
Solutions des exercices de mathématiques du T.P. 12

2.2 La suites des polynômes de Taylor de l’exponentielle : étude de la
suite des zéros

On note fn ∶ x ↦
n

∑
k=0

xk

k!
. On démontre au chapitre F3 que pour chaque x ∈ R, fn(x) Ð→

n→+∞
ex.

(i) Démontrer que les f2n ne s’annulent pas sur R et que les f2n+1 ont un unique zéro dans R.

(îı) On note xn l’unique zéro de f2n+1. A l’aide de Python faire une conjecture sur le compor-
tement de la suite (xn) (on pourra utiliser la fonction fsolve de scipy.optimitze pour le
calcul approché des zéros). Puis démontrer cette conjecture en faisant des mathématiques.

Solution élémentaire : sans la formule de Taylor Reste intégral (autre méthode possible
avec cette formule...)

(i) On définit pour tout n le prédicat suivant :

Pn : f2n > 0 sur R et f2n+1 admet un unique zéro dans R, qu’on note xn.

Montrons par récurrence que ∀ n ∈ N, Pn.
● Initialisation f0 = 1 fonction constante, donc f0 > 0 et f1 ∶ x ↦ x + 1 s’annule en x0 = −1

uniquement.
● Hypothèse de récurrence (H.R.) on suppose Pn vraie pour un n ∈ N.

Remarque : ∀n ∈ N, f ′n+1(x) =
n+1

∑
k=1

kxk−1

k!
=

n+1

∑
k=1

xk−1

(k − 1)! =
n

∑
k=0

xk

k!
= fn(x).

Comme on sait que f2n+1 a pour monôme dominant
x2n+1

(2n + 1)! on sait le signe de f2n+1 au

voisinage de ±∞ et Pn dit que f2n+1 admet un unique zéro xn donc f2n+1 est négative stmt sur
] −∞, xn[ et positive strictement sur ]xn,+∞[.

Avec la remarque, on en déduit que f2n+2 décroit sur ] −∞, xn[ et crôıt sur ]xn,+∞[.
Donc pour tout x ∈ R, f2n+2(x) ≥ f2n+2(xn) (1).
Or f2n+2(xn) = f2n+1(xn) + x2n+2n

(2n + 2)! = 0 + x2n+2n

(2n + 2)! > 0 (2) car xn ≠ 0 puisque f2n+1(0) = 1.

Avec (1) et (2) on a bien montré que f2n+2 > 0 sur R (3) ce qui est ≪ la moitié ≫ de Pn+1.

D’autre part, avec (3) et la remarque, on sait que f2n+3 est strictement croissante sur R. Comme
f2n+3 est continue, strictement croissante et admet pour limite −∞ en −∞ et +∞ en +∞, on en
déduit qu’elle s’annule en un unique réel, ce qui, avec (3) donne Pn+1.

La récurrence est établie.
(ii) L’expérimentation numérique (cf. T.P.) semble indiquer que (xn) décroit.�



�
	Méthode connue pour les suites définies implicitement, on ne compare pas directement xn

et xn+1 mais f2n+3(xn) avec f2n+3(xn+1) = 0.

Soit n ∈ N. Comme f2n+3 est strictement croissante, on a les équivalences suivantes :

xn+1 ≤ xn ⇔ f2n+3(xn+1) ≤ f2n+3(xn) ⇔ 0 ≤ 0 + x2n+2n

(2n + 2)! +
x2n+3n

(2n + 3)! ,

⇔ x2n+2n

(2n + 2)! (1 + xn
2n + 3

) ≥ 0⇔ xn ≥ −(2n + 3) (†).

Par l’absurde si xn < −(2n + 3) alors ∀k ∈ ⟦0, n⟧, xn < −(2k + 1), donc 1 + xn
2k + 1

< 0, donc, en

multipliant par x2kn , on a
x2kn
(2k)! +

x2k+1n

(2k + 1)! < 0.

