
C.R. TP 13 : première partie

1 Vitesse de chute avec différents frottements fluides

1.1 Etude abstraite

import pylab as pl

from scipy import integrate

pl.figure(’Vitesse de chute’)

pl.clf()

v0=0

t0=0

g=9.81

style = [0,’-’, ’--’, ’:’]

lignes continues, tirets, points-tirets pour distinguer les courbes sans couleur ici

c’est moins joli mais mieux pour les photocopies noirs et blancs

t=pl.linspace(0,10,500)

for alpha in range(1,4):

def f(v,t):

coefflambda= g/10**alpha

vp=-coefflambda*v**alpha+g

return vp

v=integrate.odeint(f,v0,t)

pl.plot(t,v,"b"+style[alpha],label="alpha="+str(alpha))

pl.legend()

pl.show()

Avec le résultat suivant :

Remarque physique : Dans un liquide, on aura plutôt α = 1. Dans un gaz sauf si la vitesse est
très faible, on aura plutôt α = 2. Si on connâıt α et la vitesse limite, on en déduit le coefficient de
frottement k.

1

Complément plus théorique : On peut ici en fait résoudre les équations différentielles ≪ de
manière exacte ≫ et se passer de odeint :

a) Pour le cas α = 1, on a une brave E.D. linéaire :

v′(t) = −λv(t) + g.

qu’on sait bien résoudre, de manière générale :

v(t) = C exp(−λt) +
g

λ

où C est une constante, qu’on détermine ici avec la C.I v(0) = 0 ce qui donne :

v(t) =
g

λ
(1 − e−λt)

On retrouve le fait que le rapport
g

λ
est la vitesse limite, qu’on note v` (qu’on avait obtenu dans

le sujet en prenant
dv

dt
= 0 dans l’E.D.), et on écrit la solution ;

v(t) = v`.(1 − e
−λt) = v`(1 − e

−g/v`.t).

b) Le cas α = 2 demande un peu plus d’effort : L’équation différentielle devient :

v′(t) = −λv(t)2 + g.

Dans cette E.D. on veut ≪ séparer les variables ≫, ce que vous écrivez en physique sous la forme :

dv

g − λv2
= dt. (∗)

Voyons cela au ralenti à partir de

dv

dt
= λv(t)2 + g. (†)

D’abord pourquoi peut-on diviser par −λv(t)2+g ? Autrement dit pourquoi ce terme ne s’annule-
t-il pas ?

La raison vient d’un théorème d’existence et d’unicité des solutions pour les pb. de Cauchy, qui
s’applique encore à cette E.D. 1

Si on avait un t0 tel que λv(t0)
2 + g = 0, alors la solution t ↦ v(t) considérée cöınciderait au

temps t0 avec la solution constante t↦ v` (ou son opposée si la vitesse était négative), où v` est la
valeur de la solution constante à l’E.D. Par thme d’unicité on aurait v(t) = v` pour tout t ce qui
n’est pas vrai car v(0) = 0.

N.B. La valeur v` de la solution constante est ce qu’on a nommé vitesse-limite dans l’énoncé.
≪ Physiquement ≫ on s’attend à ce que la vitesse croisse dans la chute, ce qui fait grandir les
frottements, jusqu’à ce qu’≪ à la limite ≫ le frottement compense la force de pesanteur pour obtenir
un bilan des forces nuls et une vitesse constante. On n’utilisera pas cette intuition dans le calcul
qui suit, mais on va au contraire la démontrer : on va démontrer que v(t) Ð→

t→+∞
v`.

