
TP 11 : enveloppes convexes, solutions

Question 1.

def plusBas(tab):

xmin=tab[0][0]

ymin=tab[1][0]

j=0

for i in range(len(tab[0])):

if tab[1][i]<ymin :

j=i

xmin=tab[0][i]

ymin=tab[1][i]

elif tab[1][i]==ymin:

if tab[0][i]<xmin:

j=i

xmin=tab[0][i]

return j

Question 2. Le test d’orientation donne +1 pour i = 7, j = 3, k = 4.
Il donne −1 pour i = 8, j = 9, k = 10.

Question 3.

def orient(tab,i,j,k):

pi=np.array([tab[0][i],tab[1][i]])

pj=np.array([tab[0][j],tab[1][j]])

pk=np.array([tab[0][k],tab[1][k]])

vec1=pj-pi

vec2=pk-pi

det=vec1[0]*vec2[1]-vec1[1]*vec2[0]

if det>0:

return 1

elif det==0:

return 0

else :

return -1

Question 4.
— réflexivité : soit j ≠ i, par déf. orient(tab,i, j, j) = 0 a fortiori orient(tab,i, j, j) ≤ 0 donc

pj ⪯ pj .
— Antisymétrie : soit j, k ≠ i, tels que pj ⪯ pk et pk ⪯ pj . Alors det(ÐÐ→pipj ,

ÐÐ→pipk) ≤ 0 et
det(ÐÐ→pipk,

ÐÐ→pipj) ≤ 0
Or det(ÐÐ→pipj ,

ÐÐ→pipk) = −det(ÐÐ→pipk,
ÐÐ→pipj) donc ici det(ÐÐ→pipk,

ÐÐ→pipj) = 0.
Ceci signifie que les points pi, pj , pk sont alignés. Or par l’hypothèse de position générale
de l’énoncé, ceci signifie que deux d’entre eux sont confondus. Enfin comme pj et pk sont
distincts de pi on conclut que pj = pk.

— transitivité : soit j, k, l ≠ i, tels que pj ⪯ pk et pk ⪯ pl.
On a donc det(ÐÐ→pipj ,

ÐÐ→pipk) ≤ 0 et det(ÐÐ→pipk
ÐÐ→pipl) ≤ 0.

Attention : sans hypothèse particulière sur pi on ne pourrait rien conclure comme le
montre le dessin suivant :

1



Dans ce dessin, pour la relation ⪯ associée à pi, on a bien : pj ⪯ pk (on tourne dans le sens
inverse-trigo de pj à pk) de même pk ⪯ pl mais on n’a pas pj ⪯ pl.

La raison en est qu’en considérant les représentants dans [−π,π] des angles orientés ̂
(ÐÐ→pipj ,

ÐÐ→pipk) ≡

θ1 ∈ [−π,0], ̂
(ÐÐ→pipk,

ÐÐ→pipl) ≡ θ2 ∈ [−π,0], on a θ1 + θ2 < −π.
Mais ici, un tel phénomène ne peut pas se produire car :
● Pour le premier point pi choisi : il est par déf. en bas à gauche du nuage de points. Donc
tous les points pj , pk, pk sont dans le demi-plan (fermé) délimité par la droite horizontale
passant par pi.
● Pour les autres point pi insérés : si pr est le point inséré avant pi alors par construction
de pi tous les points pj ∈ P ∖ {pi, pr} seront dans le demi plan à gauche de (prpi).

— Totalité : soit j, k ≠ i. Alors si det(ÐÐ→pipj ,
ÐÐ→pipk) ≤ 0, on a pj ⪯ pk, sinon det(ÐÐ→pipj ,

ÐÐ→pipk) ≥ 0 et
det(ÐÐ→pipk,

ÐÐ→pipj) ≤ 0 et donc pk ⪯ pj .

Question 5.

def prochainPoint(tab,i):

if i==0:

temoin=1

else:

temoin=0

n=len(tab[0])# le nombre d’entrées dans une ligne

for j in range(n):

if j!=i:

if orient(tab,i,temoin,j)<0:

temoin=j

return temoin

N.B. La distinction de cas au départ pour l’initialisation de témoin est nécessaire car sinon,
pour i et témoin égaux, on aurait toujours orient(tab,i,temoin,j)=0.

