
TP 12 : étude des suites avec pylab

N.B. On importera pylab avec import pylab as pl ce qui permet d’avoir à la fois les fonctions
de numpy et de matplotlib.pyplot. Voir l’appendice pour des commandes graphiques utiles.

1 Révisions et compléments sur les tracés de graphes de
fonctions, recherches de zéros�� ��Pour les commandes que vous ne connaissez pas sur plot, voir l’appendice du TP

a) Tracez le graphe de la fonction tan sur] − π/2,5π/2[.
Rappel : on doit définir un tableau X d’abscisse, puis un tableau Y=pl.tan(X) puis faire
pl.plot(X,Y) puis enfin pl.show().

N.B. Bien vous souvenir que pl.tan s’applique directement à un tableau (ou liste) de x et
renvoie un tableau de valeurs obtenues en appliquant tangente entrée par entrée.

Si vous êtes déçu du résultat, recadrez votre figure pour éviter que l’axe des ordonnées ne
monte trop haut.

Remarque : Pylab va joindre les points à travers les discontinuités, comment éviter ce
phénomène ?

b) Tracez sur la même figure la première bissectrice, d’une autre couleur.

c) Déterminez graphiquement les coordonnées des points d’intersection entre les deux courbes
dans [0,2π] (la figure Pylab donne les coordonnées du curseur).

d) Déterminez numériquement ces points d’intersections avec la fonction fsolve du module
scipy.optimize et rajoutez les sur la figure avec le symbole o d’une autre couleur.

N.B. La fonction fsolve de ce module s’utilise comme suit : fsolve(func,x0) cherche un
zéro de la fonction func au voisinage d’une valeur x0. Nous reviendrons sur les méthodes de
recherche de zéros de fonctions : nous en avons déjà rencontrée deux au T.P. 5, lesquelles ?

e) Cas d’une fonction définie par cas : Tracer le graphe de la fonction f ∶ x ↦
⎧⎪⎪⎨⎪⎪⎩

x2, si ⌊x⌋est paire,

1 − x3 sinon
pour x ∈ [−10,10].

2 Etude de familles de fonctions et de suites définies impli-
citement

2.1 La suites des polynômes de Taylor de l’exponentielle : programma-
tion et tracé d’une famille de fonctions

On note fn ∶ x ↦
n

∑
k=0

xk

k!
. On démontrera bientôt que pour chaque x, fn(x) Ð→

n→+∞
ex.

a) Ecrire une fonction Taylor_exp(x,n) qui prend comme arguments un entier n et un flot-
tant x et renvoie la valeur de fn(x).
Essayer de garder les bonnes habitudes de construction d’une boucle (calculs à ne pas refaire
à chaque fois !)

b) Tracer une des fonctions obtenues par exemple pour n = 5, en l’appliquant à un tableau x

représentant des abscisses entre −5 et 5.

N.B. Normalement, toutes les fonctions que vous avez utilisées pour le calcul de Taylor_exp(x,n)

peuvent s’appliquer avec comme entrée un tableau x.

1

2.2 La suites des polynômes de Taylor de l’exponentielle : tracés, zéros

a) Tracez sur une même figure les graphes des fonctions fn pour n ∈ ⟦1,20 ⟧ et x ∈ [−5,5].
b) Recadrez, zoomez, pour voir les éventuels zéros des fn.

c) Exercice de mathématique (les maths sont à faire à la maison) :

i) Démontrer que les f2n ne s’annulent pas sur R et que les f2n+1 ont un unique zéro dans
R.

ii) On note xn l’unique zéro de f2n+1. A l’aide de Python faire une conjecture sur le compor-
tement de la suite (xn) (on pourra utiliser la fonction fsolve de scipy.optimitze pour
le calcul approché des zéros). Puis démontrer cette conjecture en faisant des mathématiques.

3 Suites récurrentes un+1 = f(un) : première partie

3.1 Représentation des itérées d’une fonction f ∶ x↦ x2 + c

Notation : Pour une fonction f ∶ R→ R, et un entier n ∈ N∗, on note f○n = f ○ ⋅ ⋅ ⋅ ○ f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n fois f

.

