chapitre 12 : 'approximation numérique de zéros de fonctions
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1 Introduction au probleme

1.1 Motivation : savoir ce que se cache derriere le fsolve :

On a déja plusieurs fois utilisé la commande fsolve de scipy.optimize : fsolve(f,x0) cherche
un zéro de f au voisinage d’un certain xO.

On a vu aussi que cette commande est parfois assez sensible au choix de la condition initiale
x0. Par exemple pour résoudre I’équation tan(z) = = (cf. TP).

Ce qui suit va nous expliquer ce qui est caché derriere fsolve et le pourquoi de ces phénomenes
de sensibilité au choix de x0.

Remarque préliminaire importante : I'étude numérique des zéros d’une fonction com-
mence déja par I’étude des variations. On essaie (si possible!) de se placer sur un intervalle
I sur lequel fj; est strictement monotone et change de signe, pour étre str de I'existence et
I'unicité du zéro que I'on cherche a approcher. La représentation graphique y aide bien sir !

1.2 La méthode déja connue : dichotomie

{Revoir le T.P. 5}




1.2.1 Entrées et sorties de cette méthode

e Données : f €C([a,b],R) telle que f(a) <0 et f(b) >0 (quitte & remplacer f par —f).

e Algo. : fabrique des suites (a,) et (b,) telles que f(a,) <0, f(b,) >0 et b, —ay, = (b—a)/2".

e Conséquence théorique : la limite commune a ces deux suites adjacentes donne un zéro r de
f, ce qui démontre le T.V.I.

e Conséquence pratique : en s’arrétant a une étape n, les nombres anet b, fournissent un
encadrement d’'un zéro de f & (b—a)/2" pres.

1.2.2 Les avantages de cette méthode, et ce qu’on peut espérer de mieux

e Avantages :
— elle s’applique & n’importe quelle fonction continue (hyp. de régularité tres faible sur f),
— elle converge toujours vers un zéro,
1
— la convergence est géométrique : en O(Q—n)

e Ce qu’on peut espérer de mieux : on remarque que le processus de dichotomie est indépendant
de la forme de la fonction f. On peut espérer que :

pour des bonnes fonctions f (plus régulieres, par exemple C?), on va trouver des méthodes
qui vont plus vite en tenant mieux compte des propriétés de f.
En revanche, ces méthodes ne convergeront pas forcément... donc plus vite mais moins sur...

e Un autre probleme : Quand on étudie des fonctions des fonctions de plusieurs variables,
disons f : R™ — R™, la dichotomie n’aura plus de sens, il faudra bien d’autres méthodes. Il
se trouve qu’on celles qu’on va développer ici se généraliseront aussi a ce cadre-la. On verra
ci-dessous déja un exemple avec f : C — C pour trouver des zéros de fonctions polynomiales
dans C : la dichotomie n’a plus de sens.

1.3 Introduction aux méthodes itératives
1.3.1 L’idée de base : remplacer les zéros par des points fixes

On connait bien le fait suivant :

Pour g continue, si une suite (u,), définie par Vn € N, upy1 = g(uy),
converge, alors sa limite est un point fixe de g.

Moralité :

Numériquement, les points fixes d’une fonction g s’approchent en
itérant des suites un1 = g(un), pourvu que ces suites convergent. On
parle d’approche itérative.

Principe des méthodes itératives

Pour résoudre une équation f(z) =0, on la remplace par une équation équivalente g(z) = x,
en choisissant g de sorte que, pour uy dans le voisinage du zéro pressenti :

o les suites (u,) définies par up41 = g(u,) convergent effectivement,

e ct cette convergence soit rapide.

L’idée la plus évidente pour la fonction g

Bien siir f(x) = 0 < f(x)+ 2 = z, et donc on peut considérer g(x) = f(z) + x et les suites
un+1 = g(uy) associées. Le probleme est que ces suites ne convergent pas forcément, comme on va
le revoir apres le petit rappel suivant.



