C.R. TP 13 : partie 2

2 Oscillateurs

2.1 Comparaison pendule simple, Oscillateur harmonique

from scipy import integrate
pl.figure("comparaison pendule simple 0.H.")
pl.clf()
g=9.81
1=0.5
omegal=pl.sqrt(g/1)
def F(Y,t):

return [Y[1],-omegaO**2*Y[0]]
t0=0
YO=[1,0]# C.I.
t=pl.arange(0,10,0.01)
Y=integrate.odeint (F,Y0,t)

pl.plot(t,Y[:,0],label="0scillateur Harmonique")
code pour le pendule
def G(Y,t):

return [Y[1],-omegaO**2*pl.sin(Y[0])]
Z=integrate.odeint(G,YO0,t)
pl.plot(t,Z[:,0],label="pendule simple")
pl.show()

Avec le résultat pour un temps de 10s.

1.00 A
0.75 A
0.50
0.25 A

—— Oscillateur Harmonique
—— pendule simple

—0.25 A
—0.50 A
—0.75 A
—1.00
T T

0 2 4 6 8 10

0.00 A

Evidemment le décalage est important avec cette amplitude initiale.

2.2 Portrait de phase
2.2.1 Pour I’O.H.

Pour obtenir un portrait de phase, on doit mettre 6 en abscisse et 8" en ordonnée, ce qui s’obtient via
un pl.plot(Y[:,0],Y[:,1]).

Pour tracer plusieurs courbes correspondant & différentes conditions initiales, une boucle for suffit. On
détaille le code dans le paragraphe suivant pour le pendule simple.

Ici pour 'O.H. :

25 4

204

-10 4
-15 4

204

2.2.2 Portrait de phase du pendule simple

pl.figure("portrait de phase pendule")

pl.clf(Q)

g=9.81

1=0.5

omegal=pl.sqrt(g/1)

def G(Y,t):
return [Y[1],-omegaO**2*pl.sin(Y[0])]

t0=0

t=pl.arange(0,3,0.01)

for ypO in pl.arange(1,13,0.5):
Y0=[0,ypO]# vecteur C.I. en bas, vitesse ypO
Y=integrate.odeint (G,YO,t)
pl.plot(Y[:,01,Y[:,1])

pl.show()

Sur le graphique, la vitesse critigue qui permet de faire un tour complet est évaluée autour de entre 8
et 9rad.st.

Pour I'obtenir par le calcul, on considere I'intégrale premiere proportionnelle a 1’énergie :

E- %9'(75)2 — W2 cos(0(L)).

Ici, vula C.I. (0) =0, on a E = % 6'(0)% - wi.

Dans le cas d’un mouvement oscillant, la vitesse angulaire " s’annule au moment ou le pendule est au
sommet de sa trajectoire.

Dans le cas d’un mouvement de révolution complet, 6’ ne s’annule plus.

Mathématiquement : 6’(¢)? = 6(0)? - 2wg (1 - cos(8(1))).

Comme 1 - cos(6(t)) € [0,2], #'(t) ne s’annule plus dés que 6(0)? > 4wg.

Donc la vitesse critique vaut 2wp. Ici on trouve donc 8.85rad.s'.

Bien stir, on aurait pu tracer plus de courbes entre 8 et 9 pour préciser cette vitesse.

2.2.3 Pour le pendule simple amorti

Le code est identique & part la déclaration de la fonction.

En revanche, il est intéressant de prendre un temps plus long et davantage de vitesses initiales (plus
grandes). Toutes les trajectoires finissent par s’enrouler autour d’un point, mais y mettent plus ou moins
de temps suivant la vitesse initiale.