Maintenant qu’on sait que le second membre de (†) ne s’annule pas, le premier membre v′(t) ne
s’annule pas donc t↦ v(t) est injective et en physique on note v ↦ t(v) son application réciproque
et par théorème sur la dérivée d’une réciproque : (†) peut se réécrire (pour tout v dans [0, v`[) :

dt

dv
=

1

g − λv2
(‡)

1. Même si les ED non linéaires ne sont pas au programme de maths, disons que ce théorème s’applique à
beaucoup d’E.D. même non linéaires : celles pour lesquelles la fonction dans le second membre (v, t) ↦ F (v, t), où
on décorrèle les variables v et t, est localement lipschitzienne par rapport à la variable v : ce théorème est dû à
Cauchy et Lipschitz et cette condition est la raison de l’appellation ≪ Lipschitzienne ≫. Ici F (v, t) = λv2+g, et v ↦ v2

est localement lipschitzienne.

2

�
�

�
�

on a séparé les variables... c’est ce que vous écrivez avec (∗).... avec des notations commodes
faisant intervenir des différentielles que nous n’avons pas définies en maths, mais (‡) et (∗)

sont équivalentes.

Maintenant on peut utiliser (‡) pour calculer t(v) par simple calcul de primitive. Il est plus
joli de factoriser par g au dénominateur, ce qui fait apparâıtre d’ailleurs la vitesse-limite v` car :
1/v2` = λ/g

dt

dv
=

1

g(1 − v2/v2`)
(‡)

Par D.E.S. :
1

g(1 − v2/v2`)
=

1

2g
(

1

1 − v/v`
+

1

1 + v/v`
). Donc par primitivation :

t(v) =
v`
2g

ln ∣
1 + v/v`
1 − v/v`

∣

Ici, comme dit plus haut v(t) ≠ ±v` par théorème d’unicité, donc v(t) ∈] − v`, v`[pour tous les
temps, ainsi on peut enlever les valeurs absolues et :

t(v) =
v`
2g

ln(
1 + v/v`
1 − v/v`

)

En fait la fonction x ∈] − 1,1[↦
1

2
ln(

1 + x

1 − x
) n’est rien d’autre que la fonction th−1 :

t(v) =
v`
2g

th−1(v/v`)).

Et en prenant t comme variable donc en passant à la fonction réciproque :

v(t) = v` th(
g

v`
t)

Si on trace le graphe, il cöıncidera avec celui donné par odeint.
Remarque : on prouve ainsi que v` est bien la vitesse-limite comme attendu par le physicien (voir
le N.B. plus haut) et utilisée dans l’énoncé comme telle. Mais le raisonnement que nous venons
de faire pour la résolution n’a pas eu besoin de cette intuition physique donnée par l’expérience a
priori, on a seulement utilisé le théorème d’unicité des solutions au pb. de Cauchy considéré et v`
désignait simplement la valeur de la solution constante (positive) à l’E.D.

c) Comparaison mathématique des solutions trouvées au a) et au b)
En notant τ = v`/g (homogène à un temps), les deux solutions s’écrivent respectivement

⎧⎪⎪
⎨
⎪⎪⎩

v(t) = v`(1 − e
−t/τ) (a),

v(t) = v` th(t/τ) (b)

La variable τ est parfois appelée temps caractéristique. Ces deux fonctions croissent assez vite
pour qu’au bout d’un temps de l’ordre de quelques τ , on soit déjà proche de v` : pour la première
avec t = τ on est a 63%, avec t = 2τ , on est à 86%.

La position relative des courbes peut aussi se démontrer à partir de ces formules explicites :
pour u = t/τ , on a :

th(u) =
eu − e−u

eu + e−u
=

1 − e−2u

1 + e2u

On veut montrer que ∀u ∈ R+, th(u) ≥ 1 − e−u (C). Or en posant x = e−u, on a x ∈]0,1] et :

(C) ⇔
1 − x2

1 + x2
≥ 1 − x⇔

1 + x

1 + x2
≥ 1⇔ x ≥ x2,

ce qui est vrai puisque x ∈]0,1].

