
chapitre 12 : l’approximation numérique de zéros de fonctions
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1.3 Introduction aux méthodes itératives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.3.3 Ce que donne l’exemple näıf de g(x) = f(x) + x . . . . . . . . . . . . . . . . . . 3
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1 Introduction au problème

1.1 Motivation : savoir ce que se cache derrière le fsolve :

On a déjà plusieurs fois utilisé la commande fsolve de scipy.optimize : fsolve(f,x0) cherche
un zéro de f au voisinage d’un certain x0.

On a vu aussi que cette commande est parfois assez sensible au choix de la condition initiale
x0. Par exemple pour résoudre l’équation tan(x) = x (cf. TP).

Ce qui suit va nous expliquer ce qui est caché derrière fsolve et le pourquoi de ces phénomènes
de sensibilité au choix de x0.�

�

�

�
Remarque préliminaire importante : l’étude numérique des zéros d’une fonction com-
mence déjà par l’étude des variations. On essaie (si possible !) de se placer sur un intervalle
I sur lequel f∣I est strictement monotone et change de signe, pour être sûr de l’existence et
l’unicité du zéro que l’on cherche à approcher. La représentation graphique y aide bien sûr !

1.2 La méthode déjà connue : dichotomie�� ��Revoir le T.P. 5
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1.2.1 Entrées et sorties de cette méthode

● Données : f ∈ C([a, b],R) telle que f(a) < 0 et f(b) > 0 (quitte à remplacer f par −f).
● Algo. : fabrique des suites (an) et (bn) telles que f(an) ≤ 0, f(bn) ≥ 0 et bn−an = (b−a)/2n.
● Conséquence théorique : la limite commune à ces deux suites adjacentes donne un zéro r de
f , ce qui démontre le T.V.I.

● Conséquence pratique : en s’arrêtant à une étape n, les nombres anet bn fournissent un
encadrement d’un zéro de f à (b − a)/2n près.

1.2.2 Les avantages de cette méthode, et ce qu’on peut espérer de mieux

● Avantages :
— elle s’applique à n’importe quelle fonction continue (hyp. de régularité très faible sur f),
— elle converge toujours vers un zéro,

— la convergence est géométrique : en O(
1

2n
).

● Ce qu’on peut espérer de mieux : on remarque que le processus de dichotomie est indépendant
de la forme de la fonction f . On peut espérer que :�
�

�
�

pour des bonnes fonctions f (plus régulières, par exemple C2), on va trouver des méthodes
qui vont plus vite en tenant mieux compte des propriétés de f .
En revanche, ces méthodes ne convergeront pas forcément... donc plus vite mais moins sûr...

● Un autre problème : Quand on étudie des fonctions des fonctions de plusieurs variables,
disons f ∶ Rn → Rm, la dichotomie n’aura plus de sens, il faudra bien d’autres méthodes. Il
se trouve qu’on celles qu’on va développer ici se généraliseront aussi à ce cadre-là. On verra
ci-dessous déjà un exemple avec f ∶ C→ C pour trouver des zéros de fonctions polynomiales
dans C : la dichotomie n’a plus de sens.

1.3 Introduction aux méthodes itératives

1.3.1 L’idée de base : remplacer les zéros par des points fixes

On connâıt bien le fait suivant :

Pour g continue, si une suite (un), définie par ∀n ∈ N, un+1 = g(un),
converge, alors sa limite est un point fixe de g.

Moralité :�
�

�
�

Numériquement, les points fixes d’une fonction g s’approchent en
itérant des suites un+1 = g(un), pourvu que ces suites convergent. On
parle d’approche itérative.

Principe des méthodes itératives

Pour résoudre une équation f(x) = 0, on la remplace par une équation équivalente g(x) = x,
en choisissant g de sorte que, pour u0 dans le voisinage du zéro pressenti :
● les suites (un) définies par un+1 = g(un) convergent effectivement,
● et cette convergence soit rapide.