30+
25 —
20
15

10

7T T T T T T T T T T T T T T T T

3 Etude d’un tir balistique avec différents frottements fluides

3.1 Le cas ou il n’y a pas de frottement du tout : les paraboles et la
parabole de sécurité

z(t) = v cos(a)t,
a) Par intégration : ¢
z(t) = 797 +vo sin(a)t
b) Remarque : On s’intéresse a la partie de la trajectoire obtenue avant que 1’obus ne touche le sol,
autrement dit (en supposant le sol plat), pour z > 0.
On peut donc délimiter 'intervalle de temps qu’on veut tracer en résolvant I’équation z(t) = 0 outre
2vg sin(a)

la solution évidente ¢ = 0 a pour solution ¢ =
Y

Ainsi le code :

pl.figure("les paraboles")
pl.clfO)
alpha=pl.pi/6
g=9.81
for vO in range(1000,1600,100): # vO nombre qui parcourt les 6 valeurs..
tf£=2xv0*pl.sin(alpha)/g
t=pl.arange(0,tf,0.1) # tableau des t
x=v0*pl.cos(alpha)*t
z=-g*t*t/2+v0*pl.sin(alpha)*t
pl.plot(x,z)

30000
28 DDD—-
26 GGG—-
24 GGG—-
22 GGG—-
20 GGG—-
18 000]
16 000]
14 000]
12 000]
10 000]
3 DDD—-
6 000]
4000]
2 GGG—-

.]

T T T T T 1
0 50000 100 000 150 000 200 000
Donne le résultat :

Noter que la portée de nos canons va jusqu’a 200 km.
Cette fois vg est fixé et I'angle « varie.

pl.figure("angle qui varie")

pl.clfO

v0=1000

g=9.81

for i in range(1,11):
alpha=i*pl.pi/20
tf=2%v0*pl.sin(alpha)/g
t=pl.arange(0,tf,0.1)
x=v0*pl.cos(alpha)*t
z=-g*t*t/2+v0*pl.sin(alpha) *t
pl.plot(x,=z)

60 000 -
55 000
50 000 -
45 000
40 000 A
35 000
30 000 —
25 000 e
20 000
15 000
10 000
5 000

]

T T T T T 1
i} 20 000 40 000 B0 000 &0 000 100 000 120 000

Remarque : la norme vy du vecteur vitesse étant fixée, toutes les paraboles précédentes sont dans
une zone du plan délimitée par ce qu’on appelle une parabole de sécurité. C’est cette parabole qui
définit la zone < a l’abris des tirs ».

Excursion mathématique : comment calculer cette parabole ?

i) Remarquons d’abord qu’une trajectoire C peut aussi s’écrire comme le graphe I'; d’une fonc-
tion :
z= —;%xQ(l +a”) + azx; en ayant posé a = tan(a),
Yo
le nombre a = tan(a) a un sens clair : c’est la pente du vecteur 7(0).

ii) Prenons un point M = (x0,20) du plan. La C.N.S. sur (zo,20) pour qu’il existe un a tel que
(o, 20) soit sur une courbe Ty est que le discriminant A de 1’équation du second degré :

g 2
—=x5— 20 =0,

2 2
a (—%)m0+ax0— 3
2v 2v§

vérifie A > 0.

Les points (zo,20) tels que A = 0 correspondent & la courbe de sécurité cherchée (bord du
domaine ot A > 0). Les formules se simplifient : on peut faire tracer la courbe.

(ii) Pour I’équation du second degré d’inconnue a donnée par I’énoncé :

2 g 2 g 2
a”(-z75)y +azo — =52y — 20 = 0,
2v¢ 2v;

le discriminant A de cette équation d’inconnue a s’écrit :

2
2 g 2 gZo
A=x5-(SFx0 +220) =5
Vo o

N.B. La constante g/ v2 est homogene & I'inverse d’une longueur ce qui aide & comprendre ce calcul.
On pose g/vg = 1/L.

L 1
Alors A=0< 2z = 3 ﬁxg, équation d’une parabole.

On peut alors la tracer en rajoutant le code suivant apres la boucle for
L=v0**2/g

x=pl.arange(0,100000,10) # borne un peu grossiére qu’on peut améliorer
z=L/2-x*x/(2*L)

pl.plot(x,z)

60 000 -
55 000
50000]
45 000
40 000 -
35 000
30000
25 000 T
20 000
15 000
10 000

5000 —

T T T T T 1
o 20 000 40 D00 60 000 B0 000 100 000 120 000

3.2 Frottement fluide proportionnel a la vitesse

Par intégration des équations pour la vitesse données par 1’énoncé, avec les C.I. z(0) = 0 et 2(0) = 0,
z(t) = Tvo cos(a) (1 — e 7)),
2(t) = T(vo sin(a) + gr) (1 —e”/7) - grt.

