TP 12 : étude des suites avec PYLAB

N.B. On importera pylab avec import pylab as pl ce qui permet d’avoir a la fois les fonctions
de numpy et de matplotlib.pyplot. Voir 'appendice pour des commandes graphiques utiles.

1 Révisions et compléments sur les tracés de graphes de
fonctions, recherches de zéros

[Pour les commandes que vous ne connaissez pas sur plot, voir ’appendice du TP]

a) Tracez le graphe de la fonction tan sur | - 7/2,57/2[.
Rappel : on doit définir un tableau X d’abscisse, puis un tableau Y=pl.tan(X) puis faire
pl.plot(X,Y) puis enfin pl.show().
N.B. Bien vous souvenir que pl.tan s’applique directement & un tableau (ou liste) de x et
renvoie un tableau de valeurs obtenues en appliquant tangente entrée par entrée.

Si vous étes dégu du résultat, recadrez votre figure pour éviter que ’axe des ordonnées ne
monte trop haut.

Remarque : PYLAB va joindre les points a travers les discontinuités, comment éviter ce
phénomene ?
b) Tracez sur la méme figure la premiere bissectrice, d’une autre couleur.

c¢) Déterminez graphiquement les coordonnées des points d’intersection entre les deux courbes
dans [0,27] (la figure PYLAB donne les coordonnées du curseur).

d) Déterminez numériquement ces points d’intersections avec la fonction fsolve du module
scipy.optimize et rajoutez les sur la figure avec le symbole o d’une autre couleur.

N.B. La fonction fsolve de ce module s’utilise comme suit : £fsolve (func,x0) cherche un
zéro de la fonction func au voisinage d’une valeur x0. Nous reviendrons sur les méthodes de
recherche de zéros de fonctions : nous en avons déja rencontrée deux au T.P. 5, lesquelles ?

e) Cas d’une fonction définie par cas : Tracer le graphe de la fonction f : z ~

2 . .
x“, sl |x|est paire
{ ’ 3U PATE ™ pour € [-10,10].
1 — z° sinon

2 Etude de familles de fonctions et de suites définies impli-
citement

2.1 La suites des polynomes de Taylor de I’exponentielle : programma-

tion et tracé d’une famille de fonctions
n Z‘k ,
On note f, : © +~ Z o On démontrera bientot que pour chaque z, f,(x) — €*.

k=0) n—+oo
a) Ecrire une fonction Taylor_exp(x,n) qui prend comme arguments un entier n et un flot-
tant x et renvoie la valeur de f, ().
Essayer de garder les bonnes habitudes de construction d’une boucle (calculs & ne pas refaire
a chaque fois!)
b) Tracer une des fonctions obtenues par exemple pour n = 5, en appliquant & un tableau x
représentant des abscisses entre —5 et 5.

N.B. Normalement, toutes les fonctions que vous avez utilisées pour le calcul de Taylor_exp(x,n)

peuvent s’appliquer avec comme entrée un tableau x.

2.2 La suites des polyndémes de Taylor de I’exponentielle : tracés, zéros

a) Tracez sur une méme figure les graphes des fonctions f, pour n € [1,20 | et x € [-5,5].
b) Recadrez, zoomez, pour voir les éventuels zéros des f,.
c¢) Exercice de mathématique (les maths sont a faire & la maison) :

i) Démontrer que les fs, ne s’annulent pas sur R et que les fa,.1 ont un unique zéro dans
R.

ii) On note x,, 'unique zéro de fa,,+1. A 'aide de PYTHON faire une conjecture sur le compor-
tement de la suite (x,) (on pourra utiliser la fonction fsolve de scipy.optimitze pour
le calcul approché des zéros). Puis démontrer cette conjecture en faisant des mathématiques.

3 Suites récurrentes u,;; = f(u,) : premiére partie

3.1 Représentation des itérées d’une fonction f : z— 22 +c¢

Notation : Pour une fonction f : R - R, et un entier n € N* on note f° = fo--.0 f.
~———
n fois f
On a vu au chapitre sur les suites récurrentes que méme pour une simple fonction polynomiale
du second degré f, les suites un1 = f(uy,) donnent des comportements assez riches... en fait la
richesse (et la complexité) des ces suites va bien au dela des exemples que nous avons étudiés.
Une premiere fagon de comprendre cette complexité est de tracer a quoi ressemble f°.

