TP 11 : enveloppes convexes, solutions

Question 1.

def plusBas(tab):
xmin=tab[0] [0]
ymin=tab[1] [0]
j=0
for i in range(len(tab[0])):
if tab[1][il<ymin :
j=i
xmin=tab[0] [i]
ymin=tab[1] [i]
elif tab[1] [i]==ymin:
if tab[0] [i]<zmin:
j=i
xmin=tab[0] [i]
return j

Question 2. Le test d’orientation donne +1 pour i =7, j =3, k =4.
Il donne -1 pour =8, =9, k=10.
Question 3.

def orient(tab,i,j,k):

pi=np.array([tab[0] [i],tab[1]1[i]1])
pj=np.array([tab[0] [j],tab[1][j11)
pk=np.array([tab[0] [k],tab[1] [k]1])
vecl=pj-pi
vec2=pk-pi
det=vecl1[0]*vec2[1]-vecl[1]*vec2[0]
if det>0:

return 1
elif det==0:

return O
else :

return -1

Question 4.

— réflexivité : soit j # ¢, par déf. orient(tab,i,j,j) = 0 a fortiori orient(tab,i,j,j) < 0 donc
Dj = Dj-

— Antisymétrie : soit j,k # i, tels que p; < p et pr < p;. Alors det(p;p;,pipr) < 0 et
det(pipk, pip;) <0
Or det(p:p;,pipr) = — det(pipr, pip;) donc ici det(pipr, pip;) = 0.
Ceci signifie que les points p;, pj, pr sont alignés. Or par '’hypothese de position générale
de I'énoncé, ceci signifie que deux d’entre eux sont confondus. Enfin comme p; et pj sont
distincts de p; on conclut que p; = p.

— transitivité : soit j, k,l # 1, tels que p; < py et pr < py.
On a donc det(p;p;, pipr) < 0 et det(p;prpipi) < 0.
Attention : sans hypothese particuliere sur p; on ne pourrait rien conclure comme le
montre le dessin suivant :

PiDi:

Di pipt

Dans ce dessin, pour la relation < associée & p;, on a bien : p; < py (on tourne dans le sens
inverse-trigo de p; & pi) de méme py < p; mais on n’a pas p; < p;.

La raison en est qu’en considérant les représentants dans [-m, 7] des angles orientés (]Tp; ,DiPk) =
01 € [-7‘(,0], (m,ﬁ) 592 € [-7‘(’,0], on a 91 +92 < -7

Mais ici, un tel phénomeéne ne peut pas se produire car :

e Pour le premier point p; choisi : il est par déf. en bas a gauche du nuage de points. Donc
tous les points pj,pr,pr sont dans le demi-plan (fermé) délimité par la droite horizontale
passant par p;.

e Pour les autres point p; insérés : si p, est le point inséré avant p; alors par construction

de p; tous les points p; € P\ {p;,p,} seront dans le demi plan & gauche de (p,p;).

— Totalité : soit j,k # ¢. Alors si det(p;p;,pipk) <0, on a p; < py, sinon det(p;p;, pipr) > 0 et
det(pipr, pip;) < 0 et donc py, < p;.

Question 5.

def prochainPoint(tab,i):
if i==0:
temoin=1
else:
temoin=0
n=len(tab[0])# le nombre d’entrées dans une ligne
for j in range(n):
if ji=i:
if orient(tab,i,temoin,j)<0:
temoin=j
return temoin

N.B. La distinction de cas au départ pour l'initialisation de témoin est nécessaire car sinon,
pour i et témoin égaux, on aurait toujours orient(tab,i,temoin, j)=0.

Question 6. On a 1=10 par hypotheése. Ainsi on commence avec temoin=0 ce qui signifie qu’on va
considérer au départ les orientations de (p1opo, prop;)-
e Quand j=0, orient(tab,i,temoin, j)<0 a la valeur False car det(p10pg, p1opo) = 0.

e Quand j=1, orient(tab,i,temoin, j)<0 a la valeur True car det(piopo,p1op1) < 0.
Donc changement de témoin : .

e Quand j=2, orient(tab,i,temoin, j)<0 a la valeur True car det(piop1,p1ops) < 0.
Donc changement de témoin : | temoin=2 |

e pour j=3,4, on a det(p1op2,piop;) > 0. Pas de changement de témoin.

. e emm—
e pour j=5, on a det(p1opz,p1ops) < 0.
Donc changement de témoin : .

e pour tous les j supérieurs ou égaux a 6, on a det(p1ops, p1op;) > 0.

Il n’y a plus de changement de témoin. La fonction renvoie donc 5. ‘

Question 7.

def convJarvis(tab,n):

pointInitial=plusBas(tab,n)

L=[]

pointcourant=pointInitial

while True:
L.append(pointcourant)
pointcourant=prochainPoint (tab,n,pointcourant)
if pointcourant==pointInitial:

return L

Question 8. Comme la fonction finale convJarvis appelle les fonctions plusBas et prochainPoint,
on examine la complexité de ces deux fonctions :

e Dans plusBas, la boucle for fait n tours de boucle. A chaque tour de boucle le nombre
d’opérations est majoré par 6 (3 test booléens, 3 affectations), en tout cas indépendant de n.

Ainsi la complexité de la fonction plusBas est en O(n) (et en fait inférieure & 6n).

(On n’a pas compté le calcul de len(tabl[0]) dont on ne connait la complexité que si on sait
comment cette donnée est codée, mais de toute fagon cette complexité n’est pas plus que linéaire.)

e La fonction orient est de complexité constante indépendante de la longueur de tab i.e. en

o(1).

e Dans prochainPoint on a encore une seule boucle for avec n tours de boucles et un nombre
majoré par une constante d’opérations a chaque tour de boucles donc prochainPoint est en O(n).

e Enfin dans convJarvis on a donc :
— Un appel & plusBas en O(n),
— une boucle while qui fait exactement m tours de boucles (ot m est le nombre de points du
bord de conv(C)).
— & chaque tour de boucle : un appel & prochainPoint en O(n) et 2 autres opérations (test
booléen et ajout dans une liste) ; donc une complexité encore en O(n) a chaque tour.
Au total la boucle cotite O(nm) opérations et donc :

la fonction convJarvis a une complexité en O(mn) + O(n) = O(mn) ‘

Question 8 : il n’y a rien d’autre a faire que de taper paquetCadeau(tab) et & s’émerveiller!
Question 9 :

def jarvisAleatoire(n=10,fenetre=[[-5,5],[-5,5]]):
""tAffiche un nuage de n points aléatoire, dans la fenétre [[xMin,xMax], [yMin,yMax]],
et son paquet cadeau obtenu par 1l’algorithme de Jarvis."""
from random import uniform
#0n utilise des floats pour éviter d’avoir des points alignés.
tab2=[[uniform(fenetre[0] [0],fenetre[0] [1]) for i in range(n)],
[uniform(fenetre[1] [0] ,fenetre[1][1]) for i in range(n)]]
paquetCadeau(tab2)

