Solutions des exercices de mathématiques du T.P. 12

2.2 La suites des polynémes de Taylor de ’exponentielle : étude de la

suite des zéros

=k
On note f, : ¢ +— Z —. On démontre au chapitre F3 que pour chaque z ¢ R, f,,(z) — ¢€*

n—>+00

(i) Démontrer que les fgn ne s’annulent pas sur R et que les fs,+1 ont un unique zéro dans R.

(i1) On note x, I'unique zéro de fa,,+1. A l'aide de PYTHON faire une conjecture sur le compor-
tement de la suite (2,,) (on pourra utiliser la fonction fsolve de scipy.optimitze pour le
calcul approché des zéros). Puis démontrer cette conjecture en faisant des mathématiques.

Solution élémentaire : sans la formule de Taylor Reste intégral (autre méthode possible
avec cette formule...)
(i) On définit pour tout n le prédicat suivant :

’Pn : fon >0 sur R et fo,,1 admet un unique zéro dans R, qu’on note x,,.

Montrons par récurrence que ¥V n € N, P,.

e Initialisation fy = 1 fonction constante, donc fo >0 et f; : © — x + 1 s’annule en g = -1
uniquement.
e Hypothese de récurrence (H.R.) on suppose P,, vraie pour un n € N.
n+1 kxk—l n+1 xkrfl n l'k
Remarque : VneN, f/ (x)=> —— =) ——— =) — = f(x).
nr 1;1 k! = (B-1)! ,;) k! "

2n+1

2n +1)!
voisinage de +oo et P, dit que f2,+1 admet un unique zerg T d())nc fon+1 est négative stmt sur
] = 00, x,[ et positive strictement sur ]x,,, +oo|.
Avec la remarque, on en déduit que fa,42 décroit sur | — oo, x,[ et croit sur ]z, +oo[.
Donc pour tout z € R, foni2(x) > fonso(zn)  (1).
2n+2

2n+2

T x .
Or fonso(xn) = fons1(an) + @n+2)l =0+ (2n"+ %) >0 (2) car z, # 0 puisque fon,+1(0) = 1.

Avec (1) et (2) on a bien montré que | fap42 >0 sur R (3) ‘ ce qui est « la moitié » de P41.

Comme on sait que fs,+1 a pour monéme dominant on sait le signe de fo,11 au

D’autre part, avec (3) et la remarque, on sait que fon+3 est strictement croissante sur R. Comme
fon+s est continue, strictement croissante et admet pour limite —oco en —oo et +oo en +oo, on en
déduit qu’elle s’annule en un unique réel, ce qui, avec (3) donne P,,,1.

La récurrence est établie. O

(ii) L’expérimentation numérique (cf. T.P.) semble indiquer que (z,,) décroit.

Méthode connue pour les suites définies implicitement, on ne compare pas directement x,,
et Tpe1 mais fon43(x,) avee foni3(Tpe1) =0.

Soit n € N. Comme fy,,3 est strictement croissante, on a les équivalences suivantes :

2n+2 2n+3
Tn Ty

(2n+2)!  (2n+3)!’

Tnt+1 STy = f2n+3(xn+1) < f2n+3(xn) < 0<0+

2n+2

(2212)! (“2513)20@56712_(2%3) W

Par Uabsurde si x, < —=(2n + 3) alors Vk € [0,n], z, < —(2k + 1), donc 1 +
22k 21

0l @y

x
" _ <0, donc, en

2k +1

multipliant par z2*, on a

2k 2k+1
(Qk)'er <0donc foni1(xn) <

n
En sommant ces inégalités pour k = 1,...,n, on obtient Z

0, contradiction.



Ainsi inégalité (1) est vraie, ce qui avec les équivalences qui la précedent, montre que| Vn e N, z,11 <z, |

Ainsi la suite () est décroissante.
(iii) Montrons que x,, —> —oo.

n—>+oo

Par théoréme de la limite monotone, il suffit de montrer que (x,) n’est pas minorée

Soit m € R. Montrons qu’il existe un rang n € N tel que x,, <m.

Par croissance stricte de la fonction f,, cela équivaut & montrer que f,(z,) < fo.(m) ie.
0< fu(m).

Or d’aprés la propriété rappelée dans U'énoncé, pour chaque x € R, f,(x) —> exp(x). Donc
n—+o0o

ici pour z =m, f,(m) — €™ >0 donc il existe un rang n tel que f,(m) > 0.
n—+oo

Conclusion : (z,) n’est pas minorée et comme elle est décroissante | x,, —> —oo|.

n—+o0o

3.2 Etude mathématique des points fixes et périodiques de période 2

2

a) On considere ¢, : © ~ f.(z) —x =2° —z + c. La fonction f. a (au moins) un point fixe réel

1
ssi . a un zéro réel ssi A =1-4c¢>0 donc ssi|c< 1l
. 1++vV1-4c 1-+V1-4e¢
Dans ce cas les deux points fixes sont x1 = — et x9 = —

b) On a défini un point fixe z¢ de f. est attractif par la condition |f.(z¢)| < 1. Or ici fi(z) =2z
pour tout . Donc : fi(z1) =1+v1-4cet fi(xs)=1-+1-4ec.
Ainsi 1 n’est jamais attractif. En revanche, zo est attractif ssi 1 — /1 —4c¢ > —1 Cette
condition équivaut & 2 > /1 —4c ou encore 4 > 1 — 4¢ ou encore ¢ > -3/4.
Dans le cas ¢ = 1/4, x5 = 1 n’est pas non plus attractif.

’ Conclusion : Donc f. admet un point fixe attractif ssi c €] — 3/4,1/4]. ‘

¢) On considere ¥ (x) = (f o f)(x) — z. Les zéros de ¢ sont les points = tels que f(f(x)) = x.
Ils représentent les points fixes de f et les points périodiques de période 2. Ainsi (idem ex.
cours) on peut factoriser 1(z) par f(z) —x (lemme de factorisation pour les polyndmes).
Ainsi ¥(2) = (z+c) 2 +c—r=a*+2c® ~ 2+ +c= (22 -z +c) (2% + Bz +). On obtient 3
et v par identification :

P(x)= (2 -z +c)(@® +z+c+1).

Les points périodiques de période deux sont donc les racines de ¢(x) = 22 + x +c+ 1 qui ne
sont pas racines de ¢(x) = 2% -z +c.

Remarquons déja que le discriminant de ¢ vaut A = 1-4(c+1). La condition A, > 0 équivaut
ac<-3/4.

Etudions déja si ¢ et g peuvent avoir des racines communes : supposons qu’on ait un z

" . ) 2 -x+c=0,
vérifiant simultanément 9
z+x+c+1=0

Alors par différence 2z +1 =0 donc x = -1/2. Or avec les formules du a), —1/2 est racine de
@ ssi V/1—4c=2ssic=-3/4. Ainsi :

e Pour ¢ = -3/4, ¢ admet une seule racine (A, = 0) qui est racine de ¢, donc point fixe de
f : pas de point périodique de période 2.

e Pour ¢ < -3/4, ¢ admet deux racines réelles qui ne sont pas racines de ¢, donc deux points
périodique de période deux.

Donc

la CNS cherchée est ¢ < -3/4. ‘