Exercice : Tracez le graphe de f°" pour f :x ~ 2% +c¢ pour ¢ = —1,39 et n = 6,10, 15, notamment

pour z € [-1,1]. Remarque : quel est le degré de cette fonction polynomiale ?

3.2 Histoire d’un germe

Pour chaque point xg (appelé germe) on considere la suite (x,) définie par ce xg et Vn € N,
Tn+1 = f(xn)

Avec la notation du paragraphe précédent, on a x,, = f°™(xg).

Pour avoir une représentation graphique de la suite (x,) on va tracer les points (n,x,) pour
n € N (bien sir en fait pour une partie de N!). Ce graphe sera appelé [’histoire du point x.

On choisit ici zg = -1 et toujours f : = + 2% + c. Tracez les points (n,x,) dans les différents cas
suivants :

a) si ¢ =—1. Justifier le résultat visible sur le tracé.

b) si ¢ = —-1,3. Commentez le résultat. Regardez des valeurs numériques plus précises pour
préciser votre analyse : a-t-on oui ou non un comportement périodique A.P.C.R.?

¢) si ¢=-1,8. Commentez ?

3.3 Etude mathématique précise : des calculs faciles au début

On considere toujours f. : & ~ 2% +c.

a) Déterminer la CNS sur ¢ pour que f. ait un point fixe (réel!). Bien siir cela se fait & la main,
avec papier crayon, puisqu’il s’agit de pouvoir résoudre une équation du second degré. On
suppose désormais cette condition réalisée.

b) Déterminer la CNS sur ¢ pour qu'un de ces deux points fixes soit attractif.

¢) Déterminer la CNS sur ¢ pour qu'en outre f. ait des points périodiques de période 2 i.e. il
existe des x € R tels que (fo f)(z) =z et f(x) + x.
N.B. Cette question peut encore se faire avec papier crayon comme un exercice de mathématiques.
Profitons en néanmoins pour introduire un module de calcul formel en PYTHON appelé

sSympy.

3.4 Utilisation d’'un module de calcul formel : sympy

[Si sympy n’est pas installé sur vos machines, passez ce paragraphe !j

Dans un nouvel shell (pour éviter les conflits avec numpy), essayer :

a) from sympy import *
x=Symbol(’x’)
c=Symbol(’c’)
solution=solve (x**2-x+c,x)
x0,x1=solution

Qu’a-t-on obtenu ?

b) y=x**2+c
yp=diff (y,x)

Méme question ?

c) f=x*x2+c
f2=compose (f,f)

En déduire une fagon de faire le calcul du 3.3 ¢) avec une machine.

d) On dira qu’un point périodique de période deux x est attractif si, et seulement si, |(fo f) (z)] < 1.

Parmi les deux points périodiques de période deux trouvés au c), qui ne sont pas des points
fixes, on pourrait essayer de déterminer ceux qui sont attractifs a ’aide de sympy. Cela demande
déja des calculs compliqués. En réalité, on va plutot revenir au calcul numérique car en pratique
les seuls points fixes que 1’on voit sont les attractifs comme on va l’expérimenter maintenant.

3.5 Suite de I’étude par expérimentation numérique : la figure de la
cascade

Pour différentes valeurs de c¢ € [-2,1/4] (disons 10, puis 50 puis 100), on va :

a) Calculer tous les termes de la suite (u,) ayant comme valeur initiale ug = 0 (important) et
telle que up41 = fe(uy), pour n e [1,100].

b) Tracer les points (u(n),c) pour n € [50,100 | dans un cadre avec des abscisses dans [-2,2]
et des ordonnées ¢ € [-2,1/4]. (Le fait de commencer & 50 permet de ne pas tenir compte
des premiers termes qui sont ce qu'on pourrait appeler le régime transitoire).

On utilisera plot avec l'argument ’k.’ pour avoir des points noirs (lettre k) ayant des
formes de points non reliés ’.° et le keyword argument markersize=1 pour que ces points
soient petits.