On a vu au chapitre sur les suites récurrentes que même pour une simple fonction polynomiale
du second degré f , les suites un+1 = f(un) donnent des comportements assez riches... en fait la
richesse (et la complexité) des ces suites va bien au delà des exemples que nous avons étudiés.

Une première façon de comprendre cette complexité est de tracer à quoi ressemble f○n.

Exercice : Tracez le graphe de f○n pour f ∶ x↦ x2 + c pour c = −1,39 et n = 6,10,15, notamment
pour x ∈ [−1,1]. Remarque : quel est le degré de cette fonction polynomiale ?

3.2 Histoire d’un germe

Pour chaque point x0 (appelé germe) on considère la suite (xn) définie par ce x0 et ∀n ∈ N,
xn+1 = f(xn).

Avec la notation du paragraphe précédent, on a xn = f○n(x0).
Pour avoir une représentation graphique de la suite (xn) on va tracer les points (n,xn) pour

n ∈ N (bien sûr en fait pour une partie de N !). Ce graphe sera appelé l’histoire du point x0.
On choisit ici x0 = −1 et toujours f ∶ x↦ x2 + c. Tracez les points (n,xn) dans les différents cas

suivants :

a) si c = −1. Justifier le résultat visible sur le tracé.

b) si c = −1,3. Commentez le résultat. Regardez des valeurs numériques plus précises pour
préciser votre analyse : a-t-on oui ou non un comportement périodique A.P.C.R. ?

c) si c = −1,8. Commentez ?

3.3 Etude mathématique précise : des calculs faciles au début

On considère toujours fc ∶ x ↦ x2 + c.
a) Déterminer la CNS sur c pour que fc ait un point fixe (réel !). Bien sûr cela se fait à la main,

avec papier crayon, puisqu’il s’agit de pouvoir résoudre une équation du second degré. On
suppose désormais cette condition réalisée.

b) Déterminer la CNS sur c pour qu’un de ces deux points fixes soit attractif.

c) Déterminer la CNS sur c pour qu’en outre fc ait des points périodiques de période 2 i.e. il
existe des x ∈ R tels que (f ○ f)(x) = x et f(x) ≠ x.

N.B. Cette question peut encore se faire avec papier crayon comme un exercice de mathématiques.
Profitons en néanmoins pour introduire un module de calcul formel en Python appelé
sympy.

2

3.4 Utilisation d’un module de calcul formel : sympy�� ��Si sympy n’est pas installé sur vos machines, passez ce paragraphe !

Dans un nouvel shell (pour éviter les conflits avec numpy), essayer :

a) from sympy import *

x=Symbol(’x’)

c=Symbol(’c’)

solution=solve(x**2-x+c,x)

x0,x1=solution

Qu’a-t-on obtenu ?

b) y=x**2+c

yp=diff(y,x)

Même question ?

c) f=x**2+c

f2=compose(f,f)

En déduire une façon de faire le calcul du 3.3 c) avec une machine.

d) On dira qu’un point périodique de période deux x est attractif si, et seulement si, ∣(f ○f)′(x)∣ < 1.
Parmi les deux points périodiques de période deux trouvés au c), qui ne sont pas des points

fixes, on pourrait essayer de déterminer ceux qui sont attractifs à l’aide de sympy. Cela demande
déjà des calculs compliqués. En réalité, on va plutôt revenir au calcul numérique car en pratique
les seuls points fixes que l’on voit sont les attractifs comme on va l’expérimenter maintenant.

3.5 Suite de l’étude par expérimentation numérique : la figure de la
cascade

Pour différentes valeurs de c ∈ [−2,1/4] (disons 10, puis 50 puis 100), on va :

a) Calculer tous les termes de la suite (un) ayant comme valeur initiale u0 = 0 (important) et
telle que un+1 = fc(un), pour n ∈ ⟦1,100 ⟧.

b) Tracer les points (u(n), c) pour n ∈ ⟦50,100 ⟧ dans un cadre avec des abscisses dans [−2,2]
et des ordonnées c ∈ [−2,1/4]. (Le fait de commencer à 50 permet de ne pas tenir compte
des premiers termes qui sont ce qu’on pourrait appeler le régime transitoire).�
�

�
�

On utilisera plot avec l’argument ’k.’ pour avoir des points noirs (lettre k) ayant des
formes de points non reliés ’.’ et le keyword argument markersize=1 pour que ces points
soient petits.

