Redimensionnement d’images

Image originale, redimensionnement naif, et redimensionnement «intelligent»

Dans ce TP, nous allons implémenter et tester différentes méthodes permettant de réduire une image dans le sens
de la largeur.

Vous travaillerez dans le fichier redimensionnement.py fourni.

e Documentez vos fonctions.
e Testez au fur et & mesure les fonctions que vous écrivez! Pour ce faire, trois images en niveau de gris sont
notamment fournies : flamantsNB.jpg, guepiersNB.jpg et rue NB.jpg.

Toutes les listes dont il sera question dans ce TP sont sauf mention contraire des listes non vides d’entiers.

Une image I est codée sous la forme d’une liste de listes d’entiers, qui peut étre vue comme un tableau a deux
dimensions. On notera h le nombre de lignes de I'image, et w son nombre de colonnes (respectivement pour height
et width). Le pixel d’indice (0, 0) correspond par convention au pixel situé en haut & gauche de I'image. Chaque
pixel de coordonnées (i,5) € [0,h — 1] x [0,w — 1] a une valeur entiére I; ; comprise entre 0 et 255, correspondant
a son niveau de gris (0 pour noir, 255 pour blanc).

Des fonctions permettant de charger et d’afficher une image vous sont présentées dans le fichier.

Pour se chauffer...

1. Compléter la fonction dim, qui prend en argument une image et renvoie le couple d’entiers (w, h), w étant la
largeur de l'image, et h sa hauteur (en nombre de pixels).
On pourra ainsi dans la suite utiliser (w, h) = dim(img) pour récupérer les dimensions d’une image.
2. Pouvez-vous afficher les images suivantes, respectivement obtenues a partir de I'image flamantsNB.jpg :
(a) en inversant le contraste ;
(b) en seuillant les pixels (& la valeur 128);
(c) en effectuant une symétrie horizontale ?

» 'v.("»‘\ ‘,\ A ¥ ,y‘“‘

Réduction de largeur naive

3. Complétez la fonction reduction_moitie_ligne, qui prend en argument une liste 1 de longueur paire 2n
contenant des entiers ag, a1, az, . .. az,—1, et renvoie la liste de longueur n contenant (ap+a1)//2, (a2+as)//2,
etc.

4. Complétez la fonction reduction_moitie_image, qui prend en argument une image (ayant une largeur paire)
et la modifie en appliquant & chaque ligne l'opération décrite dans la question précédente (votre fonction
modifiera I'image par effet de bord, et ne renverra rien).

Quelle est sa complexité en fonction du nombre de lignes h et du nombre de colonnes w de I'image ?
Testez, et constatez la déformation obtenue.

reduction_moitie_ligne est de compléxité linéaire en la longueur de la liste (append étant
de complexité amortie constante).

Donc reduction_moitie_image est de complexité O(wh) — i.e. linéaire en le nombre de
pixels de I'image.

5. Réflechissez a une méthode permettant de réduire la largeur d’une image d’un facteur autre que moitié. Il
n’est pas demandé d’implémenter la méthode correspondante (mais n’hésitez pas & y revenir a l'issue du TP!).

Nous allons maintenant développer des algorithmes plus «intelligents», dans la mesure ot ils prennent en compte le
contenu de 'image. On commence par déterminer une mesure d’«importance» des pixels - que nous appellerons
énergie dans la suite.

Calcul de I’énergie d’un pixel

Si l’on note I; ; le niveau de gris du pixel de coordonnées (i, j) € [0,h — 1] x [0, w — 1], I’énergie d’un pixel i, j
intérieur & I'image est définie comme

Lijyi —Lij
2

Livr,j —1Lica
2

€ij = +

Cette quantité est d’autant plus petite que le pixel est dans une zone uniforme de I'image, et d’autant plus grande
qu’il est dans une zone de forte variation du niveau de gris (par exemple au niveau d’un contour) L
6. Complétez la fonction energie, qui prend en argument une image, et renvoie une nouvelle image correspondant
a son énergie (les pixels n’auront plus nécessairement une valeur entiere). On réfléchira en particulier & comment
adapter la formule ci-dessus a un pixel situé sur un bord de 'image.
Quelle est la complexité de votre fonction ?

Testez, et affichez I'image des énergies obtenue.

' La complexité est O(wh).

Image originale, image des énergies

Réduction ligne par ligne

Maintenant que nous disposons d’une image et de son énergie, pour réduire la largeur d’une image d’un pixel, nous
allons simplement enlever un pixel d’énergie minimale dans chaque ligne.

ol 1
1. 1l s’agit en fait d’une version discrétisée de ||VI||1 = ‘8— + ‘—‘, qui est une norme du gradient de I'image.
x

Oy

Nous avons pour cela besoin de quelques fonctions élémentaires de manipulations de listes.

7.

10.

Complétez la fonction enlever, qui prend en argument une liste 1 et un indice i compris entre 0 et la longueur
1 moins 1, et renvoie une nouvelle liste correspondant a 1 dont 1’élément d’indice i a été supprimé. On pourra
utiliser des extractions de tranches et concaténations de listes.