Autrement dit : pour chaque valeur de ¢ en ordonnée, on trace 50 points sur la droite
horizontale d’ordonnée ¢ qui sont 50 valeurs de la suite (u,) pour cette valeur de c.

¢) Comment interpréter la zone du graphe obtenu pour ¢ > -0,757
d) Méme question pour c €] -5/4,-3/4[7

e) A partir du graphe précédent, en zoomant, en rajoutant éventuellement des valeurs de ¢
déterminer & partir de quelle valeur de c la suite a 4 points périodiques attractifs.

4 La méme suite récurrente dans le monde complexe

On considere la fonction définie par la méme formule f : z2€ Cr 22+ ce C avec ce C.
L’itération de cette fonction permet de mettre en évidence des fractales célebres. Pour cela, on
va d’abord introduire un outil graphique commode :

4.1 Préliminaire : Poutil pl.imshow(T)

La fonction imshow prend en argument un tableau bidimensionnel dont les entrées peuvent étre
des entiers et va afficher une image découpée en zones ou la couleur de chaque zone correspondra a
une entrée de la matrice. Avec des 0 et des 1 dans la matrice, on aura une image bicolore, comme
dans ’exemple suivant :

import pylab as pl
T=pl.array([[0,0,0,1],[1,0,1,0],(0,0,0,1],[1,0,0,1]11)
pl.imshow(T)

pl.show()

Avec des nombres plus variés, essayez, la fonction pl.colorbar () avec le pl.show() permettra de
savoir a quel nombre correspond chaque couleur suivant une graduation < continue » :

T=pl.array([[0,3,0,1],[1,4,1,0],[0,0,0,1],[1,0,8,12]11)
pl.imshow(T)
pl.colorbar()
pl.show()

Plus la matrice sera grande, plus la zone correspondant a chaque entrée de la matrice sera petite :
on se rapproche alors d’une correspondance entre entrée de la matrice T et couleur d’un pixel.

4.2 FEnsembles de Julia

On fixe un c € C et on cherche a dessiner dans le plan complexe ’ensemble des zg € C tels que
la suite (z,) définie par ce germe zp et Vne N, 2,1 = ZZ + ¢ reste bornée.

Pour ¢ =0, il s’agit bien str du disque unité fermé, mais si ¢ # 0, ’ensemble correspondant, noté
Je, prend des formes étonnantes.

Awvec des maths : on peut montrer que si pour un ng, |zn,| > |c|+1 alors la suite est non bornée.

Pour le dessiner :

On voudrait représenter pour chaque valeur de zg = a +ib avec a € [-3,3] et b € [-3, 3], le point
d’affixe zp avec une couleur qui va dépendre du plus petit entier ng tel que |z,,| > |¢| + 1 si ce ng
existe. Pour cela on va tester disons jusqu’a ng = 30.

Bien str, pour I'affichage, on ne choisit qu'un nombre fini de valeurs de a et de b. On considere
300 valeurs de (ay) et 300 valeurs (b;) entre [-10,10],

On initialise un tableau 300 x 300 remplis de zéros, avec la commande T=pl.zeros ((300,300))
(noter les doubles parentheses).

Pour chaque couple (k,1), on calcule la valeur de ng < 50 correspondante, pour zg = ay, + ib;.

Puis on utilise pl.imshow(T)

4.3 Ensemble de Mandelbrot

Probléme : on cherche a savoir pour quelle valeur de ¢ € C la suite (z,), définie par 2o = 0
(ce choix de valeur initiale est important) et z,41 = fc(2n), reste bornée.

Rappel du paragraphe précédent : on peut montrer que si pour un ng, |2n,| > |c| + 1 alors
la suite est non bornée.

Travail a faire :

a) On voudrait représenter pour chaque valeur de ¢ = a + ib avec a € [-2,2] et b € [-2,2], le
point d’affixe ¢ en rouge s’il existe un ¢ < 20 tel que |z;| > 4 (dans ce cas on admet que la
suite est non bornée) et en bleu si |z90| < 4.

(La valeur 4 est ici un majorant de |c| + 1).