Question 6. On a i=10 par hypothèse. Ainsi on commence avec temoin=0 ce qui signifie qu’on va
considérer au départ les orientations de (ÐÐÐ→p10p0,

ÐÐÐ→p10pj).
● Quand j=0, orient(tab,i,temoin,j)<0 a la valeur False car det(ÐÐÐ→p10p0,

ÐÐÐ→p10p0) = 0.

● Quand j=1, orient(tab,i,temoin,j)<0 a la valeur True car det(ÐÐÐ→p10p0,
ÐÐÐ→p10p1) < 0.

Donc changement de témoin : temoin=1 .

● Quand j=2, orient(tab,i,temoin,j)<0 a la valeur True car det(ÐÐÐ→p10p1,
ÐÐÐ→p10p2) < 0.

Donc changement de témoin : temoin=2 .

● pour j=3,4, on a det(ÐÐÐ→p10p2,
ÐÐÐ→p10pj) > 0. Pas de changement de témoin.

● pour j=5, on a det(ÐÐÐ→p10p2,
ÐÐÐ→p10p5) < 0.

Donc changement de témoin : temoin=5 .

● pour tous les j supérieurs ou égaux à 6, on a det(ÐÐÐ→p10p5,
ÐÐÐ→p10pj) ≥ 0.

Il n’y a plus de changement de témoin. La fonction renvoie donc 5.

2



Question 7.

def convJarvis(tab,n):

pointInitial=plusBas(tab,n)

L=[]

pointcourant=pointInitial

while True:

L.append(pointcourant)

pointcourant=prochainPoint(tab,n,pointcourant)

if pointcourant==pointInitial:

return L

Question 8. Comme la fonction finale convJarvis appelle les fonctions plusBas et prochainPoint,
on examine la complexité de ces deux fonctions :

● Dans plusBas, la boucle for fait n tours de boucle. A chaque tour de boucle le nombre
d’opérations est majoré par 6 (3 test booléens, 3 affectations), en tout cas indépendant de n.

Ainsi la complexité de la fonction plusBas est en O(n) (et en fait inférieure à 6n).
(On n’a pas compté le calcul de len(tabl[0]) dont on ne connâıt la complexité que si on sait

comment cette donnée est codée, mais de toute façon cette complexité n’est pas plus que linéaire.)

● La fonction orient est de complexité constante indépendante de la longueur de tab i.e. en
O(1).

● Dans prochainPoint on a encore une seule boucle for avec n tours de boucles et un nombre
majoré par une constante d’opérations à chaque tour de boucles donc prochainPoint est en O(n).

● Enfin dans convJarvis on a donc :
— Un appel à plusBas en O(n),
— une boucle while qui fait exactement m tours de boucles (où m est le nombre de points du

bord de conv(C)).
— à chaque tour de boucle : un appel à prochainPoint en O(n) et 2 autres opérations (test

booléen et ajout dans une liste) ; donc une complexité encore en O(n) à chaque tour.
Au total la boucle coûte O(nm) opérations et donc :

la fonction convJarvis a une complexité en O(mn) +O(n) = O(mn) .

Question 8 : il n’y a rien d’autre à faire que de taper paquetCadeau(tab) et à s’émerveiller !

Question 9 :

def jarvisAleatoire(n=10,fenetre=[[-5,5],[-5,5]]):

"""Affiche un nuage de n points aléatoire, dans la fenêtre [[xMin,xMax],[yMin,yMax]],

et son paquet cadeau obtenu par l’algorithme de Jarvis."""

from random import uniform

#On utilise des floats pour éviter d’avoir des points alignés.

tab2=[[uniform(fenetre[0][0],fenetre[0][1]) for i in range(n)],

[uniform(fenetre[1][0],fenetre[1][1]) for i in range(n)]]

paquetCadeau(tab2)

3