. Complétez la fonction indice_min, qui prend en argument une liste 1 et renvoie un indice auquel apparait la

valeur minimale de la liste.

. Complétez la fonction reduction_par_ligne, qui prend en arguments une image img, et la modifie en

supprimant un pixel d’énergie minimale dans chacune de ses lignes.

Complétez la fonction itere_reduction_par_ligne, qui prend en arguments une image img et un entier
n > 0, applique n fois la procédure décrite dans la question précédente a img.

Quelle est sa complexité ?

La tester. (On pourra par exemple réduire de 200 pixels la largeur de 'image flamantsNB.jpg.)

enlever et indice_min sont de complexité linéaire (attention aux cotits cachés des extractions
de tranches et concaténations dans enlever!).

reduction_par_ligne est donc de complexité O(wh), et itere_reduction_par_ligne de
complexité O(nwh).

Le résultat est visuellement peu satisfaisant.

11.

Expliquez qualitativement les distortions observées.

Les pixels enlevés peuvent étre tres éloignés entre une ligne et la suivante, créant des décalages
de parties de lignes et donc des distortions importantes.

Réduction par colonne

Pour y remédier, on souhaite lors d’une itération enlever uniquement des pixels situés sur une méme colonne.

12.

13.

14.

15.

Complétez la fonction meilleure_colonne, qui prend en argument une image d’énergies e, et renvoie un
indice de colonne d’énergie minimale (I’énergie d’une colonne étant définie comme la somme des énergies de
ses pixels).

Complétez la fonction reduction_meilleure_colonne, qui prend en argument une image, et en supprime
une colonne d’énergie minimale.

En déduire une fonction itere_reduction_meilleure_colonne, qui applique la méthode décrite ci dessus
pour réduire I'image img de n pixels dans sa largeur.

Quelle est sa complexité ?

meilleure_colonne est de complexité O(wh). energie également, et enlever est de com-
plexité linéaire en la longueur de la liste qui lui est passée en argument. append étant de
complexité amortie constante en la taille de la liste, reduction_meilleure_colonne est de
complexité O(wh). itere_reduction_meilleure_colonne est donc de complexité O(nwh).

Testez, et expliquez qualitativement pourquoi les résultats obtenus sont «bons» sur les images guepiersNB.jpg
et flamantsNB.jpg, mais pas sur rueNB.jpg.

Les deux premiéres images ont des colonnes «globalement intéressantesy (celles ot il y a un
cheval, un flamant, le phare...), et d’autres «globalement inintéressantesy, car ne traversant
que du paysage. Ca n’est pas le cas dans la troisieme, ou les colonnes croisent toutes une
voiture ou un autre détail, rendant la supression d’une colonne génante visuellement.

Seam carving

L’idée de T'algorithme de Seam carving, introduit en 2007 par S.Avidan et A.Shamir est d’assouplir un peu la
contrainte de réduction colonne par colonne.

On définit un chemin de pixels comme une suite de pixels connectés (verticalement ou en diagonale) dont le premier
appartient au bord haut de I'image, le dernier au bord bas, et contenant exactement un pixel par ligne de 'image.
L’énergie d’'un chemin est la somme des énergies des pixels le constituant.

Voici par exemple un chemin d’énergie 6 dans une image des énergies jouet e de 4 x 4 pixels.

3
4
1

= | =

=N = =
NN O

4 0

Pour réduire la largeur d’une image d’un pixel, on souhaite trouver puis enlever un chemin d’énergie minimale.
On définit un chemin partiel comme un chemin, sans la contrainte que son dernier pixel atteigne le bord bas de
I'image. Afin de calculer un chemin minimal, on va commencer par calculer, pour chaque pixel, I’énergie minimale
FE d’un chemin partiel terminant sur ce pixel.

Par exemple, pour notre image des énergies e, on obtient le tableau F suivant :

111013

511214

2131314

613413

16. Calculer a la main E pour 'image des énergies e suivante, puis trouver un chemin d’énergie minimale.
2111110
3131212
2101112

On obtient le tableau et le chemin suivants :

2/1/110
414122
6 2|3 4

17. Expliquez comment construire F a partir de e, en procédant ligne par ligne.

La premiere ligne de E est celle de e. Ensuite, E(i, j) est la somme de e(i, j) et du minimum
des E(i — 1,5") aux points (i — 1,5") voisins de (7, 7).

18. Une fois E construit, comment en déduire un chemin d’énergie minimale ?

On cherche un point de valeur minimale sur la derniere ligne de E. Puis un point de valeur
minimale parmi ses voisins sur la ligne précédente. On poursuit en remontant ligne par ligne,
et 'on obtient ainsi un chemin d’énergie minimale.

19. Implémentez tout cela. Il sera judicieux d’écrire plusieurs fonctions, et vous pourrez utiliser la fonction min
permettant de calculer le minimum des éléments d’une liste.
Enfin, complétez la fonction seam_carving, qui prend en arguments une image img et un entier n, et modifie
I'image en enlevant successivement n chemins minimaux.
Quelle est sa complexité ?
Testez !