1.3.2 Ce qu’on sait déja sur la convergence vers les points fixes

a) Si g est k-lipschitzienne sur I = [a,b] avec k <1 et I est stable par g alors : la suite
(uy,) définie par ug € I et up1 = g(uy,) converge vers 'unique point fixe de g dans I et la
convergence est géométrique en O(k™).

b) Caract. commode : Pour g e C!(I,R), on sait que g est k-lip. sur I ssi |¢/| <k

c) Pour g € C}(I,R) un point fixe a € I de g est dit attractif ssi |g’(a)| < 1. Dans ce
cas, il existe un voisinage V = [a —¢,a + ] de a surlequel g est k-lip. avec k<1 et si ug e V

d) Avec les notations du d), a est dit répulsif ssi |g’'(a)| > 1. Dans ce cas, la seule
possibilité pour que (u,) converge vers a est que (u,) soit constante égale & a APCR.

1.3.3 Ce que donne ’exemple naif de g(x) = f(z) + =

Imaginons qu’on veuille résoudre une équation du troisieme degré f(z) =0 ou f(z) = 2® -4z +1.
L’idée naive de chercher les points fixes de g(z) = f()+ nous donne la fonction g : x = 2> -3z +1
dont le graphe est en rouge, celui de f est en bleu.

Mauvaise nouvelle : deux points fixes de g sont clairement répulsifs.
Dans le § 2 suivant, nous allons construire une fonction g tres efficace, grace a la méthode de
Newton.

2 La méthode de Newton pour 'approximation des zéros
de fonction

2.1 Présentation de la méthode

Hypothése : On se donne une fonction f dérivable sur un intervalle I contenant une racine r de
Péquation f(r) =0. On fixe un g € I pas trop loin du zéro que l'on cherche.



2.1.1 Idée géométrique de la méthode

On considere la tangente T,,,I'; au graphe de f au point d’abscisse xy. Si celle-ci coupe 'axe,
on note z; l'abscisse de ce point d’intersection dont on espere qu’il est plus proche de r. On
recommence alors cette construction & partir du point (z1, f(z1)). On espere que cela définit une
suite (x,) et qu’elle converge vers r.

y ) N

2.1.2 Traduction algébrique

A Détape n, 'équation de la tangente au point M,, = (x,, f(x,)) est :
y=f(an) + f'(zn)(z - 20).
Donc le point z,,1 s’il existe est solution de I’équation :
0= f(zn) + f,(xn)(x'n+1 - Tn),
ce qui équivaut, en supposant bien siir que f'(x,) # 0, & :

_ J(xn)
fr(zn)

Tn+l = Tn

2.2 Des exemples ou la méthode ne va pas marcher

y=fx) y=/x) y=fx)

e L’écueil de la figure 1 correspond & un point ot f’ s’annule : tangente horizontale, la suite
n’est plus définie, cela se voyait déja au 2.1.2

e Méme si f’' ne s’annule pas, et donc, dans le cas des figure ou f est croissante, f’ > 0, la
figure 2 montre que x; peut sortir de ’ensemble de définition de f. La fonction f de cette figure

est concave.
e Les figures 3 et 4 montrent une fonction avec un point d’inflexion et ou la suite (z,) ne

converge pas.



2.3 Résultat global pour le cas part. des fonctions monotones, ne chan-
geant pas de convexité/concavité

Hypotheéses : on suppose que f : [a,b] - R est de classe C? vérifie les conditions suivantes :
e [’ ne s’annule pas sur [a,b], donc f est strictement monotone sur [a,b].
e f(a).f(b) <0 de sorte que f admet un unique zéro o dans [a, b].
e f" garde un signe constant sur [a,b].

Remarque : on notera que ces hypotheses peuvent toujours étre réalisées en restreignant suf-
fisamment Uintervalle [a,b] autour de « sauf si f'(«) = 0 (point critique) ou f”(«a) = 0 (point
d’inflexion par exemple).