L’idée la plus évidente pour la fonction g

Bien sûr f(x) = 0 ⇔ f(x) + x = x, et donc on peut considérer g(x) = f(x) + x et les suites
un+1 = g(un) associées. Le problème est que ces suites ne convergent pas forcément, comme on va
le revoir après le petit rappel suivant.
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1.3.2 Ce qu’on sait déjà sur la convergence vers les points fixes

a) Si g est k-lipschitzienne sur I = [a, b] avec k < 1 et I est stable par g alors : la suite
(un) définie par u0 ∈ I et un+1 = g(un) converge vers l’unique point fixe de g dans I et la
convergence est géométrique en O(kn).

b) Caract. commode : Pour g ∈ C1(I,R), on sait que g est k-lip. sur I ssi ∣g′∣ ≤ k

c) Pour g ∈ C1(I,R) un point fixe a ∈ I de g est dit attractif ssi ∣g′(a)∣ < 1. Dans ce
cas, il existe un voisinage V = [a − ε, a + ε] de a surlequel g est k-lip. avec k < 1 et si u0 ∈ V
...

d) Avec les notations du d), a est dit répulsif ssi ∣g′(a)∣ > 1. Dans ce cas, la seule
possibilité pour que (un) converge vers a est que (un) soit constante égale à a APCR.

1.3.3 Ce que donne l’exemple näıf de g(x) = f(x) + x

Imaginons qu’on veuille résoudre une équation du troisième degré f(x) = 0 où f(x) = x3−4x+1.
L’idée näıve de chercher les points fixes de g(x) = f(x)+x nous donne la fonction g ∶ x↦ x3−3x+1
dont le graphe est en rouge, celui de f est en bleu.

Mauvaise nouvelle : deux points fixes de g sont clairement répulsifs.
Dans le § 2 suivant, nous allons construire une fonction g très efficace, grâce à la méthode de

Newton.

2 La méthode de Newton pour l’approximation des zéros
de fonction

2.1 Présentation de la méthode

Hypothèse : On se donne une fonction f dérivable sur un intervalle I contenant une racine r de
l’équation f(r) = 0. On fixe un x0 ∈ I pas trop loin du zéro que l’on cherche.
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2.1.1 Idée géométrique de la méthode

On considère la tangente Tx0Γf au graphe de f au point d’abscisse x0. Si celle-ci coupe l’axe,
on note x1 l’abscisse de ce point d’intersection dont on espère qu’il est plus proche de r. On
recommence alors cette construction à partir du point (x1, f(x1)). On espère que cela définit une
suite (xn) et qu’elle converge vers r.

3

En général, le processus qui suit, décrit au pas à pas

et illustré par le schéma ci-contre, donne satisfaction.

Initialisation On pose x0 = b.

Étape 1 On mène depuis le point (x0, f (x0)) la tan-

gente au graphe ¡f de f . En général, celle-ci recoupe le

segment [a, b] en un point d’abscisse x1. xx0x1x2

y=f(x)

r

y=T0(x)

y=T1(x)

Étape 2 On procède à l’identique pour obtenir x2, etc. On espère que la suite (xn)n est bien

définie et qu’elle converge vers r.

3 Existence et convergence de l’algorithme Quitte à renforcer les hypothèses sur f ,

nous allons voir que le processus de Newton est bien défini, et qu’il converge de surcroît vers r.

Dans l’état actuel, la méthode de Newton présente des failles. En voici l’étalage sur quelques

configurations “bien” choisies.

x

y=f(x)

x0x1r
L

x

y=f(x)

x0 = x2
  rx1

L

x

y=f(x)

rx1 x0 x2x3x

y=f(x)

x0rx1

N

NN

• Pour éviter la première configuration, nous supposerons que f 0 ne s’annule jamais. Au-

trement dit, et compte tenu de la stricte croissance de f , cela signifie que f 0 > 0 sur [a, b].

• Mais cette seule condition n’assure pas encore l’existence de (xn) (deuxième figure), ni

même sa convergence (troisième et quatrième figures). Nous supposerons que les tangentes sont

toujours sous la courbes, c’est à dire que f est convexe. Pour simplifier, nous supposerons f de

classe C2
, ce qui revient à ramener la condition précédente à la simple information de signe :

f 00 > 0.