Bien stir, pour affichage, on ne choisit quun nombre fini de valeurs de a et de b. On
considere 300 valeurs de (ay) et 300 valeurs (b;) entre [-2,2],

On initialise un tableau 300x300 remplis de zéros, avec la commande T=pl.zeros ((300,300))
(noter les doubles parentheses).

Pour chaque couple (k,1), on calcule la valeur de |z90| avec la fonction f. ol ¢ = ay, + ib;.
Ensuite il reste seulement a remplir le tableau T en mettant dans la case T[k,1] : 1 si
|220| >4 et 0si |220| <4.

Puis on utilise pl.imshow(T) et pl.colorbar () pour la légende.

En fait le comportement de la suite est plus subtil : ce n’est pas parce que la valeur |za0]
est inférieure & quatre qu’on est siir que |z,| est non bornée, bien stir. Mais mieux, il s’avere
qu’on peut avoir |z90| < 4 et pourtant qu’il y ait un k < 20 tel que |z;| > 4 et donc que,
d’apres le résultat mathématique donné précédemment, que la suite soit en fait non bornée.
Pour visualiser cela, on peut faire une boucle while abs(z)<4 and iter<20 : on sortira de
la boucle des que le abs(z) >=4 et on met ainsi en évidence une zone de ¢ pour lesquels en
fait |z90| < 4 mais entre-temps on avait déja obtenu |zx| > 4.

On peut choisir de remplir T en faisant afficher iter s’il est plus petit que 20. On aura alors
un affichage coloré avec 20 couleurs.

Appendice : documentation sur plot

A Premiers tracés

A.1 Rappel : comment marche plot ?

On a déja vu en T.P. que plot s’utilise avec la syntaxe :
pl.plot(x,y)

ol x et y sont ou bien des listes (ou tuple) python, ou bien des tableauz numpy de méme taille
et qu’a partir de ces données, plot trace la ligne brisée qui joint les point M; de coordonnées
x[1],y[i] dans l'ordre des i croissants. Ainsi :

x=[0,1,2]
y=[1,2,1]
pl.plot(x,y)
pl.show()

2.2

2.0

18

16

14

12

A.2 Pour le tracé de fonctions : comment fabriquer le tableau des abs-
cisses

Admettons qu’on veuille tracer le graphe de la fonction x ~ 2 sur [0,1]. On va pour cela
découper le segment [0,1] en disons en 11 points espacés régulierement autrement dit avec un pas
p=0.1

Q@

L5

=]
L]
L]

b—a

Iei =3, le pas est

Plusieurs méthodes sont possibles :

e créer a la main une liste PYTHON.

e utiliser la commande linspace de numpy (incluse dans pylab) qui crée un array :
L’acronyme linspace est pour linear space.

x=pl.linspace(0,1,11)

D’une maniére générale, linspace(a,b,n) subdivise le segment [a,b] en n points régulierement
espacés, donc avec un pas (b—a)/(n-1).

o utiliser la commande arange de numpy (incluse dans pylab) qui crée un array :

Il s’agit encore d’un acronyme pour array range. Elle s’utilise comme le range des listes sauf
qu’elle crée un array et permet des pas qui sont des flottants.

Ainsi pl.arange(a,b,p) crée le tableau des a + kp jusqu’au plus grand k tel que a + kp < b.

Ainsi pour obtenir la méme subdivision de [0,1] on entrera :

x=pl.arange(0,1.1,0.1)

Reste ensuite 4 définir le vecteur y :

[Les fonctions de numpy (ou pylab) operent directement sur les tableauxj

Alnsi & partir du tableau x (pas d’une liste), on peut créer la liste y dont les entrées y[i] sont
les x[1]**2 simplement via :

y=x**2

Puis enfin faire plot(x,y).

A.3 Effacement, gestion de plusieurs fenétres :

Pour effacer le graphique précédent :
pl.clf() # clf pour clear figure

Pour afficher dans une autre fenétre :

pl.figure(1l) # on crée une figure qu’on appelle 1

pl.plot(x,x)

pl.figure("Ma jolie parabole") # on crée une figure qu’on appelle ...
pl.plot(x,y)

A.4 Commandes pour les axes, la couleur, le style

Reprenons & tire d’exercice un autre exemple déja vu : celui du sin sur [0,27] .