Propriété : Avec les hypotheses précédentes, si on fixe un z € [a, b] tel que :

f(z0).f"(z0) >0 (regle de Fourier)

alors :
x
a) La suite (z,) définie par ce xg et pour tout n € N, 41 =z, — JJ:,(( n)) est bien définie
In
pour tout n € N et est monotone.
b) Cette suite (x,) converge vers l'unique zéro de f sur [a,b].
Illustration :
—_
£ 20, {0
a
i
=<0, f"<0

=0, <0

Remarque pour la preuve : il suffit de démontrer la propriété dans le cas f' > 0 et f” > 0 quitte
a remplacer sinon P'équation par fi(z) = 0 (resp. fa(z) = 0, resp. f3(x) =0) ou fi(z) = —f(-x)
(resp. fa(x) = f(-), resp. f3(z) = —f(x)).



2.4 Etude de Pattractivité du point fixe dans la méthode de Newton

Vu le résultat obtenu au § 2.3, au moins dans ce cas, on est stir que le point fixe n’est pas
répulsif. On va voir qu’on a en fait un résultat tres fort :

2.4.1 Une propriété générale de la méthode de Newton

Exercice : On se donne f € C2(I,R) avec r un zéro de f dans I telle que f’ ne s’annule pas sur

I, et onnote Vael, p(x)=x- f,(T) . Calculer ¢'(r).
f(@)
Définition : Un point fixe r d’une application ¢ tel que ¢'(r) = 0 est appelé point fize superat-

tractif.
On vient de démontrer la :

Propriété La méthode de Newton transforme toujours un zéro de f en un point fixe
f(z)
/()

superattractif de ¢ : T+ x —

2.4.2 Propriété générale qui justifie le mot superattractif

Bien siir un point fixe r superattractif est en particulier attractif et comme |p’(r)| < k pour
tout k, la convergence des suites associées u,+1 = p(uy,) est en O(k™) pour tout k (et donc aussi
en o(k™) pour tout k). Beaucoup mieux, cette notion donne encore au saut de rapidité, comme on
le démontre dans la prop. suivante :

Propriété : Soit ¢ : I = [a,b] - R une fonction de classe C?> quelconque ayant un point
fixe r superattractif i.e. tel que ¢'(r) = 0. On note My = sup |p"|. Alors :

[a,b]
M.
(C1) Vzel,|p(x)-7|< 72|x -7,
(C2) On en déduit que pour tout n € N,
2 [M, 2z
|.’,En - 7"| < M [7|I0 - T|]
2

M
(C3) Si on choisit zp pour que 72|x0 —r| < 1, alors la suite définie par x,.1 = @(z,)

converge vers r en O(k* ) ou k = 72|m0 —r|. On dit que la convergence est su-

pergéométrique.

Exercice : prouver cette propriété.

Ilustration numérique : Si on choisit x¢ pour |zg — 7| <

1 M. 1
alors k = —2|zg -7 < — et la
5M, 2 10

(C2) ci-dessus donne que :
2 1 o
VneN, |z, -r| < —(—=)?.
=l 51(55)
Le nombre de décimales en approximant r par x, double & chaque étape : en laissant de coté

la constante 2/M, avec 10 itérations on a une approximation & 102" = 1071024 pres, donc plus de

mille décimales exactes !

2.5 Conséquence des résultats § 2.4 : convergence locale

On obtient immédiatement le :

1. bon bien siir il ne faut pas travailler sur les flottants... sinon cela n’a pas de sens, mais pour les flottants la
précisions maximale est donc atteintes en 3 ou 4 itérations...



Thm. de convergence locale : Soit f € C3(I,R) ayant un zéro r dans I telle que f’
ne s’annule pas sur un voisinage V de r dans I. Il existe un voisinage W c V de r tel
que si zg € W, la méthode de Newton appliquée a f a partir du point zy converge super-
géométriquement vers zg.

