Banque CCINP: 13, 39, 41 Q1), 48.

Valeurs d'adhérence

Exercice 1 (Suites réelles, limite supérieure, limite inférieure). a) Donner un exemple d'une suite réelle (u_n) ayant une unique v.a. dans \mathbb{R} mais qui ne converge pas.

- b) Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ une suite bornée. On définit, pour tout $n \in \mathbb{N}$, les suites $u_n^+ = \sup\{u_k, k \ge n\}$ et $u_n^- = \inf\{u_k, k \ge n\}$.
 - (i) Montrer que les deux suites (u_n^+) et (u_n^-) sont convergentes. On note $L = \lim u_n^+$ et $l = \lim u_n^-$.
 - (ii) (Plus difficile) Montrer que L et l sont deux valeurs d'adhérences de (u_n) .
- (On pourra utiliser la caractérisation : λ est v.a. ssi « tout voisinage de λ est atteint une infinité de fois ».)
- (iii) Montrer que toute valeur d'adhérence λ de (u_n) est comprise entre l et L. Indication on a pour tout $n \in \mathbb{N}$, $u_n^- \leq u_n \leq u_n^+$.

Exercice 2. Soit $u = (u_n) \in E^{\mathbb{N}}$ une suite d'un e.v.n. E et $U = \{u_n, n \in \mathbb{N}\}$ l'ensemble des valeurs prises par la suite u.

Soit $\lambda \in E$ tel que pour tout voisinage V de λ il existe un $n \in \mathbb{N}$ tel que $u_n \in V \setminus \{\lambda\}$ (on dit que λ est un point d'accumulation de U).

Montrer qu'il existe alors une suite extraite de u dont les éléments sont deux à deux distincts qui converge vers λ .

Exemples de compacts ou pas

Exercice 3 (Dans \mathbb{R}^2). Soit $E_1 = \{(x,y) \in \mathbb{R}^2, \ x^2 + y^2 = 1\}$ et $E_2 = \{(x,y) \in \mathbb{R}^2, \ x^2 - y^2 = 1\}$.

Est-ce que E_1 (resp. E_2) est compact?

La préimage d'un compact par une fonction continue est-elle un compact?

Exercice 4 (Dans $M_n(\mathbb{K})$). Les sous-ensembles suivants de $M_n(\mathbb{K})$ sont ils compacts :

(i) $GL_n(\mathbb{K})$ (ii) $\{A \in M_n(\mathbb{K}), \|A\| = 1\}$ (où $\| \|$ est une norme quelconque fixée sur A, (iii) l'ensemble des matrices nilpotentes?

Exercice 5. La réunion (resp. l'intersection) de deux compacts d'un e.v.n. E est elle encore un compact de E?

 $\mathbf{Exercice} \ \mathbf{6} \ (\mathbf{Th\'{e}or\`{e}me} \ \mathbf{des} \ \mathbf{compacts} \ \mathbf{emboit\'{e}s} \ \colon \mathbf{intersection} \ \mathbf{d\'{e}croissante} \ \mathbf{de} \ \mathbf{compacts}).$

a) Soit $(K_n)_{n\in\mathbb{N}}$ une famille décroissante de compacts non vide d'un e.v.n. $(E, \parallel \parallel)$ i.e. telle que $\forall n \in \mathbb{N}, K_{n+1} \subset K_n$.

Montrer que $K := \bigcap_{n \in \mathbb{N}} K_n$ est encore non vide et compact.

On pourra considérer une suite (x_n) telle que pour tout $n \in \mathbb{N}$, $x_n \in K_n$.

b) Si A est une partie non vide bornée de E, justifier que son diamètre:

$$\delta(A) = \sup\{ ||a - b||, (a, b) \in A^2 \}$$

est bien défini.

c) On reprend les hypothèses du a) et on suppose en outre que $\delta(K_n) \xrightarrow[n \to +\infty]{} 0$. Que dire alors de $\bigcap_{n \in \mathbb{N}} K_n$?

Fonctions continues sur un compact

Exercice 7. Pour toute $A \in M_n(\mathbb{K})$, on note $||A|| = \max_{(i,j) \in [1,n]} |a_{i,j}|$ la norme infinie de A.

Montrer qu'il existe une constante C_n qui ne dépend que de n telle que :

$$\forall A \in M_n(\mathbb{K}), |\det(A)| \leq C_n ||A||^n$$

Exercice 8 (Distances atteintes ou pas). Soit (E, || ||) un e.v.n. A une partie de E et $x \in E$.

