Redimensionnement d’images

Mickaél Péchaud (mickaelpechaud@protonmail.com)

Février 2021

Image originale, redimensionnement naif, et redimensionnement «intelligent»

Dans ce TP, nous allons implémenter et tester différentes méthodes permettant de réduire une image dans le sens
de la largeur.

Vous travaillerez dans le fichier redimensionnement.py fourni.

e Documentez vos fonctions.
e Testez au fur et & mesure les fonctions que vous écrivez! Pour ce faire, trois images en niveau de gris sont
notamment fournies : flamantsNB.jpg, guepiersNB.jpg et rueNB.jpg.

Toutes les listes dont il sera question dans ce TP sont sauf mention contraire des listes non vides d’entiers.

Une image I est codée sous la forme d’une liste de listes d’entiers, qui peut étre vue comme un tableau a deux
dimensions. On notera h le nombre de lignes de I'image, et w son nombre de colonnes (respectivement pour height
et width). Le pixel d’indice (0,0) correspond par convention au pixel situé en haut & gauche de I'image. Chaque
pixel de coordonnées (i,5) € [0,h — 1] x [0,w — 1] a une valeur entiére I; ; comprise entre 0 et 255, correspondant
a son niveau de gris (0 pour noir, 255 pour blanc).

Des fonctions permettant de charger et d’afficher une image vous sont présentées dans le fichier.

Pour se chauffer...

1. Compléter la fonction dim, qui prend en argument une image et renvoie le couple d’entiers (w, h), w étant la
largeur de l'image, et h sa hauteur (en nombre de pixels).
On pourra ainsi dans la suite utiliser (w, h) = dim(img) pour récupérer les dimensions d’une image.
2. Pouvez-vous afficher les images suivantes, respectivement obtenues a partir de I'image flamantsNB.jpg :
(a) en inversant le contraste ;
(b) en seuillant les pixels (& la valeur 128);
(c) en effectuant une symétrie horizontale ?

Réduction de largeur naive

3. Complétez la fonction reduction_moitie_ligne, qui prend en argument une liste 1 de longueur paire 2n
contenant des entiers ag, a1, as, . .. az,—1, et renvoie la liste de longueur n contenant (ag+a1)//2, (ag+as)//2,
etc.

4. Complétez la fonction reduction_moitie_image, qui prend en argument une image (ayant une largeur paire)
et la modifie en appliquant & chaque ligne l'opération décrite dans la question précédente (votre fonction
modifiera I'image par effet de bord, et ne renverra rien).

Quelle est sa complexité en fonction du nombre de lignes h et du nombre de colonnes w de I'image ?
Testez, et constatez la déformation obtenue.

mailto:mickaelpechaud@protonmail.com

5. Réflechissez a une méthode permettant de réduire la largeur d’une image d’un facteur autre que moitié. Il
n’est pas demandé d’implémenter la méthode correspondante (mais n’hésitez pas a y revenir a l'issue du TP!).

Nous allons maintenant développer des algorithmes plus «intelligentsy, dans la mesure ou ils prennent en compte le
contenu de 'image. On commence par déterminer une mesure d’«importance» des pixels - que nous appellerons
énergie dans la suite.

Calcul de I’énergie d’un pixel

Si l’on note I; ; le niveau de gris du pixel de coordonnées (i, j) € [0,h — 1] x [0, w — 1], I’énergie d’un pixel i, j
intérieur & I'image est définie comme

Lijir —Tij
2

liij—1lica,
2

+

€ij =

Cette quantité est d’autant plus petite que le pixel est dans une zone uniforme de I'image, et d’autant plus grande
qu’il est dans une zone de forte variation du niveau de gris (par exemple au niveau d’un contour)*.
6. Complétez la fonction energie, qui prend en argument une image, et renvoie une nouvelle image correspondant
a son énergie (les pixels n’auront plus nécessairement une valeur entiere). On réfléchira en particulier & comment
adapter la formule ci-dessus a un pixel situé sur un bord de 'image.
Quelle est la complexité de votre fonction ?
Testez, et affichez I'image des énergies obtenue.

Image originale, image des énergies

Réduction ligne par ligne

Maintenant que nous disposons d’une image et de son énergie, pour réduire la largeur d’'une image d’un pixel, nous
allons simplement enlever un pixel d’énergie minimale dans chaque ligne.
Nous avons pour cela besoin de quelques fonctions élémentaires de manipulations de listes.
7. Complétez la fonction enlever, qui prend en argument une liste 1 et un indice i compris entre 0 et la longueur
1 moins 1, et renvoie une nouvelle liste correspondant a 1 dont 1’élément d’indice i a été supprimé. On pourra
utiliser des extractions de tranches et concaténations de listes.
8. Complétez la fonction indice_min, qui prend en argument une liste 1 et renvoie un indice auquel apparait la
valeur minimale de la liste.

oI oI
1. Il s’agit en fait d’une version discrétisée de ||VI||1 = ‘8—' + '—‘, qui est une norme du gradient de I'image.
x

0y

9. Complétez la fonction reduction_par_ligne, qui prend en arguments une image img, et la modifie en

supprimant un pixel d’énergie minimale dans chacune de ses lignes.

