Chapitre 10 : Simulation, résolution approchée
d’équations différentielles avec scipy, pylab

1 Résolutions A’E.D. d’ordre 1

1.1 Point de terminologie et de forme

Terminologie : Une équation différentielle comme nous les connaissons est une Equation Différentielle
Ordinaire, en anglais Ordinary Differential Equation donc ode.

Par opposition, pour les fonctions & plusieurs variables, les équations avec des dérivées partielles
différentes seront appelées Equations aux Dérivées partielles (E.D.P. et en anglais PDE).

Forme : Une équation différentielle du premier ordre normalisée peut toujours s’écrire sous la
forme :
y' = f(z,y) c’est-a-dire aussi y'(z) = f(z,y(x))
Par exemple y'(z) = 2z sin(y(z)) + 1 s'écrira y' = f(z,y) avec f(u,v) =2usin(v) + 1.
Parfois la fonction f ne dépend que de y, par exemple () = 2.y(x)?. On dit que I’équation est
autonome : ces équations ont des propriétés particulieres, qui n’interviendront pas ici. Ici f(u,v) =
202

1.2 Point de départ de toutes les méthodes numériques

[Toutes les méthodes numériques partent d’une C.I. y(zq) = yo.]

On considere donc une E.D. y'(x) = f(z,y(z)) ou f : I > R - R et un couple (zg,y0) € I xR.
! —
On cherche a construire une solution approchée du probleme de Cauchy {y((x))— F(zy(z)),
Y\{To) = Yo-

1.3 Savoir faire indispensable : la méthode d’Euler

Avec les notations du paragraphe précédent, on va construire une fonction y continue, affine
par morceaux, dont on espere qu’elle approche convenablement la < vraie » solution : on parle de
solution approchée.

Pour chaque entier n, on va définir les valeurs y; de y aux points x; = a + 1 , comme suit :

n
dans la formule y'(z) = f(x,y(x)) au point x;, on va remplacer y'(x;) par le tauz de variation
y(ziv1) —y(x:)
Tiv1 — T

w = f('riayi)a
Tiv1 — T4

L’idée de la méthode d’Euler se résume alors a la formule suivante :

qui permet de calculer les valeurs y; = y(x;) successivement puisque la formule précédente donne :

Vi1 = Yi + [, y:)(Tiv1 — x3). ‘

1.4 Exemple d’implémentation en PYTHON (déja vue en T.P.)

N.B. On choisit, pour la commodité des applications a la physique, d’appeler plutét t la variable
des fonctions.

Soit ’E.D. la plus simple possible ou presque y'(t) = 2y(t) avec la C.I. y(0) = 1.
Disons qu’on travaille pour ¢ dans [0,5] avec un pas de temps de p = 0,01s.

On définit le vecteur t des temps successifs par :

t=pl.arange(0,5.01,0.01)

On définit alors le vecteur y dont les valeurs successives y[i] vérifient pour tout i jusqu’a
I’avant dernier : (y[i+1]-y[i])/p=2*y[i]



Autrement dit, on a la relation de récurrence : y[i+1]=(1+2p)*y[i]
Avec le code (par exemple) :

for i in range(len(t)-1):
y.append ((1+2*p)*y[-1])# 1’entrée précédente

Une fois qu’on a t et y, on peut tracer la courbe avec pl.plot(t,y).

1.5 Des méthodes plus puissantes, avec integrate.odeint

Il existe des méthodes plus sophistiquées que la méthode d’Euler. Par exemple, dans le cas
particulier des équations de la forme y'(z) = f(x), la méthode d’Euler redonne la méthode des
rectangles pour le calculs des intégrales. Or on connait (ou connaitra) des meilleures méthodes pour
les calculs d’intégrales : nous avons vu la méthodes des trapezes, et nous verrons des méthodes
plus évoluées qui approchent la courbes par des courbes polynomiales de degré plus grand.. etc.
De méme pour les approximations de solutions d’E.D. il existe de bien meilleures méthodes.

De telles méthodes plus performantes sont implémentées dans scipy avec le sous-module
integrate. On l'utilisera ici en important le module :

from scipy import integrate

Dans ce module, on utilisera la fonction odeint.

2 Comment utiliser integrate.odeint pour les E.D. du ler
ordre

On doit voir 'E.D. sous la forme y'(¢) = F(y(t),t).

Méme si F ne dépend pas de t (équation autonome), on doit mettre la dépendance en t dans
la définition de F.

L’ordre des arguments est integrate.odeint (F,y0,t).

