14)

15)

16)

On évalue 1’égalité de la question la) en 2 =1, on a bien :

n k-1 1 n
ln(2):Z 1) )/ 1t+t

ce qui donne la formule demandée pour R,,.

Par I.P.P. ot on dérive ﬁ et on primitive ", il vient

Logm 1
da = - d
fo T2 750 neid Qe @ )

1 $n+1 1 1
OS[ 7dxsf 2" de =
o (1+x)2 0 n+2

ce qui donne que le dernier terme dans () est un O (1/n?).

Or

Et d’autre part
1 1
=—+0 (1/n2)

2(n+1) 2n

Ainsi avec (*), on obtient :
(-1)" )
R, = O(1
2n ’ ( /n )

et donc A=1/2et f=1.

Par le résultat précédent, on a R,, ~ 2n . Attention cependant, contrairement a ce que la
question pourrait le laisser penser ce n’est pas I’équivalent qui va donner la nature de la série

puisque ce terme général est de signe variable.
(71)72

2n
convergente par le théoréme sur les séries alternées spéciales, et de O (1/n2) terme général

d’une série ACV.
On sait que ﬁ = 0(2”“), et comme 27 > 0, terme général d’une série convergente, par
théoreme de sommation des o() dans le cas convergent, on sait que :

En revanche avec le résultat précédent R,, est somme de terme général d'une série

Ri=o( > 27M)y=2

k=n+1
La fonction Inof étant D' sur |n,n +1[ et COsur[n,n + 1], il existe ¢, €]n,n + 1[ tel que

Inf(n+1)-Inf(n)= f7 (¢n). Par composition (la suite (¢,,) tend vers +oo par minoration),
on a bien

Ji_{go(mf(n+1) —-In f(n)) =



17)

18)

19)

20)

a) Le terme général z,, = Inf(n + 1) - In f(n) est équivalent & y, = p, terme général de
signe constant (négatif) d’une série divergente. Par sommation des équivalents dans le cas
divergent, on a donc :

:Zln(f(k+1))—1n(f(k)) - :Zykw(n—l) - un (1)

n—+oo n—+oo

Mais par télescopage

n—1
>, n(f(k+1)) =In(f(k)) =In(f(n)) -In(f(1)) (2)
k=1

et par divergence vers —oo de ces sommes partielles, on sait que

In(f(n) -l f(1) =~ In(f(n) (3)

Avec (1),(2),(3), on a bien :
()

b) Question plus facile :
Fn+1)/£(n) = exp(in f(n+1) ~In f(n)) — "

par continuité de exp.
(M1) Le plus simple est de s’appuyer sur la régle de d’Alembert, qui assure I’absolue conver-
gence de la série des f(n) : en effet, 1|f(n+1)/f(n)] — e* €[0,1] par 17 b).

n—>+00

(M2) On peut aussi raisonner ainsi, a la Riemann : on a n?f(n) = exp(2lnn+ In f(n)).
Comme 2Inn +In f(n) ~ un par croissance comparée, et que un — —oo, on a n?f(n) - 0 et
donc f(n) est négligeable devant 1/n?, d’ott la CVA de ¥ f(n).

N.B. Il est faux par contre de dire que f(n) ~ exp(un), car on ne peut pas composer par
exp des équivalents.

On écrit comme f ne s’annule pas sur [1, +oo|

F(n+1) - F(n) = f(n )(f(””) 1).

f(n)
f(n+1)

oy T e* par Q 17 b), aprés composition par exp, continue en p, donc
n—>+00

Joe1) - )~ f)(er 1)

d’ou le résultat demandé avec v = e — 1.

Puis,

Continuons encore un peu avec le cas général : par positivité des termes, la convergence de
> f(n) et par équivalence f(n) ~ ﬁ(f(n +1) - f(n)) on peut appliquer le théoréeme de
sommation des équivalents aux restes :

Z fk) -~

k=n+1 e

Z (F(k+1) = f(k)) = 7

k=n+1

On applique maintenant ce résultat & la fonction f : ¢t — f(t) = %, qui est bien C' avec
f>0sur [1,+00]

On calcule f/(t) = —~In2f(t) - L f(t), donc %’ — p=-ln2.

Ainsi toutes les hypotheses qui précedent la questlon 16 sont vérifiées par f. Donc par (*)
du début de cette question, appliquée & f, on a :

1 1
(n+1)27+1 no+oo p2n

R, ~ ;f(n+1):2

n—+oo ] — ek

donc le o de I’énoncé est égal a 1.



21)

a) Soit X >1

fX e—tln(2)dt _ [_ 1 e—tln(Q)]X N 1
1 In(2) b Xoveo 21n(2)

Ce qui montre que
+00
f etimn@gp o L
1 21n(2)

< L L et on integre cette inégalité (puisque ces

b) Pour tout ¢ € [n,+oo[, on a # < s3ar

intégrales convergent) :

tee 1 1 too ] 1 1 1
e [ e [ L e L
n 122t n? Jn 2 n? [ In(2) ¢ In In(2)n22»

Cette majoration montre le résultat voulu.

u'(t) = 2% =exp(-tIn(2)) < u(t) = _1n%2) 2%
v(t) =1 =0'(t) = -1/t

U(t)’[)(t) = _ln(21)t2t
obtient :

c) Par LP.P. avec { comme le terme de bord

oo 0, on peut faire 'lLP.P dans les intégrales entre n et+oo et on
—+00

fmidt— L fmidt
no 26 In(2)n2n  In(2) Jn 122

Donc par le résultat du b),

oo 1 1
—dt = %)
fn 2 @y + G

Ceci donne I’équivalent :
+o0o 1 1
[ —dt ~
n 12t n-otoeo In(2)n2n

o . . +00 1 1 5 , /
d) Non, pas ici, puisque [n o dt Tn(3)n2" alors qu’on a montré que R, nrvoo o



