
C.R. TP 13 : partie 2

2 Oscillateurs

2.1 Comparaison pendule simple, Oscillateur harmonique

from scipy import integrate

pl.figure("comparaison pendule simple O.H.")

pl.clf()

g=9.81

l=0.5

omega0=pl.sqrt(g/l)

def F(Y,t):

return [Y[1],-omega0**2*Y[0]]

t0=0

Y0=[1,0]# C.I.

t=pl.arange(0,10,0.01)

Y=integrate.odeint(F,Y0,t)

pl.plot(t,Y[:,0],label="Oscillateur Harmonique")

code pour le pendule

def G(Y,t):

return [Y[1],-omega0**2*pl.sin(Y[0])]

Z=integrate.odeint(G,Y0,t)

pl.plot(t,Z[:,0],label="pendule simple")

pl.show()

Avec le résultat pour un temps de 10s.

Evidemment le décalage est important avec cette amplitude initiale.

2.2 Portrait de phase

2.2.1 Pour l’O.H.

Pour obtenir un portrait de phase, on doit mettre θ en abscisse et θ′ en ordonnée, ce qui s’obtient via
un pl.plot(Y[:,0],Y[:,1]).

Pour tracer plusieurs courbes correspondant à différentes conditions initiales, une boucle for suffit. On
détaille le code dans le paragraphe suivant pour le pendule simple.

1

Ici pour l’O.H. :

2.2.2 Portrait de phase du pendule simple

pl.figure("portrait de phase pendule")

pl.clf()

g=9.81

l=0.5

omega0=pl.sqrt(g/l)

def G(Y,t):

return [Y[1],-omega0**2*pl.sin(Y[0])]

t0=0

t=pl.arange(0,3,0.01)

for yp0 in pl.arange(1,13,0.5):

Y0=[0,yp0]# vecteur C.I. en bas, vitesse yp0

Y=integrate.odeint(G,Y0,t)

pl.plot(Y[:,0],Y[:,1])

pl.show()

Sur le graphique, la vitesse critique qui permet de faire un tour complet est évaluée autour de entre 8
et 9 rad.s−1.

Pour l’obtenir par le calcul, on considère l’intégrale première proportionnelle à l’énergie :

2

E =
1

2
θ′(t)2 − ω2

0 cos(θ(t)).

Ici, vu la C.I. θ(0) = 0, on a E =
1

2
θ′(0)2 − ω2

0 .

Dans le cas d’un mouvement oscillant, la vitesse angulaire θ′ s’annule au moment où le pendule est au
sommet de sa trajectoire.

Dans le cas d’un mouvement de révolution complet, θ′ ne s’annule plus.
Mathématiquement : θ′(t)2 = θ(0)2 − 2ω2

0(1 − cos(θ(t))).
Comme 1 − cos(θ(t)) ∈ [0,2], θ′(t) ne s’annule plus dès que θ(0)2 > 4ω2

0 .
Donc la vitesse critique vaut 2ω0. Ici on trouve donc 8.85rad.s−1.
Bien sûr, on aurait pu tracer plus de courbes entre 8 et 9 pour préciser cette vitesse.

2.2.3 Pour le pendule simple amorti

Le code est identique à part la déclaration de la fonction.
En revanche, il est intéressant de prendre un temps plus long et davantage de vitesses initiales (plus

grandes). Toutes les trajectoires finissent par s’enrouler autour d’un point, mais y mettent plus ou moins
de temps suivant la vitesse initiale.

3 Etude d’un tir balistique avec différents frottements fluides

3.1 Le cas où il n’y a pas de frottement du tout : les paraboles et la
parabole de sécurité

a) Par intégration :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x(t) = v0 cos(α)t,

z(t) = −
gt2

2
+ v0 sin(α)t

b) Remarque : On s’intéresse à la partie de la trajectoire obtenue avant que l’obus ne touche le sol,
autrement dit (en supposant le sol plat), pour z ≥ 0.

