Chapitre 11 : mini cours sur la gestion de fichiers en python

1 Une fonctionnalité puissante de PYTHON : les manipula-
tions de fichiers textes

Les commandes de manipulations sur les chaines de caractéres sont encore plus intéressantes si
on peut les appliquer & un fichier de textes.

1.1 Le module os
Ce module de PYTHON permet de dialoguer avec le systeme d’exploitation. Par exemple :

from os import getcwd # pour : get current working directory

print(getcwd()) # indique le répertoire courant

from os import chdir
chdir("/Users/romain/Documents/MPSI/Informatique/CoursInfo2020-2021/Chapitrell-gestion-fichier"

Question : le chemin rentré ci-dessus est-il relatif ou absolu? Et celui-ci?

chdir ("MPSI/Informatique/CoursInfo2020-2021/Chapitrell-gestion-fichier")

1.2 Ecrire un petit fichier texte

Vous pouvez fabriquer un fichier texte « pur » avec un éditeur de texte (attention bill gates’word-
processor n’est pas pur).
e sous Linux avec Gedit par exemple, tapez gedit,
e sous MacOS avec TextEdit & condition de ne pas sauvegarder en rtf (rich text format) mais
en txt,
e sous Windows avec Edit (14 aussi format par défaut a vérifier ?)
J’en ai créé un que j’ai mis dans mon répertoire ci-dessus, que j’ai appelé mon_ptit_texte.txt

1.3 La commande open de PYTHON : créer, modifier des fichiers

Attention : Je vais parler ici de la commande open qui est une commande dans le module
principal de PYTHON (pas besoin de charger de module).

{Attention : ne pas faire from os import * sinon open change de nature]

Examinons le code suivant :

MonContenu=open(’essai.txt’,’a’,encoding="utf8") # sans préciser l’encodage c’est incertain.
MonContenu.write("J’ecris mon texte dedans")

MonContenu.write("J’ecris a la suite")
MonContenu.close()

La command open ouvre (et s’il n’existe pas crée) un fichier, qui aura pour nom essai.txt
pour le systeme d’exploitation et qui figurera sous ce nom dans le current working directory. Elle
demande un deuxiéme argument obligatoire, qui ici est ’a’ comme ajouter (append) cela signifie
que ce que l’on va écrire dans le fichier s’écrira a la suite de ce qui est déja.?!

Le troisiéme argument, optionnel, précise I'encodage (voir § 2 pour ce mystere).

La commande open renvoie un objet, que j’ai appelé MonContenu : c’est le nom de l'objet
manipulé par le langage PYTHON.

MonContenu est un objet d’un type particulier..

1. Une alternative, toujours pour écrire dans un fichier, est de remplacer ’a’ par 'w’ : dans ce cas, s’il y avait déja
un fichier de ce nom, il est écrasé et un fichier vide est créé, dans lequel on pourra écrire. Si le fichier n’existe pas,
il est créé.

<class ’_io.TextIOWrapper’>

La méthode write s’applique a cet objet pour écrire dedans, a la suite de ce qui précéde.
Le close est indispensable pour que le fichier redevienne disponible pour I’O.S.

1.4 La commande open pour la lecture seule

N’oublions pas que j’ai créé un fichier mon_ptit_texte.txt avec mon éditeur de texte favori
et qu’il est dans mon current working directory.

MonWrap=open(’mon_ptit_texte.txt’,’r’,encoding="utf8")
MaChaine=MonWrap.read()

print (MaChaine)

MonWrap.close()

Cette fois, on a mis 'argument ’r’ pour read dans open : ouverture du fichier en lecture
seulement. La commande .read() qui est une méthode appliquée a l'objet MonWrap renvoie une
chaine de caracteresqu’on stocke dans MaChaine. On a ainsi récupéré le contenu du fichier comme
une chaine de caracteres utilisable en PYTHON.

1.5 Ce qu’on peut faire quand on lit un fichier ?

Le but est de faire des manipulations dans le texte : par exemple, remplacer certains mots dans
un texte.... disons par exemple qu’on veut enlever tous les e dans un texte qui est dans un fichier,
comment faire ?

D’abord il faut bien distinguer les trois types d’objets informatiques dont il est question ici :

e Le fichier par exemple monPtitTexte.txt qui est géré par le systeme d’exploitation.

e L’objet PYTHON, de type io.TextIOWrapper, qu'on appellera ici MonWrap, qu’on obtient

quand on fait MonWrap=open(’ ‘monPtitTexte.txt",..;).

e La chaine de caracteéres (type string de PYTHON) qu’on obtient par la méthode read
ppliquée a l'objet MonWrap.

C’est sur la chaine de caractéres qu’on pourra travailler... ensuite, une fois modifiée, il faudra
la réécrire dans le fichier.

1.6 Mise en oeuvre concrete

On veut enlever les « espaces » de mon_ptit_texte.txt :

D’abord on 1lit comme on avait fait plus haut.
MonContenu=open(’mon_ptit_texte.txt’,’r’,encoding="utf8")
MaChaine=MonContenu.read()

print (MaChaine) # on a le contenu dans la chaine de caractéres : MaChaine
MonContenu.close()

Ensuite, on fabrique une nouvelle chaine de caractére MaChaineModifie

Ensuite on la réécrit dans le fichier. : écrire le code correspondant !

[Comment aurait-on fait si on avait voulu plutot par exemple transformer majuscules en minuscules ?]

