
Solutions pour le paragraphe 3 du T.P. 12

3 Suites récurrentes un+1 = f(un) :

3.1 Représentation des itérées d’une fonction f ∶ x↦ x2 + c

Notation : Pour une fonction f ∶ R→ R, et un entier n ∈ N∗, on note f○n = f ○ ⋅ ⋅ ⋅ ○ f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n fois f

.

On a vu au chapitre sur les suites récurrentes que même pour une simple fonction polynomiale
du second degré f , les suites un+1 = f(un) donnent des comportements assez riches... en fait la
richesse (et la complexité) des ces suites va bien au delà des exemples que nous avons étudiés.

Une première façon de comprendre cette complexité est de tracer à quoi ressemble f○n.

Exercice : Tracez le graphe de f○n pour f ∶ x↦ x2 + c pour c = −1,39 et n = 6,10,15, notamment
pour x ∈ [−1,1]. Remarque : quel est le degré de cette fonction polynomiale ?

Solution 3.1

Avec le code suivant,
on obtient le graphe à droite

c=-1.39

def f(x):

return x**2+c

def iteration(f,n,x):

for i in range(n):

x=f(x)

return x

x=pl.linspace(-1,1,300)

n=15 # on peut changer.

y=iteration(f,n,x)

pl.plot(x,y)

t
Remarque : Pour deux fonctions polynomiales deg(f ○ g) = deg(f).deg(g), donc deg(f○n) =

2n. Pour n = 15,on a donc tracé le graphe d’une fonction de degré 215, et c’est compliqué !�



�
	Cette courbe représente donc pour chaque valeur de u0 possible en abscisse, la valeur de u15

en ordonnée. On comprend que la dépendance de u15 par rapport à u0 est subtile !

3.2 Histoire d’un germe

Pour chaque point x0 (appelé germe) on considère la suite (xn) définie par ce x0 et ∀n ∈ N,
xn+1 = f(xn).

Avec la notation du paragraphe précédent, on a xn = f○n(x0).
Pour avoir une représentation graphique de la suite (xn) on va tracer les points (n,xn) pour

n ∈ N (bien sûr en fait pour une partie de N !). Ce graphe sera appelé l’histoire du point x0.
On choisit ici x0 = −1 et toujours f ∶ x↦ x2 + c. Tracez les points (n,xn) dans les différents cas

suivants :

a) si c = −1. Justifier le résultat visible sur le tracé.

b) si c = −1,3. Commentez le résultat. Regardez des valeurs numériques plus précises pour
préciser votre analyse : a-t-on oui ou non un comportement périodique A.P.C.R. ?

c) si c = −1,8. Commentez ?

Solution 3.2 On peut utiliser un code comme :
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x0=-0.8

c=-1.3

def f(x):

return x**2+c

L=[x0]

n=50

for i in range(1,n):

L.append(f(L[-1]))

pl.clf()

pl.plot(L,"r*")

a) Avec c = −1, on voit immédiatement que la suite (xn) est périodique de période 2, ce
qui se prouve de manière immédiate par le calcul x0 = −1 donne x1 = (−1)2 − 1 = 0 puis
x2 = 02 − 1 = −1.

b) Avec c = −1.3 :

Au début le comportement n’est pas régulier mais assez vite, on a l’impression d’arriver à
un comportement périodique de période 4. En fait, si on examine les valeurs prises par xn
on s’aperçoit que les quatre suites extraites (x4n), (x4n+1), (x4n+2), (x4n+3) ne sont pas
rigoureusement constantes (pendant un certain temps en tout cas), mais tendent chacune
vers une limite. Les famille des quatre limite forme pour la fonction f une orbite périodique
formée de quatre éléments, qui est une orbite périodique attractive.

c) si c = −1,8. Le comportement semble chaotique.

3.3 Etude mathématique précise : des calculs faciles au début

On considère toujours fc ∶ x ↦ x2 + c.
a) Déterminer la CNS sur c pour que fc ait un point fixe (réel !). Bien sûr cela se fait à la main,

avec papier crayon, puisqu’il s’agit de pouvoir résoudre une équation du second degré. On
suppose désormais cette condition réalisée.

b) Déterminer la CNS sur c pour qu’un de ces deux points fixes soit attractif.

c) Déterminer la CNS sur c pour qu’en outre fc ait des points périodiques de période 2 i.e. il
existe des x ∈ R tels que (f ○ f)(x) = x et f(x) ≠ x.