10. Complétez la fonction itere_reduction_par_ligne, qui prend en arguments une image img et un entier
n > 0, applique n fois la procédure décrite dans la question précédente a img.
Quelle est sa complexité ?
La tester. (On pourra par exemple réduire de 200 pixels la largeur de 'image flamantsNB.jpg.)

Le résultat est visuellement peu satisfaisant.
11. Expliquez qualitativement les distortions observées.

Réduction par colonne

Pour y remédier, on souhaite lors d’une itération enlever uniquement des pixels situés sur une méme colonne.

12. Complétez la fonction meilleure_colonne, qui prend en argument une image d’énergies e, et renvoie un
indice de colonne d’énergie minimale (I’énergie d’une colonne étant définie comme la somme des énergies de
ses pixels).

13. Complétez la fonction reduction_meilleure_colonne, qui prend en argument une image, et en supprime
une colonne d’énergie minimale.

14. En déduire une fonction itere_reduction_meilleure_colonne, qui applique la méthode décrite ci dessus
pour réduire 'image img de n pixels dans sa largeur.

Quelle est sa complexité ?

15. Testez, et expliquez qualitativement pourquoi les résultats obtenus sont «bons» sur les images guepiersNB.jpg

et flamantsNB.jpg, mais pas sur rueNB.jpg.

Seam carving

L’idée de T'algorithme de Seam carving, introduit en 2007 par S.Avidan et A.Shamir est d’assouplir un peu la
contrainte de réduction colonne par colonne.

On définit un chemin de pixels comme une suite de pixels connectés (verticalement ou en diagonale) dont le premier
appartient au bord haut de I'image, le dernier au bord bas, et contenant exactement un pixel par ligne de 'image.
L’énergie d’'un chemin est la somme des énergies des pixels le constituant.

Voici par exemple un chemin d’énergie 6 dans une image des énergies jouet e de 4 x 4 pixels.

171103
411124
112121
411110

Pour réduire la largeur d’une image d’un pixel, on souhaite trouver puis enlever un chemin d’énergie minimale.
On définit un chemin partiel comme un chemin, sans la contrainte que son dernier pixel atteigne le bord bas de
I'image. Afin de calculer un chemin minimal, on va commencer par calculer, pour chaque pixel, I’énergie minimale
FE d’un chemin partiel terminant sur ce pixel.

Par exemple, pour notre image des énergies e, on obtient le tableau F suivant :

111]0]3

5111124

21334

613413

16. Calculer a la main E pour 'image des énergies e suivante, puis trouver un chemin d’énergie minimale.
211|110
313|212
21012

17. Expliquez comment construire F a partir de e, en procédant ligne par ligne.

18. Une fois E construit, comment en déduire un chemin d’énergie minimale ?

19. Implémentez tout cela. Il sera judicieux d’écrire plusieurs fonctions, et vous pourrez utiliser la fonction min
permettant de calculer le minimum des éléments d’une liste (de complexité linéaire en la longueur de la liste).
Enfin, complétez la fonction seam_carving, qui prend en arguments une image img et un entier n, et modifie
I'image en enlevant successivement n chemins minimaux.

Quelle est sa complexité ?
Testez !

Annexe

Références

e L’algorithme de Seam carving est introduit dans Uarticle Seam Carving for Content-Aware Image Resizing (Shai

Avidan, Ariel Shamir, 2007).

e [’algorithme ainsi que quelques extensions sont démontrés sur la page suivante : http://mpechaud.fr/scripts/
traitementimages/seamcarving.html.

Fonctions et méthodes sur les listes

Voici les fonctions et méthodes sur les listes dont 1'usage est autorisé — ainsi que les complexités que vous utiliserez
pour les calculs de complexité (en fonction de la longueur de la liste n). Tout autre fonction dont vous auriez besoin

doit étre implémentée !

’ Opération Exemple Complexité
Acces direct 1[0] 0(1)
Longueur len(1) O(1)
Concaténation 11412 O(nl+n2)
Ajout en fin de liste 1.append (1) 0(1)
Suppression en fin de liste 1.pop(O) O(1)
Extraction de tranche 1[1 :10] O(n), ol n est la longueur de la tranche.
Répétition [0]xk O(n), o n est la longueur de la liste créée.

Création par compréhension

[k#*2 for k in range(n)]

O(n) si V'expression est évaluée en temps constant

Chargement et affichage d’image

Ce TP utilise les modules matplotlib.image et matplotlib.pyplot pour le chargement et I’affichage d’images.

L’instruction suivante permet de charger une image sous forme de liste de listes — comme indiqué en introduction.
Elle nécessite que monimage. jpg soit dans le répertoire de travail.

gCode Python :

| image =

(mpimg.imread(’monimage.jpg’)) .tolist ()

Les instructions suivantes permettent I’affichage d’une image en niveaux de gris.

gCode Python :

| plt.imshow(image, cmap=’gray’, clim=(0,255))

plt.show()

En cas de besoins plus importants, il existe des modules dédiés treés puissants pour le traitement d’images.

Notamment :

e pillow (https://python-pillow.org/)
e opencv (https://pypi.org/project/opencv-python/)

http://mpechaud.fr/scripts/traitementimages/seamcarving.html
http://mpechaud.fr/scripts/traitementimages/seamcarving.html
https://python-pillow.org/
https://pypi.org/project/opencv-python/