2 Quelques précisions sur ’encodage des caracteres

2.1 L’ASCII historique

ASCII est 'acronyme de American Standard Code for Information Interchange. Il s’agit d’une
norme de codage de caracteres tres ancienne a ’échelle de 'informatique : les américains n’utilisant
pas d’accents pensaient alors (années 1960) qu’il suffirait de coder des caractéres sur 7 bits, i.e.
avec 128 nombres numérotés de 0 a 127. Si 'on ajoute que les 20 premiers caracteres codent des
objets liées aux séparations et aux transmissions et pas des « vrais » caracteéres cela fait peu!

Il peut ainsi savoir que le A majuscule se trouve codé par le chiffre 65, voici un extrait de
Wikipédia :

48| 0860/ 30/0110000 0 Le chiffre zéro

49, 061|31/0110001 Le chiffre un

-

50 062 320110010 2 Le chiffre deux
51 083 33 0110011 3 Le chiffre trois
52| 064 34 0110100 4 Le chiffre quatre
53| 065 350110101 5 Le chiffre cing
54 066 360110110] Le chiffre six
55| 067 37 0110111 7 Le chiffre sept
56 070 38 0111000 8 Le chiffre huit
57 071 330111001] Le chiffre neuf
58| 072 3A 0111010 3 Deux-points

59| 073 3B 0111011 3 Point-virgule

60 074 3C 0111100 < Inférieur
61 0753D 0111101 = Egal

62 078 3E 0111110
B3 077 3F 0111111
64 0100 40/ 1000000
650101 411000001
660102 421000010
67 0103 431000011
68 0104 44 1000100
690105 451000101
70/0106| 46 1000110
710107 47 1000111
72/0110| 48 1001000
730111 43 1001001

Supénieur

v

-3

Point dinterrogation

Arobace (aussi dénommé Arobase ou A commerm'afa}

I omimo o m > &

et que le a minuscule se trouve codé par le chiffre 97, ce qui a lair tres quelconque mais en base
deux : 65 = 10000012 et 97 = 1100001 2;.

[La conversion majuscule minuscule en ASCII revient & changer le deuxiéme bit !]

2.2 L’ASCII étendu

Les problemes ont donc commencé quand les différents pays, avec leurs langues différentes, ont
choisis d’utiliser le 8¢me bit pour coder les caractéres accentués 2... la plus connue est la norme ISO
8859-1, aussi appelée Latin-1, qui étend ’ASCII avec les caractéres accentués utiles aux langues
comme le francais et I'allemand. Mais laisse de cOté les lettres grecques ou cyrilliques... pour
lesquelles il y a un autre codage ASCII étendu sur 8 bits, bien str incompatible... de méme pour
I’arabe etc.. tout cela avec des normes aux doux noms de ISO 8859-7,8859-8 etc...

L’intérét de ces normes est leur simplicité : chaque caractere est codé par un octet (8bits) et
donc une chaine de caracteres est une séquence d’octets. C’est ainsi que fonctionnait 'ancien
type string de PYTHON dans les versions antérieures a la version 3.0.

2. au départ le 8eme bit existait déja, mais comme bit de contréle en cas d’erreur..

2.3 Les normes Unicode

Avec la globalisation et Internet, on a compris (au début des années 1990) la nécessité de pouvoir
encoder 3, dans un méme texte, tous les caractéres de n’importe quel alphabet! Une organisation
internationale a été créée : le consortium Unicode.

Le principe (double) :

e chaque caractere de n’importe laquelle des langues et des signes utilisés sur terre est codé
par un nombre unique, indépendant des machines et des systémes d’exploitation. A titre
d’information ce nombre de caracteres est de 'ordre de 250000.

e En revanche, la fagon dont ce nombre est ensuite codé en machines a le droit de dépendre
du support matériel ou logiciel (O.S.)

L’intérét du premier point est évident. Celui de second est de ne pas fixer une facon d’encoder
qui serait trop rigide, qui prendrait trop de place quand on n’en a pas besoin, et qui ne serait pas
compatible avec des codages plus anciens.

2.4 Conversion en PYTHON d’une chaine de caracteres en chaine bytes

Considérons le code suivant :

reve="un été sur une ile"
code_u=reve.encode ("utf8")#
code_l=reve.encode("Latin-1")#
print(code_u)

print(code_1)

Avec le retour :

b’un \xc3\xad9t\xc3\xa9 sur une \xc3\xaele’
b’un \xe9t\xe9 sur une \xeele’
<class ’bytes’>

La méthode encode s’applique sur la chaine reve en faisant ce que son nom indique! Elle renvoie
un objet qui est de classe bytes. Cette classe dit que les objets sont des octets mis a la suite.

L’affichage de code_u montre qu’en utf-8 les caracteéres accentués sont codés sur 2 octets (16bits)
par exemple le é est remplacé par \xc3\xa9 i.e. le nombre hexadécimal C3A9. Rappelons qu’avec
deux chiffres en hexa. on code exactement un octet. En revanche en Latin-1 le é est remplacé par
\xe9 i.e. seulement le code E9 autrement dit 233.

Remarque : Il nous manque maintenant peu de chose pour comprendre comment faire nos
méthodes maisons pour remplacer les méthodes sur les chaines de caracteres comme celle qui
transforme majuscule en minuscule par exemple... mais les enjeux de ces conversions de chaines de
caracteres en bytes sont (heureusement) plus nombreux que cela... par exemple la compression sans
perte d’un texte, la cryptographie... et d’autres choses encore qui pourront servir pour vos TIPE.

3. Ce mot est un anglicisme, car il veut dire la méme chose que le francais coder, mais il s’est imposé!