Théorème 1 Nous supposons désormais f : [a, b] ! R de classe C2 avec f 0 > 0 et f 00 > 0,

avec toujours f (a) < 0 et f (b) > 0. Si l’on part de x0 = b, alors la suite (xn) existe bien et

converge vers r. De plus, (xn) converge en décroissant.

Preuve Démontrons d’abord par récurrence l’existence et la monotonie de la suite. Choisissons

l’hypothèse P (n) suivante :

P (n) : {xn existe et r 6 xn 6 xn¡1... 6 x0 = b}

La récurrence est fondée. Examinons son hérédité en supposant le rang n acquis. On peut

mener la tangente (y = Tn (x)) en (xn, f (xn)) à la courbe ¡f puisque f est dérivable. Cette

2.1.2 Traduction algébrique

A l’étape n, l’équation de la tangente au point Mn = (xn, f(xn)) est :

y = f(xn) + f
′
(xn)(x − xn).

Donc le point xn+1 s’il existe est solution de l’équation :

0 = f(xn) + f
′
(xn)(xn+1 − xn),

ce qui équivaut, en supposant bien sûr que f ′(xn) ≠ 0, à :

xn+1 = xn −
f(xn)

f ′(xn)
.

2.2 Des exemples où la méthode ne va pas marcher
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En général, le processus qui suit, décrit au pas à pas

et illustré par le schéma ci-contre, donne satisfaction.
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• Pour éviter la première configuration, nous supposerons que f 0 ne s’annule jamais. Au-

trement dit, et compte tenu de la stricte croissance de f , cela signifie que f 0 > 0 sur [a, b].

• Mais cette seule condition n’assure pas encore l’existence de (xn) (deuxième figure), ni

même sa convergence (troisième et quatrième figures). Nous supposerons que les tangentes sont

toujours sous la courbes, c’est à dire que f est convexe. Pour simplifier, nous supposerons f de

classe C2
, ce qui revient à ramener la condition précédente à la simple information de signe :

f 00 > 0.

Théorème 1 Nous supposons désormais f : [a, b] ! R de classe C2 avec f 0 > 0 et f 00 > 0,

avec toujours f (a) < 0 et f (b) > 0. Si l’on part de x0 = b, alors la suite (xn) existe bien et

converge vers r. De plus, (xn) converge en décroissant.

Preuve Démontrons d’abord par récurrence l’existence et la monotonie de la suite. Choisissons

l’hypothèse P (n) suivante :

P (n) : {xn existe et r 6 xn 6 xn¡1... 6 x0 = b}

La récurrence est fondée. Examinons son hérédité en supposant le rang n acquis. On peut

mener la tangente (y = Tn (x)) en (xn, f (xn)) à la courbe ¡f puisque f est dérivable. Cette

● L’écueil de la figure 1 correspond à un point où f ′ s’annule : tangente horizontale, la suite
n’est plus définie, cela se voyait déjà au 2.1.2

● Même si f ′ ne s’annule pas, et donc, dans le cas des figure où f est croissante, f ′ > 0, la
figure 2 montre que x1 peut sortir de l’ensemble de définition de f . La fonction f de cette figure
est concave.

● Les figures 3 et 4 montrent une fonction avec un point d’inflexion et où la suite (xn) ne
converge pas.
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2.3 Résultat global pour le cas part. des fonctions monotones, ne chan-
geant pas de convexité/concavité

Hypothèses : on suppose que f ∶ [a, b] → R est de classe C2 vérifie les conditions suivantes :
● f ′ ne s’annule pas sur [a, b], donc f est strictement monotone sur [a, b].
● f(a).f(b) < 0 de sorte que f admet un unique zéro α dans [a, b].
● f ′′ garde un signe constant sur [a, b].

Remarque : on notera que ces hypothèses peuvent toujours être réalisées en restreignant suf-
fisamment l’intervalle [a, b] autour de α sauf si f ′(α) = 0 (point critique) ou f ′′(α) = 0 (point
d’inflexion par exemple).