Solution 3.3 a) On considère ϕc ∶ x ↦ f(x) − x = x2 − x + c. La fonction fc a (au moins) un

point fixe réel ssi ϕc a un zéro réel ssi ∆ = 1 − 4c ≥ 0 donc ssi c ≤ 1

4
.

Dans ce cas les deux points fixes sont x1 = 1 +√
1 − 4c

2
et x2 = 1 −√

1 − 4c

2
.

b) On a défini un point fixe x0 de fc est attractif par la condition ∣f ′c(x0)∣ < 1. Or ici f ′c(x) = 2x
pour tout x. Donc : f ′c(x1) = 1 +√

1 − 4c et f ′c(x2) = 1 −√
1 − 4c.

Ainsi x1 n’est jamais attractif. En revanche, x2 est attractif ssi 1 − √
1 − 4c > −1 Cette

condition équivaut à 2 > √
1 − 4c ou encore 4 > 1 − 4c ou encore c > −3/4.

Dans le cas c = 1/4, x2 = x1 n’est pas non plus attractif.

Conclusion : Donc fc admet un point fixe attractif ssi c ∈] − 3/4,1/4[.
c) On considère ψ(x) = (f ○ f)(x) − x. Les zéros de ψ sont les points x tels que f(f(x)) = x.

Ils représentent les points fixes de f et les points périodiques de période 2. Ainsi (idem ex.
pl.) on peut factoriser ψ(x) par f(x) − x (lemme de factorisation pour les polynômes).

Ainsi ψ(x) = (x + c)2 + c − x = x4 + 2cx2 − x + c2 + c = (x2 − x + c)(x2 + βx + γ). On obtient β
et γ par identification :

ψ(x) = (x2 − x + c)(x2 + x + c + 1).
Les points périodiques de période deux sont donc les racines de q(x) = x2 + x + c + 1 dont le
discriminant vaut ∆ = 1 − 4(c + 1). La condition ∆ ≥ 0 équivaut à c ≤ −3/4.
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Attention : pour montrer que ce sont vraiment des points de période 2, on doit voir que ces
racines de q ne sont pas racines de ϕ.

C’est évident si c < −3/4 puisque ϕ n’a plus de racines réelle. Mais dans le cas c = −3/4, on
vérifie immédiatement que l’unique racine de q est −1/2 qui est aussi racine de ϕ.

Donc pour c = −3/4, on n’a pas de point périodique de période 2. On a seulement deux
points fixes dont l’un, x2 n’est plus attractif au sens fort de la définition, mais visiblement
on continue à avoir convergence vers x2. (On est dans le cas indéterminé ∣f ′(x2)∣ = 1).

Conclusion : f admet des points périodiques de période 2 si, et seulement si, < −3/4.

3.4 Utilisation d’un module de calcul formel : sympy

a) from sympy import *

x=Symbol(’x’)

c=Symbol(’c’)

solution=solve(x**2-x+c,x)

x0,x1=solution

Qu’a-t-on obtenu ? Une écriture formelle des solutions de l’équation x2 −x+ c = 0, stockée dans les
variables x0,x1

b) y=x**2+c

yp=diff(y,x)

Même question ? Cette fois, on obtient une expression de la dérivée de l’expression x**2+c par
rapport à x autrement dit 2*x

c) Avec

f=x**2+c

f2=compose(f,f)

ptPer2=solve(f2-x,x)

On aura dans ptPer2 quatre variables symboliques donnant les expressions : des deux points fixes
de f et des deux points périodiques de période 2.