Autrement dit : pour chaque valeur de c en ordonnée, on trace 50 points sur la droite
horizontale d’ordonnée c qui sont 50 valeurs de la suite (un) pour cette valeur de c.

c) Comment interpréter la zone du graphe obtenu pour c > −0,75 ?

d) Même question pour c ∈] − 5/4,−3/4[?

e) A partir du graphe précédent, en zoomant, en rajoutant éventuellement des valeurs de c
déterminer à partir de quelle valeur de c la suite a 4 points périodiques attractifs.

4 La même suite récurrente dans le monde complexe

On considère la fonction définie par la même formule f ∶ z ∈ C↦ z2 + c ∈ C avec c ∈ C.
L’itération de cette fonction permet de mettre en évidence des fractales célèbres. Pour cela, on

va d’abord introduire un outil graphique commode :

3

4.1 Préliminaire : l’outil pl.imshow(T)

La fonction imshow prend en argument un tableau bidimensionnel dont les entrées peuvent être
des entiers et va afficher une image découpée en zones où la couleur de chaque zone correspondra à
une entrée de la matrice. Avec des 0 et des 1 dans la matrice, on aura une image bicolore, comme
dans l’exemple suivant :

import pylab as pl

T=pl.array([[0,0,0,1],[1,0,1,0],[0,0,0,1],[1,0,0,1]])

pl.imshow(T)

pl.show()

Avec des nombres plus variés, essayez, la fonction pl.colorbar() avec le pl.show() permettra de
savoir à quel nombre correspond chaque couleur suivant une graduation ≪ continue ≫ :

T=pl.array([[0,3,0,1],[1,4,1,0],[0,0,0,1],[1,0,8,12]])

pl.imshow(T)

pl.colorbar()

pl.show()

Plus la matrice sera grande, plus la zone correspondant à chaque entrée de la matrice sera petite :
on se rapproche alors d’une correspondance entre entrée de la matrice T et couleur d’un pixel.

4.2 Ensembles de Julia

On fixe un c ∈ C et on cherche à dessiner dans le plan complexe l’ensemble des z0 ∈ C tels que
la suite (zn) définie par ce germe z0 et ∀n ∈ N, zn+1 = z2n + c reste bornée.

Pour c = 0, il s’agit bien sûr du disque unité fermé, mais si c ≠ 0, l’ensemble correspondant, noté
Jc, prend des formes étonnantes.

Avec des maths : on peut montrer que si pour un n0, ∣zn0 ∣ > ∣c∣ +1 alors la suite est non bornée.
Pour le dessiner :
On voudrait représenter pour chaque valeur de z0 = a+ ib avec a ∈ [−3,3] et b ∈ [−3,3], le point

d’affixe z0 avec une couleur qui va dépendre du plus petit entier n0 tel que ∣zn0 ∣ > ∣c∣ + 1 si ce n0
existe. Pour cela on va tester disons jusqu’à n0 = 30.

Bien sûr, pour l’affichage, on ne choisit qu’un nombre fini de valeurs de a et de b. On considère
300 valeurs de (ak) et 300 valeurs (bl) entre [−10,10],

On initialise un tableau 300×300 remplis de zéros, avec la commande T=pl.zeros((300,300))

(noter les doubles parenthèses).
Pour chaque couple (k, l), on calcule la valeur de n0 ≤ 50 correspondante, pour z0 = ak + ibl.
Puis on utilise pl.imshow(T)

4.3 Ensemble de Mandelbrot

Problème : on cherche à savoir pour quelle valeur de c ∈ C la suite (zn), définie par z0 = 0
(ce choix de valeur initiale est important) et zn+1 = fc(zn), reste bornée.

Rappel du paragraphe précédent : on peut montrer que si pour un n0, ∣zn0 ∣ > ∣c∣ + 1 alors
la suite est non bornée.