3

1.2 Le saut de Felix Baumgartner

a) Comme on choisit l’axe (Oz) orienté vers le bas, v = −
dh

dt
. De même le poids

Ð→
P =

GMm

(R + h)2
e⃗z

alors que la force de frottement est
Ð→
F = −

1

2
ρ(h)ACxv

2e⃗z.

La relation fondamentale de la dynamique s’écrit alors, en projection sur e⃗z :

m
dv

dt
= −

1

2
ρ(h)ACxv

2
+

GMm

(R + h)2
.

b) Loi de ρ :

h=np.linspace(0,39000,100)

pl.figure("Loi de rho");pl.clf;

pl.plot(h,1.433*pl.exp(-0.00013*h))

pl.show()

On a une jolie décroissance exponentielle de la densité avec l’altitude, on voit que sur cette
plage d’altitude, ρ ne doit vraiment pas être considérée comme constante.

c) . L’E.D. du second ordre donnée par la R.F.D. devient une E.D. du premier ordre pour

l’inconnue vectorielle X(t) = (
v(t)
h(t)

). Précisément : sachant que X ′(t) = (
v′(t)
h′(t)

) et que

h′(t) = −v(t), l’E.D. devient :

X ′
(t) = F (X(t), t),

où pour X = (
X0

X1
), F (X, t) =

⎛
⎜
⎝

−
1

2m
ρ(X1)ACxX

2
0 +

GM

(R +X1)
2

−X0

⎞
⎟
⎠

N.B. En fait F (X, t) ne dépend pas de t, mais on doit donner ce paramètre pour appliquer
odeint.

Voici l’implémentation en Python de cette fonction F :�� ��Donner des noms pour les constantes numériques, m, A etc, c’est plus lisible !

def F(X,t):

m=80.;A=0.45;Cx=0.8;

#print(X)

4

v=X[0];

h=X[1]; G=6.73e-11;M=6.e24; R=6371.e3;

rho=1.433*pl.exp(-0.00013*h);

dX=np.zeros(2)

dX[0]=1/m*(-1. /2*rho*A*Cx*v**2 + G*M*m/(R+h)**2);

dX[1]=-v;

return dX;

Puis le calcul avec odeint et l’affichage

Integration avec odeint

T=pl.linspace(0,120,100)

X0=[0,39000]

X=integrate.odeint(F,X0,T)

Affichage des courbes

pl.figure("Courbe vitesse"); # à gauche ci-dessous

pl.plot(T,X[:,0],"b")

pl.show()

##

pl.figure("Courbe altitude"); à droite ci-dessous

pl.plot(T,X[:,1],"b")

pl.show()

Remarque : on voit que la vitesse maximale est atteinte au bout d’environ 55s et qu’elle
est d’environ 350 m./s. A ce moment-là, Félix est à environ 30 km d’altitude, la densité de
l’air est, suivant la loi du b), d’environ 0,03kg.m−3. Il manque la température de l’air pour
pouvoir calculer la vitesse du son dans l’air à cet endroit-là. A vous de me chercher ça ! Mais
je pense bien qu’il dépasse la vitesse du son !

d) La méthode split avec l’argument (,) permet, sur une châıne de caractères contenant des
éléments séparés par des virgules, de renvoyer une liste dont les entrées sont les différents
sous-châıne de la châıne précédente.

Par exemple si L="café,lait,chocolat", L.split(",") renvoie :

[’café’, ’lait’, ’chocolat’]

Initialisation des tableaux de données

T=pl.zeros([len(text)])

V=pl.zeros([len(text)])

H=pl.zeros([len(text)])

Conversion des données textes en flottants

for i in range(len(text)):

ligne=text[i].split(",")

T[i]=float(ligne[0])

5

V[i]=float(ligne[1])

H[i]=float(ligne[2])

Superposition aux courbes simulées et mesurées

pl.figure("Courbe vitesse");

pl.plot(T,V,"r")

pl.figure("Courbe altitude");

pl.plot(T,H,"r")

6