On peut donc délimiter l’intervalle de temps qu’on veut tracer en résolvant l’équation z(t) = 0 outre

la solution évidente t = 0 a pour solution tf =
2v0 sin(α)

g
.

Ainsi le code :

3

pl.figure("les paraboles")

pl.clf()

alpha=pl.pi/6

g=9.81

for v0 in range(1000,1600,100): # v0 nombre qui parcourt les 6 valeurs..

tf=2*v0*pl.sin(alpha)/g

t=pl.arange(0,tf,0.1) # tableau des t

x=v0*pl.cos(alpha)*t

z=-g*t*t/2+v0*pl.sin(alpha)*t

pl.plot(x,z)

Donne le résultat :

Noter que la portée de nos canons va jusqu’à 200 km.

c) Cette fois v0 est fixé et l’angle α varie.

pl.figure("angle qui varie")

pl.clf()

v0=1000

g=9.81

for i in range(1,11):

alpha=i*pl.pi/20

tf=2*v0*pl.sin(alpha)/g

t=pl.arange(0,tf,0.1)

x=v0*pl.cos(alpha)*t

z=-g*t*t/2+v0*pl.sin(alpha)*t

pl.plot(x,z)

4

Remarque : la norme v0 du vecteur vitesse étant fixée, toutes les paraboles précédentes sont dans
une zone du plan délimitée par ce qu’on appelle une parabole de sécurité. C’est cette parabole qui
définit la zone ≪ à l’abris des tirs ≫.

Excursion mathématique : comment calculer cette parabole ?

i) Remarquons d’abord qu’une trajectoire Cα peut aussi s’écrire comme le graphe Γa d’une fonc-
tion :

z = −
g

2v20
x2(1 + a2) + ax; en ayant posé a = tan(α),

le nombre a = tan(α) a un sens clair : c’est la pente du vecteur v⃗(0).

ii) Prenons un point M = (x0, z0) du plan. La C.N.S. sur (x0, z0) pour qu’il existe un a tel que
(x0, z0) soit sur une courbe Γa est que le discriminant ∆ de l’équation du second degré :

a2(−
g

2v20
)x20 + ax0 −

g

2v20
x20 − z0 = 0,

vérifie ∆ ≥ 0.

Les points (x0, z0) tels que ∆ = 0 correspondent à la courbe de sécurité cherchée (bord du
domaine où ∆ ≥ 0). Les formules se simplifient : on peut faire tracer la courbe.

(ii) Pour l’équation du second degré d’inconnue a donnée par l’énoncé :

a2(−
g

2v20
)x20 + ax0 −

g

2v20
x20 − z0 = 0,

le discriminant ∆ de cette équation d’inconnue a s’écrit :

∆ = x20 − (
g

v20
x20 + 2z0)

gx20
v20

.

N.B. La constante g/v20 est homogène à l’inverse d’une longueur ce qui aide à comprendre ce calcul.
On pose g/v20 = 1/L.

Alors ∆ = 0⇔ z0 =
L

2
−

1

2L
x20, équation d’une parabole.

On peut alors la tracer en rajoutant le code suivant après la boucle for

L=v0**2/g

x=pl.arange(0,100000,10) # borne un peu grossière qu’on peut améliorer

z=L/2-x*x/(2*L)

pl.plot(x,z)

5

3.2 Frottement fluide proportionnel à la vitesse

Par intégration des équations pour la vitesse données par l’énoncé, avec les C.I. x(0) = 0 et z(0) = 0,

on obtient :