Travail à faire :

a) On voudrait représenter pour chaque valeur de c = a + ib avec a ∈ [−2,2] et b ∈ [−2,2], le
point d’affixe c en rouge s’il existe un i ≤ 20 tel que ∣zi∣ > 4 (dans ce cas on admet que la
suite est non bornée) et en bleu si ∣z20∣ ≤ 4.

(La valeur 4 est ici un majorant de ∣c∣ + 1).

Bien sûr, pour l’affichage, on ne choisit qu’un nombre fini de valeurs de a et de b. On
considère 300 valeurs de (ak) et 300 valeurs (bl) entre [−2,2],
On initialise un tableau 300×300 remplis de zéros, avec la commande T=pl.zeros((300,300))
(noter les doubles parenthèses).

4

Pour chaque couple (k, l), on calcule la valeur de ∣z20∣ avec la fonction fc où c = ak + ibl.
Ensuite il reste seulement à remplir le tableau T en mettant dans la case T[k,l] : 1 si
∣z20∣ > 4 et 0 si ∣z20∣ ≤ 4.

Puis on utilise pl.imshow(T) et pl.colorbar() pour la légende.

b) En fait le comportement de la suite est plus subtil : ce n’est pas parce que la valeur ∣z20∣
est inférieure à quatre qu’on est sûr que ∣zn∣ est non bornée, bien sûr. Mais mieux, il s’avère
qu’on peut avoir ∣z20∣ < 4 et pourtant qu’il y ait un k < 20 tel que ∣zk ∣ > 4 et donc que,
d’après le résultat mathématique donné précédemment, que la suite soit en fait non bornée.

Pour visualiser cela, on peut faire une boucle while abs(z)<4 and iter<20 : on sortira de
la boucle dès que le abs(z) >=4 et on met ainsi en évidence une zone de c pour lesquels en
fait ∣z20∣ < 4 mais entre-temps on avait déjà obtenu ∣zk ∣ > 4.

On peut choisir de remplir T en faisant afficher iter s’il est plus petit que 20. On aura alors
un affichage coloré avec 20 couleurs.

5

Appendice : documentation sur plot

A Premiers tracés

A.1 Rappel : comment marche plot ?

On a déjà vu en T.P. que plot s’utilise avec la syntaxe :

pl.plot(x,y)

où x et y sont ou bien des listes (ou tuple) python, ou bien des tableaux numpy de même taille
et qu’à partir de ces données, plot trace la ligne brisée qui joint les point MI de coordonnées
x[i],y[i] dans l’ordre des i croissants. Ainsi :

x=[0,1,2]

y=[1,2,1]

pl.plot(x,y)

pl.show()

A.2 Pour le tracé de fonctions : comment fabriquer le tableau des abs-
cisses

Admettons qu’on veuille tracer le graphe de la fonction x ↦ x2 sur [0,1]. On va pour cela
découper le segment [0,1] en disons en 11 points espacés régulièrement autrement dit avec un pas
p = 0.1

Plusieurs méthodes sont possibles :
● créer à la main une liste python.
● utiliser la commande linspace de numpy (incluse dans pylab) qui crée un array :
L’acronyme linspace est pour linear space.

x=pl.linspace(0,1,11)

6

D’une manière générale, linspace(a,b,n) subdivise le segment [a, b] en n points régulièrement
espacés, donc avec un pas (b − a)/(n − 1).

● utiliser la commande arange de numpy (incluse dans pylab) qui crée un array :
Il s’agit encore d’un acronyme pour array range. Elle s’utilise comme le range des listes sauf

qu’elle crée un array et permet des pas qui sont des flottants.
Ainsi pl.arange(a,b,p) crée le tableau des a + kp jusqu’au plus grand k tel que a + kp < b.
Ainsi pour obtenir la même subdivision de [0,1] on entrera :

x=pl.arange(0,1.1,0.1)

Reste ensuite à définir le vecteur y :�� ��Les fonctions de numpy (ou pylab) opèrent directement sur les tableaux

Ainsi à partir du tableau x (pas d’une liste), on peut créer la liste y dont les entrées y[i] sont
les x[i]**2 simplement via :

y=x**2

Puis enfin faire plot(x,y).