Remarque 1 : Ce théoréme s’applique méme si r est un point d’inflezion de f, puisque les preuves
du § 2.4 n’utilisent pas le signe de f”.

Remarque 2 : L’hyp. C? est purement technique, pour que ¢ soit C? et que la preuve faite plus
haut s’applique. En travaillant un peu plus, on peut diminuer cette hypothese de régularité, mais
ce n’est pas crucial ici pour nous

Remarque 3 : Un probleme crucial pour I’analyse numérique est de savoir comment étre sir de
tomber dans le bon voisinage W ! Et ce n’est pas si simple, on verra des exemples en T.P. Un autre
probleme intéressant est celui du test d’arrét qu’on va prendre, on va I’étudier dans les exemples
ci-dessous.

3 Exemples concrets et fondamentaux

On va donner d’abord deux exemples tres simples mais fondamentaux de calcul par la méthode
de Newton :

[nous allons voir ce qui se cache derriere les touches + et |/ de vos calculatrices (et ordinateurs).}

3.1 Meéthode de Newton pour le calcul de 'inverse d’un nombre

On considére un nombre a # 0.

[On aimerait un algorithme qui calcule 1/a seulement en faisant des additions et multiplications !]

On cherche 1/a comme 'unique zéro de f : = ~ 1

i@
()

Ainsi la méthode de Newton associée a cette fonction f définit la relation de récurrence simple :

a. A priori la définition de f fait intervenir

, alors ¢(x) = 22 — az?.

un inverse, mais si on calcule p(x) =z -

’xml =2x, — ax%. ‘

Remarque sur la notion de schéma numérique : si au lieu de la fonction f ci-dessus, on
avait pris f : z — ax -1, la méthode de Newton nous ne donnait rien d’intéressant . Ce n’était pas
un bon schéma numérique pour notre probleme.

a) Justification de la convergence : pour quels z( ?

Vu le graphe de f, on sait que pour appliquer le résultat du § 2.3, on suffit de prendre z( a
gauche de 1/a car > 0.

On sait alors que () tend vers 1/a en croissant.

b) Etude de la vitesse de convergence :
1 1 1
Ici si on pose &, = — — o, alors g,41 = — — (22, —a2?) = a(— - 9dn
a a

a2
2
En+l = ALY,

Ainsi, ici, on a de maniere globale un égalité qui ressemble & 1’'inégalité obtenue avec I'l. T.Lagrange
au § 2.4.2.
On en déduit immédiatement par récurrence que :

1
+22) =a(~ - x,)?
a

Ainsi :

_  2n-1_2"
En=a €5




On peut réécrire cette expression sous la forme :

1 n n
en = —(ago)? ou encore : (ag,) = (asp)?
a
1 ..
Comme aeg = a(— -xg) = 1 —azg et qu'on a choisi g < 1/a, on a agg €]0, 1[ donc on retrouve la
a

convergence pour toutes valeurs initiales xq telles que xo < 1/a mais surtout, on vient de démontrer
que :

1 1
Pour tout zg < —, la suite a(— — xg) est une vraie suite supergéométrique des le rang 0. La
a a

convergence est donc trés rapide.

c) Illustration numérique

def g(x,a):
return 2*x-a*xx**2

def approxinv(a,x0,n):
if a*x0>1:
raise ValueError("x0 doit &tre plus petit")
for i in range(n):
x0=g(x0,a)
return x0
# test
print (approxinv(5,0.1,4))
print (approxinv(5,0.1,5))
print (approxinv(5,0.1,6))

donne comme valeurs de retour :