⎧⎪⎪
⎨
⎪⎪⎩

x(t) = τv0 cos(α)(1 − e−t/τ),

z(t) = τ(v0 sin(α) + gτ)(1 − e−t/τ) − gτt.
Là encore on peut délimiter le domaine du temps qui nous intéresse très précisément, en ne gardant

que les t tels que z(t) ≥ 0.
Cette fois comme l’équation est transcendante on la fait résoudre numériquement avec la fonction

fsolve du module scipy.optimize.
a) En faisant varier la vitesse de 100 à 500, avec le code :

import scipy.optimize as scp# pour le fsolve

pl.figure("frottement fluide pp à la vitesse")

pl.clf()

g=9.81

k=0.1

for v0 in range(1000,1600,100):# vitesse en m.s^-1

alpha=pl.pi/6

m=140

tau=m/k

def f(t):

return tau*(v0*pl.sin(alpha)+g*tau)*(1-pl.exp(-t/tau))-g*t*tau

tf=scp.fsolve(f,100) # pour avoir le temps correspondant au point d’impact

la valeur germe 100 a été estimée par un premier

tracé

t=pl.linspace(0,tf,50)

x=tau*v0*pl.cos(alpha)*(1-pl.exp(-t/tau))

z=f(t)

pl.plot(x,z)

On obtient des courbes très semblables au cas sans frottement, elles vont juste moins loin que dans le cas
du 2.1. a).

6

b) Au a) τ est très grand τ = 1400s ce qui explique que le terme en
v⃗

τ
qui correspond au terme de

frottement, influence peu l’allure du mouvement. On recommence ici avec τ = 1.

Remarque : par rapport aux paraboles, la courbe reste plus ≪ droite ≫ au début, puis tombe plus
≪ brusquement ≫.

En réduisant un peu la vitesse initiale, on voit mieux la courbe :

7

3.3 Là où on a besoin de ode : frottements fluides plus élevés

En fait, ce sont ces frottements proportionnels à v2 qui sont utilisés pour modéliser les trajectoires
d’obus... (dès que la vitesse d’un objet dans l’air est assez grande, l’écoulement autour de cet objet est
turbulent est modélisé comme dans la partie 1.2. sur le saut de Baumgartner.

a) Détermination de la fonction F en question.

Comme X ′
(t) =

⎛
⎜
⎜
⎜
⎝

x′(t)
z′(t)
x′′(t)
z′′(t)

⎞
⎟
⎟
⎟
⎠

, et qu’on veut

⎛
⎜
⎜
⎜
⎝

x′(t)
z′(t)
x′′(t)
z′′(t)

⎞
⎟
⎟
⎟
⎠

= F (

⎛
⎜
⎜
⎜
⎝

x(t)
z(t)
x′(t)
z′(t)

⎞
⎟
⎟
⎟
⎠

, t), on définit donc :

F (

⎛
⎜
⎜
⎜
⎝

x1
x2
x3
x4

⎞
⎟
⎟
⎟
⎠

, t) =

⎛
⎜
⎜
⎜
⎜
⎝

x3
x4

−λx3
√
x23 + x

2
4

−λx4
√
x23 + x

2
4 − g

⎞
⎟
⎟
⎟
⎟
⎠

.

En Python, le code correspondant est avec λ = 1 et g = 9,81

def f(X,t):

return (X[2],X[3],-pl.sqrt(X[2]**2+X[3]**2)*X[2],-pl.sqrt(X[2]**2+X[3]**2)*X[3]-9.81)

b) Résolution du système (S) ci-dessus avec odeint.

v0=10

alpha=pl.pi/3

X0=[0,0,v0*pl.cos(alpha),v0*pl.sin(alpha)]# vecteur C.I.

t=pl.arange(0,10,0.01)

X=integrate.odeint(f,X0,t)

c) Tracé de la courbe paramétrée t↦ (x(t), z(t)).

pl.figure("frottement v^2")

pl.clf()

pl.plot(X[:,0],X[:,1])

on arrange pour s’arrêter au sol

pl.xlim(0,1.5)

pl.ylim(0,3)

pl.show()

Tracé des deux courbes simultanées : frottement en v et en v2 avec λ = 1

Ici, la comparaison des deux tracés n’est pas très intéressante : mieux vaudrait un choix de constante
différent pour les deux frottements.

8

9

