
Chapitre 11 : mini cours sur la gestion de fichiers en python

1 Une fonctionnalité puissante de Python : les manipula-
tions de fichiers textes

Les commandes de manipulations sur les châınes de caractères sont encore plus intéressantes si
on peut les appliquer à un fichier de textes.

1.1 Le module os

Ce module de Python permet de dialoguer avec le système d’exploitation. Par exemple :

from os import getcwd # pour : get current working directory

print(getcwd()) # indique le répertoire courant

from os import chdir

chdir("/Users/romain/Documents/MPSI/Informatique/CoursInfo2020-2021/Chapitre11-gestion-fichier")

Question : le chemin rentré ci-dessus est-il relatif ou absolu ? Et celui-ci ?

chdir("MPSI/Informatique/CoursInfo2020-2021/Chapitre11-gestion-fichier")

1.2 Ecrire un petit fichier texte

Vous pouvez fabriquer un fichier texte ≪ pur ≫ avec un éditeur de texte (attention bill gates’word-
processor n’est pas pur).

● sous Linux avec Gedit par exemple, tapez gedit,
● sous MacOS avec TextEdit à condition de ne pas sauvegarder en rtf (rich text format) mais

en txt,
● sous Windows avec Edit (là aussi format par défaut à vérifier ?)

J’en ai créé un que j’ai mis dans mon répertoire ci-dessus, que j’ai appelé mon_ptit_texte.txt

1.3 La commande open de Python : créer, modifier des fichiers

Attention : Je vais parler ici de la commande open qui est une commande dans le module
principal de Python (pas besoin de charger de module).�� ��Attention : ne pas faire from os import * sinon open change de nature

Examinons le code suivant :

MonContenu=open(’essai.txt’,’a’,encoding="utf8") # sans préciser l’encodage c’est incertain.

MonContenu.write("J’ecris mon texte dedans")

MonContenu.write("J’ecris à la suite")

MonContenu.close()

La command open ouvre (et s’il n’existe pas crée) un fichier, qui aura pour nom essai.txt

pour le système d’exploitation et qui figurera sous ce nom dans le current working directory. Elle
demande un deuxième argument obligatoire, qui ici est ’a’ comme ajouter (append) cela signifie
que ce que l’on va écrire dans le fichier s’écrira à la suite de ce qui est déjà. 1

Le troisième argument, optionnel, précise l’encodage (voir § 2 pour ce mystère).
La commande open renvoie un objet, que j’ai appelé MonContenu : c’est le nom de l’objet

manipulé par le langage Python.
MonContenu est un objet d’un type particulier..

1. Une alternative, toujours pour écrire dans un fichier, est de remplacer ’a’ par ’w’ : dans ce cas, s’il y avait déjà
un fichier de ce nom, il est écrasé et un fichier vide est créé, dans lequel on pourra écrire. Si le fichier n’existe pas,
il est créé.

1

<class ’_io.TextIOWrapper’>

La méthode write s’applique à cet objet pour écrire dedans, à la suite de ce qui précède.
Le close est indispensable pour que le fichier redevienne disponible pour l’O.S.

1.4 La commande open pour la lecture seule

N’oublions pas que j’ai créé un fichier mon_ptit_texte.txt avec mon éditeur de texte favori
et qu’il est dans mon current working directory.

MonWrap=open(’mon_ptit_texte.txt’,’r’,encoding="utf8")

MaChaine=MonWrap.read()

print(MaChaine)

MonWrap.close()

Cette fois, on a mis l’argument ’r’ pour read dans open : ouverture du fichier en lecture
seulement. La commande .read() qui est une méthode appliquée à l’objet MonWrap renvoie une
châıne de caractèresqu’on stocke dans MaChaine. On a ainsi récupéré le contenu du fichier comme
une châıne de caractères utilisable en Python.

1.5 Ce qu’on peut faire quand on lit un fichier ?

Le but est de faire des manipulations dans le texte : par exemple, remplacer certains mots dans
un texte.... disons par exemple qu’on veut enlever tous les e dans un texte qui est dans un fichier,
comment faire ?

D’abord il faut bien distinguer les trois types d’objets informatiques dont il est question ici :�

�

�

�

● Le fichier par exemple monPtitTexte.txt qui est géré par le système d’exploitation.
● L’objet Python, de type io.TextIOWrapper, qu’on appellera ici MonWrap, qu’on obtient
quand on fait MonWrap=open(’’monPtitTexte.txt",..;).
● La châıne de caractères (type string de Python) qu’on obtient par la méthode read

appliquée à l’objet MonWrap.

C’est sur la châıne de caractères qu’on pourra travailler... ensuite, une fois modifiée, il faudra
la réécrire dans le fichier.

1.6 Mise en oeuvre concrète

On veut enlever les ≪ espaces ≫ de mon_ptit_texte.txt :

D’abord on lit comme on avait fait plus haut.