N.B. L’intérêt de cela, c’est que bien sûr on pourrait continuer pour trouver l’expression exacte
des points périodiques de période 4 avec :

f3=compose(f2,f)

f4=compose(f3,f)

ptPer4=solve(f4-x,x)

On trouve :

>>> ptPer4

[-sqrt(-4*c - 3)/2 - 1/2, sqrt(-4*c - 3)/2 - 1/2, -sqrt(-4*c + 1)/2 + 1/2, sqrt(-4*c + 1)/2 + 1/2]

3.5 Suite de l’étude par expérimentation numérique : la figure de la
cascade

Pour différentes valeurs de c ∈ [−2,1/4] (disons 10, puis 50 puis 100), on va :

a) Calculer tous les termes de la suite (un) ayant comme valeur initiale u0 = 0 (important) et
telle que un+1 = fc(un), pour n ∈ ⟦1,100 ⟧.

b) Tracer les points (u(n), c) pour n ∈ ⟦50,100 ⟧ dans un cadre avec des abscisses dans [−2,2]
et des ordonnées c ∈ [−2,1/4]. (Le fait de commencer à 50 permet de ne pas tenir compte
des premiers termes qui sont ce qu’on pourrait appeler le régime transitoire).�
�

�
�

On utilisera plot avec l’argument ’k.’ pour avoir des points noirs (lettre k) ayant des
formes de points non reliés ’.’ et le keyword argument markersize=1 pour que ces points
soient petits.
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Autrement dit : pour chaque valeur de c en ordonnée, on trace 50 points sur la droite
horizontale d’ordonnée c qui sont 50 valeurs de la suite (un) pour cette valeur de c.

Solution 3.5 Pour le a) et le b), on peut utiliser le code suivant :

c=pl.linspace(-2,0.25,500)

pl.clf()

pl.ylim(-2,0.25)

pl.xlim(-2,2)

for valeur in c:

def f(x):

return x**2+valeur

u=[0]

for i in range(100):

u.append(f(u[-1]))

urep=u[50:100] # les u en abs

l=len(urep)

for i in range(len(urep)):

pl.plot(urep[i],valeur,’k.’,markersize=1)

ou bien celui-ci

c=pl.linspace(-2,0.25,500)

pl.clf()

pl.ylim(-2,0.25)

pl.xlim(-2,2)

for valeur in c:

def f(x):

return x**2+valeur

u=[0]

for i in range(100):

u.append(f(u[-1]))

urep=u[50:100] # les u en abs

l=len(urep)

y=valeur*pl.ones(l)

pl.plot(urep,y,’k.’,markersize=1)�� ��Le code de gauche est beaucoup plus lent que celui de droite !

Pourquoi : la commande est appelée directement sur des tableaux et non pas pour chaque
point.

On obtient la magnifique figure suivante :

c) Comment interpréter la zone du graphe obtenu pour c > −3/4 = −0.75 ? Dans chaque
ligne, on trace 51 points, mais ils sont tous au même endroit : les valeurs un de la suite sont
déjà, pour n ≥ 50 très proches de sa limite : le point fixe attractif.

d) Comment interpréter la zone du graphe obtenu pour c ∈] − 5/4,−3/4[ ?

On a vu par le calcul théorique au c) que cette zone correspondait à l’exercice de points
périodiques de période 2. On a vu aussi au b) qu’il n’y a plus de points fixe attractif. La figure
montre que les deux points périodiques de périodes deux (qui sont de la forme x1, f(x1))
sont attractifs. La suite a deux suites extraites convergentes.

e) A partir du graphe précédent, en zoomant, en rajoutant éventuellement des
valeurs de c déterminer à partir de quelle valeur de c la suite a 4 points 4-
périodiques attractifs. En fait, c’est une conséquence directe du calcul précédent : on a
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vu que les deux points 2-périodiques attractifs durait jusqu’à c = −5/4 = −1,25 c’est donc là
que se produit le nouveau doublement de période.

f) Culturel : Si on continue ainsi, on aura des doublement de période successifs de plus en
plus rapprochés. Pour cette application, les valeurs de c donnant ces bifurcations ne tendent
pas vers l’infini mais tendent vers c = −1,40116. Ce nombre est appelé point de Feigenbaum
(à ne pas confondre avec la constante de Feigenbaum qui est plus universelle, qui exprime
elle la limite de écarts entre les doublement de période voir Wikipédia).

Au delà de ce point c, le comportement est difficile à lire au début, peut-être que (un) est
même dense, mais on observe ensuite de nouveau des trous ou fenêtres le plus gros trou
étant autour de c = −1,75 = −7/4.

Exercice : Zoomer autour de c = −1,75 et vous verrez trois points formant un cycle attractif
de période 3 : (a, f(a), f○2(a)) qui se divisent ensuite en cycles de périodes 6, 12...
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