0.1999969482421875
0.19999999995343387
0.2

d) Le probléeme du test d’arrét :

e ici nous connaissons avec exactitude I'erreur, &, = —(1 - axg)?", on pourrait pour un e > 0

donné, calculer le nombre n de pas pour que ¢, < e. Mais cela reviendrait a calculer en prenant un
logarithme! C’est un contresens par rapport au simple inverse de a qu’on veut calculer !

e il y a beaucoup mieux a faire : on rappelle que la suite (z,) converge en croissant vers 1/a.
On est donc stir que z,, donne une valeur approchée de 1/a (toujours par défaut) & e prés lorsque

xn < 1/a < x, +€, ce qui ce détecte facilement grace a la fonction décroissante f : x— — —a :
x

[ﬂ suffit que f(x, +¢€) < O.]

Bien stir, on ne veut pas calculer f(x) = 1/x — a mais il est facile de chasser les dénominateurs
f(x) <0< ar>1.
Donc la bonne condition d’arrét est ici : a(z, +¢&) > 1.

e) Le code avec ce test d’arrét ?

f) Comment les machines choisissent-elles les zy? Apparemment a l'aide de tableauzr en
mémoire que ’on compare aux premiers bits de a.



3.2 Méthode de Newton pour le calcul des racines carrées
On fixe un a > 0 et on cherche les zéros de f : x ~ 22 —a. Ce sont bien siir \/a et —/a.

a) La suite récurrente définie par la méthode de Newton pour f 7 Une vieille amie

b) Résultat global de convergence :

Ainsi, ici on sait que pour tout xg > 0 la méthode de Newton converge vers \/a.

C’est une différence avec la méthode du § 3.1 précédent ol, pour z¢ > 1/a, on tombe sur des
nombres négatifs !

Ici quel que soit zg € R* on a 21 > \/a et ensuite la suite (2, )n>1 décroit et converge vers v/a.

c) Le test d’arrét ici : Cette fois encore, la monotonie de (x,) donne un test facile.
Comme au § 3.1, il suffit cette fois de tester si f(x, —¢€) <O0.

4 Le probleme du test d’arrét en général ?

a) Dans le cas des suites monotones : on a vu que le test était facile.

En fait, la situation du § 2.3 se réalise localement sauf au voisinage d’un point critique ou d’un
point d’inflexion. Donc, sauf dans ces cas, on sait que la suite serait monotone & partir d’un certain
rang.

Cependant, 'usage est plutoét de prendre des tests d’arréts moins précis mais plus faciles a
coder, qui peuvent étre les deux suivants :

b) Test par la taille des valeurs de f : boucle while avec la condition abs (f (x))>epsilon
Bien siir, cela ne donne pas de controle précis de la valeur de ’approximation.

c) Test par la différence entre deux valeurs successives x,.1 -z, : boucle while avec
la condition abs (xp-xn)>epsilon ou xp (resp. xn) est la valeur précédente de x et xn la suivante.

Attention, il n’est pas clair que la suite (41 — ) soit forcément décroissante, méme si on
I’espere.

Souvent on prend plutdt I'écart relatif (xp-xn)/xp.

5 Exemples explicites ou la méthode de Newton diverge (en
T.P.?)

Pour 22 -z + 3 = 0 en partant de zo = 0 on a un comportement cyclique.

Pour ze™ =0, en partant de zy = 2, on a divergence vers 'infini.
Pour arctan(z) =0 en partant de o = 1.

6 La méthode de Newton va dans C

Soit f : C — C une fonction telle qu’on puisse définir la dérivée au sens complexe en tout

z) - f(z
point : f'(z9) = lim f(2) = f(z0) )= I 0).
Z—=>Z0 Z— 20
C’est notamment le cas si f est une fonction polynomiale de C dans C.
z
On admet ici que la méme formule z,,1 = 2z, — J]:’(( ")) donne des suites qui convergent vers les
Zn

zéros de f.
On lillustre ici pour ’étude des bassins d’attractions par cette méthode des trois racines cu-
biques de 1'unité pour f(z) =23 - 1.
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