MonContenu=open(’mon_ptit_texte.txt’,’r’,encoding="utf8")

MaChaine=MonContenu.read()

print(MaChaine) # on a le contenu dans la chaı̂ne de caractères : MaChaine

MonContenu.close()

Ensuite, on fabrique une nouvelle chaine de caractère MaChaineModifie

Ensuite on la réécrit dans le fichier. : écrire le code correspondant !

�� ��Comment aurait-on fait si on avait voulu plutôt par exemple transformer majuscules en minuscules ?

2

2 Quelques précisions sur l’encodage des caractères

2.1 L’ASCII historique

ASCII est l’acronyme de American Standard Code for Information Interchange. Il s’agit d’une
norme de codage de caractères très ancienne à l’échelle de l’informatique : les américains n’utilisant
pas d’accents pensaient alors (années 1960) qu’il suffirait de coder des caractères sur 7 bits, i.e.
avec 128 nombres numérotés de 0 à 127. Si l’on ajoute que les 20 premiers caractères codent des
objets liées aux séparations et aux transmissions et pas des ≪ vrais ≫ caractères cela fait peu !

Il peut ainsi savoir que le A majuscule se trouve codé par le chiffre 65, voici un extrait de
Wikipédia :

et que le a minuscule se trouve codé par le chiffre 97, ce qui a l’air très quelconque mais en base
deux : 65 = 1000001[2] et 97 = 1100001[2].�� ��La conversion majuscule minuscule en ASCII revient à changer le deuxième bit !

2.2 L’ASCII étendu

Les problèmes ont donc commencé quand les différents pays, avec leurs langues différentes, ont
choisis d’utiliser le 8ème bit pour coder les caractères accentués 2... la plus connue est la norme ISO
8859-1, aussi appelée Latin-1, qui étend l’ASCII avec les caractères accentués utiles aux langues
comme le français et l’allemand. Mais laisse de côté les lettres grecques ou cyrilliques... pour
lesquelles il y a un autre codage ASCII étendu sur 8 bits, bien sûr incompatible... de même pour
l’arabe etc.. tout cela avec des normes aux doux noms de ISO 8859-7,8859-8 etc...

L’intérêt de ces normes est leur simplicité : chaque caractère est codé par un octet (8bits) et
donc une châıne de caractères est une séquence d’octets. C’est ainsi que fonctionnait l’ancien
type string de Python dans les versions antérieures à la version 3.0.

2. au départ le 8ème bit existait déjà, mais comme bit de contrôle en cas d’erreur..

3

2.3 Les normes Unicode

Avec la globalisation et Internet, on a compris (au début des années 1990) la nécessité de pouvoir
encoder 3, dans un même texte, tous les caractères de n’importe quel alphabet ! Une organisation
internationale a été créée : le consortium Unicode.

Le principe (double) :

● chaque caractère de n’importe laquelle des langues et des signes utilisés sur terre est codé
par un nombre unique, indépendant des machines et des systèmes d’exploitation. A titre
d’information ce nombre de caractères est de l’ordre de 250000.
● En revanche, la façon dont ce nombre est ensuite codé en machines a le droit de dépendre
du support matériel ou logiciel (O.S.)

L’intérêt du premier point est évident. Celui de second est de ne pas fixer une façon d’encoder
qui serait trop rigide, qui prendrait trop de place quand on n’en a pas besoin, et qui ne serait pas
compatible avec des codages plus anciens.

2.4 Conversion en Python d’une châıne de caractères en châıne bytes

Considérons le code suivant :

reve="un été sur une ı̂le"

code_u=reve.encode("utf8")#

code_l=reve.encode("Latin-1")#

print(code_u)

print(code_l)

Avec le retour :

b’un \xc3\xa9t\xc3\xa9 sur une \xc3\xaele’

b’un \xe9t\xe9 sur une \xeele’

<class ’bytes’>

La méthode encode s’applique sur la châıne reve en faisant ce que son nom indique ! Elle renvoie
un objet qui est de classe bytes. Cette classe dit que les objets sont des octets mis à la suite.

L’affichage de code_u montre qu’en utf-8 les caractères accentués sont codés sur 2 octets (16bits)
par exemple le é est remplacé par \xc3\xa9 i.e. le nombre hexadécimal C3A9. Rappelons qu’avec
deux chiffres en hexa. on code exactement un octet. En revanche en Latin-1 le é est remplacé par
\xe9 i.e. seulement le code E9 autrement dit 233.

Remarque : Il nous manque maintenant peu de chose pour comprendre comment faire nos
méthodes maisons pour remplacer les méthodes sur les châınes de caractères comme celle qui
transforme majuscule en minuscule par exemple... mais les enjeux de ces conversions de châınes de
caractères en bytes sont (heureusement) plus nombreux que cela... par exemple la compression sans
perte d’un texte, la cryptographie... et d’autres choses encore qui pourront servir pour vos TIPE.

3. Ce mot est un anglicisme, car il veut dire la même chose que le français coder, mais il s’est imposé !

4