A.4.1 Quelques commandes pour les axes

Par défaut, le cadrage ne collera pas forcément a ce qu’on voudrait. On peut déclarer
pl.x1im(0,2*pl.pi)
Plus commode, on peut définir directement les extrémités des deux axes comme suit

pl.axis([-4,5,-10,10]) # les x seront entre -4 et 5 et les y entre -10 et 10

On peut aussi faire apparaitre une grille avec
pl.grid(
On peut donner faire afficher des étiquettes sur les axes :

pl.xlabel(" temps t")
pl.ylabel(" tension u(t)")

A.4.2 Quelques commandes pour les couleurs et les styles
Les huit couleurs de base : avec leur premiere lettre.

Other options for the color characters are:

red
green
blue
cyan
magenta
yellow
black
white

W HooaH

e
Options for line styles are

'=" = solid

'==' = dashed

':1" = dotted

'=.' = dot-dashed

' points

filled circles

[
e filled triangles

Ainsi plot (x,y,"r—-").
Pour des couleurs plus compliquée, on va définir color= " " dans plot, notamment pour :

Les couleurs en RGB : méme syntaxe qu'en HTML : avec trois nombres en hexadécimal :
exemple pl.plot(x,y,color=’#eeee00’) donnera la courbe en ...

A.4.3 Remarque générale sur les arguments de plot, et de beaucoup de fonctions
PyYTHON :

Lorsque vous tapez plot vous voyez :
plot(*args, **kwargs)
pl.plot(

Qu’est-ce que cela signifie ?

e Le premier *args signifie que le nombre d’arguments de plot n’est pas toujours le méme.
Ainsi, on a utilisé plot(x,y) avec deux arguments, et plot(x,y,’r-’) avec trois arguments. On
verra méme plus tard qu’on peut méme ne donner qu’un argument !

Comment fabriquer soi-méme des fonctions avec des *arg ? Avec un * devant votre nom d’argu-
ment. Dans ce cas, tous les arguments donnés entre virgules seront stockés dans un tuple, comme
expliqué ici :

def mafonction(*mesarguments) :
return mesarguments

e Le second kwargs signifie key word arguments : ce sont des arguments définis par un mot-clef.
Comme color dans notre exemple. La aussi, on va voir que plot peut en admettre beaucoup.

A.5 Deux tracés sur la méme figure avec une légende

x=pl.linspace(0,2*pl.pi, 100)
y1=pl.sin(x)

y2=pl.cos(x)

pl.clf()

pl.plot(x,yl,"r",label="Le sinus")
pl.plot(x,y2,"b-",label="Le cosinus")
pl.legend()

Avec le résultat :

— Lesinus
— Le cosinus

0.5

0.0

B Cas particuliers des suites, un plot a un argument !

Les suites n +~ u,, sont bien sir des fonctions particulieres, dont la variable n est un entier.
On peut bien sir tracer les par exemple les 1000 premicres valeurs de la suite (sin(n)) en
faisant :

X=list (range(1000))
Y=pl.sin(X)
pl.plot(X,Y)
pl.show()

Mais on peut faire la méme chose en faisant simplement pl.plot(y) :

s’il n’y a qu’un argument, plot prendra par défaut comme tableau des abscisses le tableaux
des entiers successifs, a partir de 0, de méme longueur que y.

Ceci peut paraitre une simple curiosité, mais cela peut vous jouer des tours parfois... si vous
appliquer votre plot a certaines valeurs de retour d’une fonction...

Remarque : comment peut-on illustrer la densité de {sin(n), n € N} dans [-1,1], en dessinant
tous ces points sin(n) sur le segment [-1,1]?

Voici ci-dessous le dessin pour seulement les 100 premieres valeurs de n : la densité n’est pas
évidente, elle le devient pour 1000 :

0.06 T T

0.04 E

0.02 E

0.00 [ro - HH HHE HHH HEH HHE HEE R HEH HHEE HH R e e

-0.02+ E

-0.04]

—0.06 L L L
-1.0 -0.5 0.0 0.5 1.0