Propriété : Avec les hypothèses précédentes, si on fixe un x0 ∈ [a, b] tel que :

f(x0).f
′′
(x0) > 0 (règle de Fourier)

alors :

a) La suite (xn) définie par ce x0 et pour tout n ∈ N, xn+1 = xn −
f(xn)

f ′(xn)
est bien définie

pour tout n ∈ N et est monotone.
b) Cette suite (xn) converge vers l’unique zéro de f sur [a, b].

Illustration :

Remarque pour la preuve : il suffit de démontrer la propriété dans le cas f ′ > 0 et f ′′ ≥ 0 quitte
à remplacer sinon l’équation par f1(x) = 0 (resp. f2(x) = 0, resp. f3(x) = 0) où f1(x) = −f(−x)
(resp. f2(x) = f(−x), resp. f3(x) = −f(x)).
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2.4 Etude de l’attractivité du point fixe dans la méthode de Newton

Vu le résultat obtenu au § 2.3, au moins dans ce cas, on est sûr que le point fixe n’est pas
répulsif. On va voir qu’on a en fait un résultat très fort :

2.4.1 Une propriété générale de la méthode de Newton

Exercice : On se donne f ∈ C2(I,R) avec r un zéro de f dans I telle que f ′ ne s’annule pas sur

I, et on note ∀x ∈ I, ϕ(x) = x −
f(x)

f ′(x)
. Calculer ϕ′(r).

Définition : Un point fixe r d’une application ϕ tel que ϕ′(r) = 0 est appelé point fixe superat-
tractif.

On vient de démontrer la :

Propriété La méthode de Newton transforme toujours un zéro de f en un point fixe

superattractif de ϕ ∶ x↦ x −
f(x)

f ′(x)
.

2.4.2 Propriété générale qui justifie le mot superattractif

Bien sûr un point fixe r superattractif est en particulier attractif et comme ∣ϕ′(r)∣ ≤ k pour
tout k, la convergence des suites associées un+1 = ϕ(un) est en O(kn) pour tout k (et donc aussi
en o(kn) pour tout k). Beaucoup mieux, cette notion donne encore au saut de rapidité, comme on
le démontre dans la prop. suivante :

Propriété : Soit ϕ ∶ I = [a, b] → R une fonction de classe C2 quelconque ayant un point
fixe r superattractif i.e. tel que ϕ′(r) = 0. On note M2 = sup

[a,b]

∣ϕ′′∣. Alors :

(C1) ∀x ∈ I, ∣ϕ(x) − r∣ ≤
M2

2
∣x − r∣2,

(C2) On en déduit que pour tout n ∈ N,

∣xn − r∣ ≤
2

M2
[
M2

2
∣x0 − r∣]

2n

(C3) Si on choisit x0 pour que
M2

2
∣x0 − r∣ < 1, alors la suite définie par xn+1 = ϕ(xn)

converge vers r en O(k2
n

) où k =
M2

2
∣x0 − r∣. On dit que la convergence est su-

pergéométrique.

Exercice : prouver cette propriété.

Illustration numérique : Si on choisit x0 pour ∣x0 − r∣ <
1

5M2
alors k =

M2

2
∣x0 − r∣ ≤

1

10
et la

(C2) ci-dessus donne que :

∀n ∈ N, ∣xn − r∣ ≤
2

M2
(

1

10
)
2p .

Le nombre de décimales en approximant r par xn double à chaque étape : en laissant de côté

la constante 2/M , avec 10 itérations on a une approximation à 10−2
10

= 10−1024 près, donc plus de
mille décimales exactes 1

2.5 Conséquence des résultats § 2.4 : convergence locale

On obtient immédiatement le :

1. bon bien sûr il ne faut pas travailler sur les flottants... sinon cela n’a pas de sens, mais pour les flottants la
précisions maximale est donc atteintes en 3 ou 4 itérations...
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Thm. de convergence locale : Soit f ∈ C3(I,R) ayant un zéro r dans I telle que f ′

ne s’annule pas sur un voisinage V de r dans I. Il existe un voisinage W ⊂ V de r tel
que si x0 ∈ W , la méthode de Newton appliquée à f à partir du point x0 converge super-
géométriquement vers x0.

