C.R. TP 13 : premiere partie

1 Vitesse de chute avec différents frottements fluides

1.1 Etude abstraite

import pylab as pl
from scipy import integrate
pl.figure(’Vitesse de chute’)
pl.clf()
v0=0
t0=0
g=9.81
style = [0,7-7, ==, 7:’]
# lignes continues, tirets, points-tirets pour distinguer les courbes sans couleur ici
# c’est moins joli mais mieux pour les photocopies noirs et blancs
t=pl.linspace(0,10,500)
for alpha in range(1,4):
def f(v,t):
coefflambda= g/10**alpha
vp=-coefflambda*v**alphat+g

return vp
v=integrate.odeint (f,v0,t)
pl.plot(t,v,"b"+style[alphal ,label="alpha="+str (alpha))
pl.legend ()
pl.show()

Avec le résultat suivant :
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Remarque physique : Dans un liquide, on aura plutét a = 1. Dans un gaz sauf si la vitesse est
tres faible, on aura plutét « = 2. Si on connait « et la vitesse limite, on en déduit le coefficient de
frottement k.



Complément plus théorique : On peut ici en fait résoudre les équations différentielles < de
maniere exacte » et se passer de odeint :
a) Pour le cas o =1, on a une brave E.D. linéaire :

v'(t) = -Xv(t) +g.
qu’on sait bien résoudre, de maniere générale :
_ g
v(t) = Cexp(=At) + 3
ou C est une constante, qu’on détermine ici avec la C.I v(0) =0 ce qui donne :

o(t)= $ (-

On retrouve le fait que le rapport % est la vitesse limite, qu’on note vy (qu’on avait obtenu dans

dv
le sujet en prenant pri 0 dans ’E.D.), et on écrit la solution ;

v(t) = ve.(1 - e ™M) = vy (1 — e 9/vet),

b) Le cas a =2 demande un peu plus d’effort : L’équation différentielle devient :
V' (t) = =Mo(t)* +g.
Dans cette E.D. on veut « séparer les variables », ce que vous écrivez en physique sous la forme :

dv

m :dt (>(-)

Voyons cela au ralenti a partir de

dv

T =g (1)

D’abord pourquoi peut-on diviser par —Av(t)?+¢g ? Autrement dit pourquoi ce terme ne s’annule-
t-il pas?

La raison vient d’un théoreme d’existence et d’unicité des solutions pour les pb. de Cauchy, qui
s’applique encore & cette E.D.!

Si on avait un o tel que Av(to)? + g = 0, alors la solution ¢ = v(t) considérée coinciderait au
temps to avec la solution constante ¢ — vy (ou son opposée si la vitesse était négative), ot vy est la
valeur de la solution constante & I'E.D. Par thme d’unicité on aurait v(t) = vy pour tout ¢ ce qui
n’est pas vrai car v(0) = 0.

N.B. La valeur v, de la solution constante est ce qu’on a nommé vitesse-limite dans 1’énoncé.
« Physiquement » on s’attend & ce que la vitesse croisse dans la chute, ce qui fait grandir les
frottements, jusqu’a ce qu’< & la limite » le frottement compense la force de pesanteur pour obtenir
un bilan des forces nuls et une vitesse constante. On n’utilisera pas cette intuition dans le calcul
qui suit, mais on va au contraire la démontrer : on va démontrer que v(t) e Vg.

Maintenant qu’on sait que le second membre de (1) ne s’annule pas, le premier membre v’(¢) ne
s’annule pas donc ¢t — v(t) est injective et en physique on note v — t(v) son application réciproque
et par théoréme sur la dérivée d’une réciproque : () peut se réécrire ( pour tout v dans [0, ve[) :

O
dv  g-Mv?
1. Méme si les ED non linéaires ne sont pas au programme de maths, disons que ce théoréme s’applique a
beaucoup d’E.D. méme non linéaires : celles pour lesquelles la fonction dans le second membre (v,t) — F(v,t), ol
on décorrele les variables v et t, est localement lipschitzienne par rapport & la variable v : ce théoreme est di a

Cauchy et Lipschitz et cette condition est la raison de ’appellation « Lipschitzienne ». Ici F(v,t) = M2 +g, et v > v2
est localement lipschitzienne.




on a séparé les variables... c’est ce que vous écrivez avec (*).... avec des notations commodes
faisant intervenir des différentielles que nous n’avons pas définies en maths, mais (1) et (*)
sont équivalentes.

Maintenant on peut utiliser (1) pour calculer ¢(v) par simple calcul de primitive. Il est plus
joli de factoriser par g au dénominateur, ce qui fait apparaitre d’ailleurs la vitesse-limite v, car :

1/v; = Mg
dt 1

dv g(1-v?/v?) ®
1 1 1 1 e
Par D.E.S. : = — + . Donc par primitivation :
g(1-v2/v?) 29 \1-vfv, 1+vfug
ve 1+v/vg
(0) = |2
—v/vg

Ici, comme dit plus haut v(t) # +v, par théoréme d’unicité, donc v(t) €] — v¢, ve[ pour tous les
temps, ainsi on peut enlever les valeurs absolues et :

1+v/ve

—v/vg

t()— In(;—7-)

1. 1+
En fait la fonction z €] -1,1[~ 3 ln(l—x) n’est rien d’autre que la fonction th™" :
-z

t(v) = ;—;th_l(v/vg)).