- a) Définir la distance de x à A.
- b) (i) Montrer que si A est compact alors il existe un $a \in A$ tel que d(x,a) = ||x-a||.
 - (ii) Montrer que si E est de dim. finie et A est fermé alors il existe un $a \in A$ tel que d(x, A) = ||x a||.
- c) Si A et B sont deux parties de E, définir la distance d(A, B) entre ces deux parties.
- d) Donner un exemple de deux parties fermées A et B de \mathbb{R} ou de \mathbb{R}^2 telles que d(A,B)=0 et $A\cap B=\emptyset$. Indication – Je te colle mais je ne touche pas…en grec cela se dit…

e) Montrer que si A est compact dans E et B est une partie fermée de E et que E est de dimension finie alors il existe une couple $(a,b) \in A \times B$ tel que d(A,B) = ||a-b||.

Exercice 9 (Bijectivité des isométries d'un compact, Centrale 1).

a) Soit K un compact d'un e.v.n. et $f: K \to K$ une application isométrique i.e. telle que $\forall (x,y) \in K^2$, ||f(x) - f(y)|| = ||x - y||

On veut montrer que f est automatiquement surjective.

Pour cela:

- i) on fixe un $x_0 \in K$, et on considère la suite $(x_n) \in K^{\mathbb{N}}$ définie par $n \ge 1$, $x_{n+1} = f(x_n)$ montrer que pour tout $\varepsilon > 0$ il existe un élément $x_n \in f(K)$ tel que $||x_0 x_n|| < \varepsilon$ et donc que f(K) est dense dans K.
- ii) Conclure que f(K) = K.
- b) Donner un exemple d'un sous-ensemble F d'un e.v.n. avec une isométrie $f: F \to F$ non surjective.

Obtenir des max et de min sans compacité au départ (compacité locale + limites)

Exercice 10 (Fonctions coercives : généralisation d'un exercice connu dans \mathbb{R}). Soient E un e.v.n. de dim. finie et $f: E \to \mathbb{R}$ une application continue telle que $f(x) \xrightarrow[\|x\| \to +\infty]{} +\infty$ (on dit que f est coercive). Montrer que f admet un minimum global sur E.

Exercice 11 (Avec ou sans le précédent... important). Soit E un e.v.n. qcq et F un s.e.v. de dim. finie de E. Soit $a \in E$. On note $d(a, F) = \inf\{||a - v||, v \in F\}$.

Montrer que cet inf. est atteint i.e. il existe un $v_0 \in F$ tel que $||a - v_0|| = d(a, F)$.

Suites de fonctions définies sur un compact

Exercice 12 (Théorème de Dini : avec intersection décroissantes de compacts). Soit K un compact d'un e.v.n. $(f_n) \in \mathcal{C}(K, \mathbb{R})^{\mathbb{N}}$ une suite de fonctions continues sur K.

On suppose que la suite (f_n) est décroissante, ce qui signifie que pour chaque $x \in K$ fixé, $\forall n \in \mathbb{N}$, $f_{n+1}(x) \leq f_n(x)$.

a) On suppose que (f_n) converge simplement vers la fonction nulle. On va montrer que la convergence est uniforme.

On fixe un $\varepsilon > 0$. Pour chaque n, on pose :

$$K_n = \{x \in K, f_n(x) \ge \varepsilon\}$$

- i) Montrer que K_n est un compact.
- ii) Conclure en considérant $\bigcap_{n\in\mathbb{N}} K_n$.
- b) On suppose maintenant que (f_n) CVS vers une fonction continue f. Montrer encore que la convergence est uniforme grâce au a).

Connexité par arc

Exercice 13. a) Justifier que $\mathbb{R} \setminus \{0\}$ d'un côté et $\mathbb{R}^2 \setminus \{0\}$ de l'autre ne sont pas homéomorphes. b) En déduire que \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.

Exercice 14. Montrer un produit de deux parties connexes par arc est connexe par arc.

Exercice 15. Montrer qu'il n'existe pas d'homéomorphisme envoyant la lettre I sur la lettre O, ni d'homéo entre O et B.

Exercice 16 (Centrale 1 MP 2021).

- a) Soit I un intervalle réel et f de classe $\mathcal{C}^1(I,\mathbb{R})$. Montrer que f'(I) est un intervalle.
- b) Donner un exemple de fonction dérivable qui n'est pas de classe \mathcal{C}^1 .
- c) Soit I un intervalle réel. Montrer que l'ensemble $C = \{(x,y) \in I^2, x < y\}$ est connexe par arcs.
- d) Théorème de Darboux : Soit I un intervalle réel.et f une fonction dérivable sur I.Montrer que f' (I) est un intervalle.

Indication fournie par l'examinateur pendant l'épreuve pour le d) :

Soit
$$\tau:(x,y)\mapsto \frac{f(x)-f(y)}{x-y}$$
, montrer que $\tau(C)\subset f'(I)\subset \overline{\tau(C)}$