Remarque 1 : Ce théorème s’applique même si r est un point d’inflexion de f , puisque les preuves
du § 2.4 n’utilisent pas le signe de f ′′.

Remarque 2 : L’hyp. C3 est purement technique, pour que ϕ soit C2 et que la preuve faite plus
haut s’applique. En travaillant un peu plus, on peut diminuer cette hypothèse de régularité, mais
ce n’est pas crucial ici pour nous

Remarque 3 : Un problème crucial pour l’analyse numérique est de savoir comment être sûr de
tomber dans le bon voisinage W ! Et ce n’est pas si simple, on verra des exemples en T.P. Un autre
problème intéressant est celui du test d’arrêt qu’on va prendre, on va l’étudier dans les exemples
ci-dessous.

3 Exemples concrets et fondamentaux

On va donner d’abord deux exemples très simples mais fondamentaux de calcul par la méthode
de Newton :

�� ��nous allons voir ce qui se cache derrière les touches ÷ et
√

de vos calculatrices (et ordinateurs).

3.1 Méthode de Newton pour le calcul de l’inverse d’un nombre

On considère un nombre a ≠ 0.

�� ��On aimerait un algorithme qui calcule 1/a seulement en faisant des additions et multiplications !

On cherche 1/a comme l’unique zéro de f ∶ x ↦ 1
x
− a. A priori la définition de f fait intervenir

un inverse, mais si on calcule ϕ(x) = x −
f(x)

f ′(x)
, alors ϕ(x) = 2x − ax2.

Ainsi la méthode de Newton associée à cette fonction f définit la relation de récurrence simple :

xn+1 = 2xn − ax
2
n.

Remarque sur la notion de schéma numérique : si au lieu de la fonction f ci-dessus, on
avait pris f ∶ x↦ ax−1, la méthode de Newton nous ne donnait rien d’intéressant . Ce n’était pas
un bon schéma numérique pour notre problème.

a) Justification de la convergence : pour quels x0 ?
Vu le graphe de f , on sait que pour appliquer le résultat du § 2.3, on suffit de prendre x0 à

gauche de 1/a car f ′′ > 0.
On sait alors que (xn) tend vers 1/a en croissant.

b) Etude de la vitesse de convergence :

Ici si on pose εn =
1

a
− xn, alors εn+1 =

1

a
− (2xn − ax

2
n) = a(

1

a2
− 2

xn
a
+ x2n) = a(

1

a
− xn)

2

Ainsi :

εn+1 = aε
2
n

Ainsi, ici, on a de manière globale un égalité qui ressemble à l’inégalité obtenue avec l’I.T.Lagrange
au § 2.4.2.

On en déduit immédiatement par récurrence que :

εn = a2
n
−1ε2

n

0
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On peut réécrire cette expression sous la forme :

εn =
1

a
(aε0)

2n ou encore : (aεn) = (aε0)
2n .

Comme aε0 = a(
1

a
−x0) = 1−ax0 et qu’on a choisi x0 < 1/a, on a aε0 ∈]0,1[ donc on retrouve la

convergence pour toutes valeurs initiales x0 telles que x0 < 1/a mais surtout, on vient de démontrer
que :

Pour tout x0 <
1

a
, la suite a(

1

a
− x0) est une vraie suite supergéométrique dès le rang 0. La

convergence est donc très rapide.

c) Illustration numérique

def g(x,a):

return 2*x-a*x**2

def approxinv(a,x0,n):

if a*x0>1:

raise ValueError("x0 doit être plus petit")

for i in range(n):

x0=g(x0,a)

return x0

# test

print(approxinv(5,0.1,4))

print(approxinv(5,0.1,5))

print(approxinv(5,0.1,6))

donne comme valeurs de retour :

0.1999969482421875

0.19999999995343387

0.2

d) Le problème du test d’arrêt :

● ici nous connaissons avec exactitude l’erreur, εn =
1

a
(1 − ax0)

2n , on pourrait pour un ε > 0

donné, calculer le nombre n de pas pour que εn < ε. Mais cela reviendrait à calculer en prenant un
logarithme ! C’est un contresens par rapport au simple inverse de a qu’on veut calculer !