Et en prenant ¢ comme variable donc en passant & la fonction réciproque :

o(t) = veth(Lt)
vg

Si on trace le graphe, il coincidera avec celui donné par odeint.
Remarque : on prouve ainsi que vy est bien la vitesse-limite comme attendu par le physicien (voir
le N.B. plus haut) et utilisée dans I’énoncé comme telle. Mais le raisonnement que nous venons
de faire pour la résolution n’a pas eu besoin de cette intuition physique donnée par ’expérience a
priori, on a seulement utilisé le théoreme d’unicité des solutions au pb. de Cauchy considéré et vy
désignait simplement la valeur de la solution constante (positive) a 'E.D.

c¢) Comparaison mathématique des solutions trouvées au a) et au b)
En notant 7 = vs/g (homogéne & un temps), les deux solutions s’écrivent respectivement

{v(t)w(l—e-tﬁ) (),
v(t) = veth(t/7)  (b)

La variable 7 est parfois appelée temps caractéristique. Ces deux fonctions croissent assez vite
pour qu’au bout d’un temps de l'ordre de quelques 7, on soit déja proche de v, : pour la premiere
avec t = 7 on est a 63%, avec t = 27, on est a 86%.

La position relative des courbes peut aussi se démontrer & partir de ces formules explicites :
pour u=t/7T, on a :

el — U 1- e—2u

th(u)_e“+e W T e

On veut montrer que Yu € R* th(u) >1-e™ (C). Or en posant z =e™™, on a z €]0,1] et

2

1-
() = 1+x2 >l-z <
x

1+x 9
>2lex>x
1+ a2

= )

ce qui est vrai puisque z €]0,1].



1.2

Le saut de Felix Baumgartner
GMm

dh
Comme on choisit 'axe (Oz) orienté vers le bas, v = ——. De méme le poids P- ————€,
dt (R+h)?

— 1
alors que la force de frottement est F' = —§p(h)AC$U2éZ.

La relation fondamentale de la dynamique s’écrit alors, en projection sur €, :

dv 1 GMm
W () AC? ¢ S
my = P MAC e

Loide p:

h=np.linspace(0,39000,100)
pl.figure("Loi de rho");pl.clf;
pl.plot(h,1.433%pl.exp(-0.00013*h))
pl.show()
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On a une jolie décroissance exponentielle de la densité avec I'altitude, on voit que sur cette
plage d’altitude, p ne doit vraiment pas étre considérée comme constante.

. I’E.D. du second ordre donnée par la R.F.D. devient une E.D. du premier ordre pour
!

I'inconnue vectorielle X (t) = (zgg) Précisément : sachant que X'(t) = (Z,Eg) et que

h'(t) = -v(t), 'E.D. devient :

X'(t) = F(X(1),1),
1 GM

——p(X)DACXE + —
oll pourX:(ﬁo), F(X,t) = Qmp( 1) o (R+ X1)?
1
-X,
N.B. En fait F(X,t) ne dépend pas de ¢, mais on doit donner ce parameétre pour appliquer
odeint.
Voici I'implémentation en PYTHON de cette fonction F :

[Donner des noms pour les constantes numériques, m, A etc, c¢’est plus lisible !]

def F(X,t):
m=80. ;A=0.45;Cx=0.8;
#print (X)



v=X[0];

h=X[1]; G=6.73e-11;M=6.e24; R=6371.e3;
rho=1.433*pl.exp(-0.00013%h) ;

dX=np.zeros(2)

dX[0]=1/m* (1. /2*rho*A*xCx*v**2 + G*M*m/(R+h)**2);
dx[1]=-v;

return dX;

Puis le calcul avec odeint et affichage

# Integration avec odeint
T=pl.linspace(0,120,100)

X0=

[0,39000]

X=integrate.odeint (F,X0,T)

# Affichage des courbes

rl
pl

pl.

#it
pl
rl

pl.

.figure("Courbe vitesse"); # & gauche ci-dessous
.plot(T,X[:,0],"b")

show ()

.figure("Courbe altitude"); & droite ci-dessous
.plot(T,X[:,1],"b")

show ()
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Remarque : on voit que la vitesse maximale est atteinte au bout d’environ 55s et qu’elle
est d’environ 350 m./s. A ce moment-la, Félix est & environ 30 km d’altitude, la densité de
lair est, suivant la loi du b), d’environ 0,03kg.m~3. Il manque la température de 'air pour
pouvoir calculer la vitesse du son dans 'air & cet endroit-la. A vous de me chercher ca! Mais
je pense bien qu’il dépasse la vitesse du son !

La méthode split avec I’argument (,) permet, sur une chaine de caracteres contenant des
éléments séparés par des virgules, de renvoyer une liste dont les entrées sont les différents
sous-chaine de la chaine précédente.

Par exemple si L="café,lait,chocolat", L.split(",") renvoie :

[’café’, ’lait’, ’chocolat’]

# Initialisation des tableaux de données
T=pl.zeros([len(text)])
V=pl.zeros([len(text)])
H=pl.zeros([len(text)])

# Conversion des données textes en flottants
for i in range(len(text)):

ligne=text[i].split(",")
T[il=float(ligne[0])



V[il=float(ligne[1])
H[i]=float(ligne[2])

# Superposition aux courbes simulées et mesurées
pl.figure("Courbe vitesse");
pl.plot(T,V,"r")

pl.figure("Courbe altitude");
pl.plot(T,H,"r"
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