En sommant ces inégalités pour k = 1, . . . , n, on obtient
n

∑
k=0

x2kn
(2k)!+

x2k+1n

(2k + 1)! < 0 donc f2n+1(xn) <
0, contradiction.
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Ainsi l’inégalité (†) est vraie, ce qui avec les équivalences qui la précèdent, montre que ∀n ∈ N, xn+1 ≤ xn .

Ainsi la suite (xn) est décroissante.
(iii) Montrons que xn Ð→

n→+∞
−∞.

Par théorème de la limite monotone, il suffit de montrer que (xn) n’est pas minorée
Soit m ∈ R. Montrons qu’il existe un rang n ∈ N tel que xn <m.
Par croissance stricte de la fonction fn, cela équivaut à montrer que fn(xn) < fn(m) i.e.

0 < fn(m).
Or d’après la propriété rappelée dans l’énoncé, pour chaque x ∈ R, fn(x) Ð→

n→+∞
exp(x). Donc

ici pour x =m, fn(m) Ð→
n→+∞

em > 0 donc il existe un rang n tel que fn(m) > 0.

Conclusion : (xn) n’est pas minorée et comme elle est décroissante xn Ð→
n→+∞

−∞ .

3.2 Etude mathématique des points fixes et périodiques de période 2

a) On considère ϕc ∶ x ↦ fc(x) − x = x2 − x + c. La fonction fc a (au moins) un point fixe réel

ssi ϕc a un zéro réel ssi ∆ = 1 − 4c ≥ 0 donc ssi c ≤ 1

4
.

Dans ce cas les deux points fixes sont x1 = 1 +√
1 − 4c

2
et x2 = 1 −√

1 − 4c

2
.

b) On a défini un point fixe x0 de fc est attractif par la condition ∣f ′c(x0)∣ < 1. Or ici f ′c(x) = 2x
pour tout x. Donc : f ′c(x1) = 1 +√

1 − 4c et f ′c(x2) = 1 −√
1 − 4c.

Ainsi x1 n’est jamais attractif. En revanche, x2 est attractif ssi 1 − √
1 − 4c > −1 Cette

condition équivaut à 2 > √
1 − 4c ou encore 4 > 1 − 4c ou encore c > −3/4.

Dans le cas c = 1/4, x2 = x1 n’est pas non plus attractif.

Conclusion : Donc fc admet un point fixe attractif ssi c ∈] − 3/4,1/4[.
c) On considère ψ(x) = (f ○ f)(x) − x. Les zéros de ψ sont les points x tels que f(f(x)) = x.

Ils représentent les points fixes de f et les points périodiques de période 2. Ainsi (idem ex.
cours) on peut factoriser ψ(x) par f(x) − x (lemme de factorisation pour les polynômes).

Ainsi ψ(x) = (x + c)2 + c − x = x4 + 2cx2 − x + c2 + c = (x2 − x + c)(x2 + βx + γ). On obtient β
et γ par identification :

ψ(x) = (x2 − x + c)(x2 + x + c + 1).
Les points périodiques de période deux sont donc les racines de q(x) = x2 + x + c + 1 qui ne
sont pas racines de ϕ(x) = x2 − x + c.
Remarquons déjà que le discriminant de q vaut ∆ = 1−4(c+1). La condition ∆q ≥ 0 équivaut
à c ≤ −3/4.

Etudions déjà si ϕ et q peuvent avoir des racines communes : supposons qu’on ait un x

vérifiant simultanément

⎧⎪⎪⎨⎪⎪⎩
x2 − x + c = 0,

x2 + x + c + 1 = 0

Alors par différence 2x+ 1 = 0 donc x = −1/2. Or avec les formules du a), −1/2 est racine de
ϕ ssi

√
1 − 4c = 2 ssi c = −3/4. Ainsi :

● Pour c = −3/4, q admet une seule racine (∆q = 0) qui est racine de ϕ, donc point fixe de
f : pas de point périodique de période 2.

● Pour c < −3/4, q admet deux racines réelles qui ne sont pas racines de ϕ, donc deux points
périodique de période deux.

Donc

la CNS cherchée est c < −3/4.
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