● il y a beaucoup mieux à faire : on rappelle que la suite (xn) converge en croissant vers 1/a.
On est donc sûr que xn donne une valeur approchée de 1/a (toujours par défaut) à ε près lorsque

xn ≤ 1/a ≤ xn + ε, ce qui ce détecte facilement grâce à la fonction décroissante f ∶ x↦
1

x
− a :�� ��il suffit que f(xn + ε) < 0.

Bien sûr, on ne veut pas calculer f(x) = 1/x − a mais il est facile de chasser les dénominateurs
f(x) < 0⇔ ax > 1.

Donc la bonne condition d’arrêt est ici : a(xn + ε) > 1.

e) Le code avec ce test d’arrêt ?

f) Comment les machines choisissent-elles les x0 ? Apparemment à l’aide de tableaux en
mémoire que l’on compare aux premiers bits de a.
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3.2 Méthode de Newton pour le calcul des racines carrées

On fixe un a > 0 et on cherche les zéros de f ∶ x↦ x2 − a. Ce sont bien sûr
√
a et −

√
a.

a) La suite récurrente définie par la méthode de Newton pour f ? Une vieille amie

b) Résultat global de convergence :
Ainsi, ici on sait que pour tout x0 > 0 la méthode de Newton converge vers

√
a.

C’est une différence avec la méthode du § 3.1 précédent où, pour x0 > 1/a, on tombe sur des
nombres négatifs !

Ici quel que soit x0 ∈ R+ on a x1 ≥
√
a et ensuite la suite (xn)n≥1 décroit et converge vers

√
a.

c) Le test d’arrêt ici : Cette fois encore, la monotonie de (xn) donne un test facile.
Comme au § 3.1, il suffit cette fois de tester si f(xn − ε) < 0.

4 Le problème du test d’arrêt en général ?

a) Dans le cas des suites monotones : on a vu que le test était facile.
En fait, la situation du § 2.3 se réalise localement sauf au voisinage d’un point critique ou d’un

point d’inflexion. Donc, sauf dans ces cas, on sait que la suite serait monotone à partir d’un certain
rang.

Cependant, l’usage est plutôt de prendre des tests d’arrêts moins précis mais plus faciles à
coder, qui peuvent être les deux suivants :

b) Test par la taille des valeurs de f : boucle while avec la condition abs(f(x))>epsilon

Bien sûr, cela ne donne pas de contrôle précis de la valeur de l’approximation.

c) Test par la différence entre deux valeurs successives xn+1 − xn : boucle while avec
la condition abs(xp-xn)>epsilon où xp (resp. xn) est la valeur précédente de x et xn la suivante.

Attention, il n’est pas clair que la suite (xn+1 − xn) soit forcément décroissante, même si on
l’espère.

Souvent on prend plutôt l’écart relatif (xp-xn)/xp.

5 Exemples explicites où la méthode de Newton diverge (en
T.P. ?)

Pour x3 − x + 3 = 0 en partant de x0 = 0 on a un comportement cyclique.
Pour xe−x = 0, en partant de x0 = 2, on a divergence vers l’infini.
Pour arctan(x) = 0 en partant de x0 = 1.

6 La méthode de Newton va dans C
Soit f ∶ C → C une fonction telle qu’on puisse définir la dérivée au sens complexe en tout

point : f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0
.

C’est notamment le cas si f est une fonction polynomiale de C dans C.

On admet ici que la même formule zn+1 = zn −
f(zn)

f ′(zn)
donne des suites qui convergent vers les

zéros de f .
On l’illustre ici pour l’étude des bassins d’attractions par cette méthode des trois racines cu-

biques de l’unité pour f(z) = z3 − 1.
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