A.3 Effacement, gestion de plusieurs fenêtres :

Pour effacer le graphique précédent :

pl.clf() # clf pour clear figure

Pour afficher dans une autre fenêtre :

pl.figure(1) # on crée une figure qu’on appelle 1

pl.plot(x,x)

pl.figure("Ma jolie parabole") # on crée une figure qu’on appelle ...

pl.plot(x,y)

A.4 Commandes pour les axes, la couleur, le style

Reprenons à tire d’exercice un autre exemple déjà vu : celui du sin sur [0,2π] .

A.4.1 Quelques commandes pour les axes

Par défaut, le cadrage ne collera pas forcément à ce qu’on voudrait. On peut déclarer

pl.xlim(0,2*pl.pi)

Plus commode, on peut définir directement les extrémités des deux axes comme suit

pl.axis([-4,5,-10,10]) # les x seront entre -4 et 5 et les y entre -10 et 10

On peut aussi faire apparâıtre une grille avec

pl.grid()

On peut donner faire afficher des étiquettes sur les axes :

pl.xlabel(" temps t")

pl.ylabel(" tension u(t)")

7

A.4.2 Quelques commandes pour les couleurs et les styles

Les huit couleurs de base : avec leur première lettre.

Ainsi plot(x,y,"r--").
Pour des couleurs plus compliquée, on va définir color= " " dans plot, notamment pour :

Les couleurs en RGB : même syntaxe qu’en HTML : avec trois nombres en hexadécimal :
exemple pl.plot(x,y,color=’#eeee00’) donnera la courbe en ...

A.4.3 Remarque générale sur les arguments de plot, et de beaucoup de fonctions
Python :

Lorsque vous tapez plot vous voyez :

Qu’est-ce que cela signifie ?

● Le premier *args signifie que le nombre d’arguments de plot n’est pas toujours le même.
Ainsi, on a utilisé plot(x,y) avec deux arguments, et plot(x,y,’r-’) avec trois arguments. On
verra même plus tard qu’on peut même ne donner qu’un argument !

Comment fabriquer soi-même des fonctions avec des *arg ? Avec un * devant votre nom d’argu-
ment. Dans ce cas, tous les arguments donnés entre virgules seront stockés dans un tuple, comme
expliqué ici :

def mafonction(*mesarguments):

return mesarguments

● Le second kwargs signifie key word arguments : ce sont des arguments définis par un mot-clef.
Comme color dans notre exemple. Là aussi, on va voir que plot peut en admettre beaucoup.

A.5 Deux tracés sur la même figure avec une légende

x=pl.linspace(0,2*pl.pi,100)

y1=pl.sin(x)

y2=pl.cos(x)

pl.clf()

pl.plot(x,y1,"r",label="Le sinus")

pl.plot(x,y2,"b-",label="Le cosinus")

pl.legend()

Avec le résultat :

8

B Cas particuliers des suites, un plot à un argument !

Les suites n ↦ un sont bien sûr des fonctions particulières, dont la variable n est un entier.
On peut bien sûr tracer les par exemple les 1000 premières valeurs de la suite (sin(n)) en

faisant :

X=list(range(1000))

Y=pl.sin(X)

pl.plot(X,Y)

pl.show()

Mais on peut faire la même chose en faisant simplement pl.plot(y) :�

�

�

�
s’il n’y a qu’un argument, plot prendra par défaut comme tableau des abscisses le tableaux
des entiers successifs, à partir de 0, de même longueur que y.
Ceci peut parâıtre une simple curiosité, mais cela peut vous jouer des tours parfois... si vous
appliquer votre plot à certaines valeurs de retour d’une fonction...

Remarque : comment peut-on illustrer la densité de {sin(n), n ∈ N} dans [−1,1], en dessinant
tous ces points sin(n) sur le segment [−1,1] ?

Voici ci-dessous le dessin pour seulement les 100 premières valeurs de n : la densité n’est pas
évidente, elle le devient pour 1000 :

9