La encore on peut délimiter le domaine du temps qui nous intéresse trés précisément, en ne gardant
que les t tels que z(¢) > 0.

Cette fois comme l’équation est transcendante on la fait résoudre numériquement avec la fonction
fsolve du module scipy.optimize.

a) En faisant varier la vitesse de 100 & 500, avec le code :

on obtient : {

import scipy.optimize as scp# pour le fsolve
pl.figure("frottement fluide pp & la vitesse")
pl.clf(Q)
g=9.81
k=0.1
for vO in range(1000,1600,100) :# vitesse en m.s" -1
alpha=pl.pi/6
m=140
tau=m/k
def £(t):
return taux(vO*pl.sin(alpha)+g*tau)*(1-pl.exp(-t/tau))-g*t*tau
tf=scp.fsolve(f,100) # pour avoir le temps correspondant au point d’impact
la valeur germe 100 a été estimée par un premier
tracé
t=pl.linspace(0,tf,50)
x=tau*v0O*pl.cos(alpha)*(1-pl.exp(-t/tau))
z=f (t)
pl.plot(x,z)

On obtient des courbes tres semblables au cas sans frottement, elles vont juste moins loin que dans le cas
du 2.1. a).

30 000

25 000 o

20000 —

15 000

10 000

T T T 1
E 50 000 100 000 150 D00 200 BOR

b) Au a) 7 est trés grand 7 = 1400s ce qui explique que le terme en g qui correspond au terme de
T

frottement, influence peu 'allure du mouvement. On recommence ici avec 7 = 1.

800 —
750
700
650
600
550
500
as0 o
400 -
350 4
300
250
200
150
100 4

50

0

T T T T T T 1
o 200 400 GO 800 1000 1200 1400

Remarque : par rapport aux paraboles, la courbe reste plus « droite » au début, puis tombe plus
<« brusquement ».
En réduisant un peu la vitesse initiale, on voit mieux la courbe :

220
180
160

140

100

T T T T T T T 1
1] 50 100 150 204 250 300 350 A0} 450

3.3 La ou on a besoin de ode : frottements fluides plus élevés

En fait, ce sont ces frottements proportionnels & v? qui sont utilisés pour modéliser les trajectoires
d’obus... (dés que la vitesse d’'un objet dans lair est assez grande, I’écoulement autour de cet objet est
turbulent est modélisé comme dans la partie 1.2. sur le saut de Baumgartner.

a) Détermination de la fonction F' en question.

m:(t) x:(t) z(t)
Comme X'(t) = ;,,((i)) , et qu’on veut ;,,((?) =F(;,((?) ,t), on définit donc :
2"(t) 2"(t) Z'(t)

FQ oy |97 desy/alva?
T4 “Azgn/22 + 22— g

En PYTHON, le code correspondant est avec A=1 et g =9,81

def f(X,t):
return (X[2],X[3],-pl.sqrt(X[2]**x2+X[3]**2)*X[2],-pl.sqrt (X[2]**2+X[3]**2)*X[3]-9.81)

b) Résolution du systéme (S) ci-dessus avec odeint.

v0=10

alpha=pl.pi/3
X0=[0,0,v0*pl.cos(alpha),vO*pl.sin(alpha)]# vecteur C.I.
t=pl.arange(0,10,0.01)

X=integrate.odeint (£,X0,t)

¢) Tracé de la courbe paramétrée ¢ — (z(t), 2(t)).

pl.figure("frottement v~2")
pl.cl£O

pl.plot(X[:,01,X[:,1])

on arrange pour s’arréter au sol
pl.x1im(0,1.5)

pl.ylim(0,3)

pl.show()

1.5—:

5

. 2
Tracé des deux courbes simultanées : frottement en v et en v avec A =1

Ici, la comparaison des deux tracés n’est pas tres intéressante : mieux vaudrait un choix de constante
différent pour les deux frottements.

2.8
2.6
2.4
2.2

18
1&
1.4

0.8
0.6
0.4
0.2