2.1 Reprise de ’exemple du 1.4

Voici le code pour résoudre la méme équation qu’au § 1.4. avec odeint.

def F(y,t):
# Noter qu’ici F ne dépend pas explicitement de t,
# mais il est nécessaire de mentionner cette variable.
return 2%y

t=pl.arange(0,5+p,p)

yO=1

y=integrate.odeint(F,y0,t)

pl.figure("Avec odeint")

pl.plot(t,y)

pl.show()

2.2 Un exemple non linéaire

Disons qu’on veuille résoudre I'E.D. 3/(t) = y(t)?sin(t). Il se trouve qu’on sait résoudre encore
formellement cette équation par séparations des variables. On considere la C.I. y(0) = 0.3. Le script
suivant permet le tracé des courbes solutions sur [0,27], & 'aide de odeint, & l'aide de la méthode

1

d’Euler, et de les comparer a la solution théorique qui pour cette C.I. vaut y(t) = —————.
cos(t) +7/3



pl.figure(" y’ (t)=y(t)"2 sin(t)")
pl.clf()
def F(y,t):
return (y**2)#*pl.sin(t)
y0=0.3
N=100
t=pl.linspace(0,2*pl.pi,N)
y=integrate.odeint (F,y0,t)
pl.plot(t,y,label="odeint")
z=1/(pl.cos(t)+7/3)
pl.plot(t,z,label="sol.exacte")
u=[y0]
pas=2#%pl.pi/(N-1)
for i in range(len(t)-1):
u.append (u[-1]+pas*(u[-1]**2) *pl.sin(t [i]))
pl.plot(t,u,label="Euler")
pl.legend()
pl.show()

3 Cas des équations du second ordre : comment on se ramene
a une E.D. vectorielle du premier ordre

3.1 La méthode illustrée sur une E.D. Linéaire
Motivation : On se donne une EDL du second ordre y" (¢) = a(t)y'(t) + b(t)y(t) + c(t). On va la
ramener a une E.D. du premier ordre mais a inconnue une fonction a valeurs vectorielles.

Intérét ici : On pourra lui appliquer alors la commande odeint qui, suivant la philosophie de
PYLAB, s’applique aussi a des fonctions vectorielles.

Intérét mathématique plus général : On peut ramener toute la théorie des ED d’ordre quel-
conque & la théorie des E.D. d’ordre 1 dans le cadre vectoriel (cf. cours de maths de 2éme année).

Définition de la dérivée d’une fonction de R dans R? : coordonnées par coordonnées

Sif it (f1(2), f2(2)), on définit f'(£) = (f1(t), f3(t))-

Retour a notre E.D. du second ordre :

On considere toujours V'E.D. y”(t) = a(t)y’ () + b(t)y(t) + c(t).

Idée : on pose Y () = (y(t),y'(t)). Avec la déf. précédente de la dérivée : Y'(t) = (y'(t),y" (1)),
y'(t) = y'(¢) (oui c’est trivial)
y"(t) = a(t)y'(t) + b(t)y(t) + c(t).

L’E.D. initiale peut donc s’écrire comme une équation du premier ordre pour la fonction ¢
Y (t) sous la forme :

I’E.D. initiale est équivalente au systeme

Yi(t) = F(Y(t),1),
otten notant t e R et Y = (Y,Y2 ) e R2, F : (Y,t) = (Ya,a(t)Ya + b(t)Yy +c(t)).

3.2 Exemple de I’O.H avec scipy

On considere V'E.D. y”(t) + way(t) = 0. En posant Y (¢) = (y(t),y'(t)), on peut la réécrire sous
la forme Y'(t) = F(Y (t),t) ot pour teR et Y = (Y7,Y3) € R?:

F(Y,t) = (Yo, ~wj.Y1).

Application en PYTHON : on veut tracer la solution pour wy = 2, au probleme de Cauchy posé
par cette E.D. y"(¢) + 4y(t) =0 avec y(0) =1 et y'(0) = 0. On utilise le script suivant :



from scipy import integrate
omegal0=2
def F(Y,t):

return (Y[1],-omegaO**2xY[0])
YO=(1,0)# vecteur C.I.
t=pl.linspace(0,10,100)
Y=integrate.odeint (F,YO0,t)

Qu’y-a-t-il dans le Y renvoyé par odeint ?
Réponse : un tableau de taille 1len(t)x2 i.e. a deux colonnes.

Sur chaque ligne 4, on a Y (¢;) = (y(¢:),y'(¢:)).

En voici le début :

In [4]: Y
Out[4]:
array([[ 1. , 0. 1,
[ 0.97966323, -0.4012977 ],
[ ©0.91948007, -0.78627321],

]

]

[ ©0.82189841, -1.13926819
[ ©0.69088722, -1.4459251

Remarque : on peut demander le nombre de lignes et de colonnes de Y avec pl.shape(Y),
qui renvoie ici (100, 2).

’

’

3.3 Tracé des solutions de I’0O.H.

Question : A partir du Y obtenu ci-dessus que se passe-t-il si on « fait » : pl.plot(t,Y)?
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i . 0 2 4 6 8 10
Réponse en image :

Moralité : quand le second argument de pl.plot est un tableau a deux colonnes, il trace les
deux courbes.

Question : Comment tracer une seule courbe, par exemple, seulement ¢ — y(t) ?

Réponse : En extrayant la premiere colonne du tableau précédent via Y[:,0].



Explication : Pour un tableau numpy (pylab), on accéde & 'entrée (i,j) (i-eme ligne, j-éme
colonne) avec Y[i,j] (ou Y[i][j]).

Avec Y[:,0] on aura toutes les lignes mais seulement la colonne 0. De méme avec Y[1:4,0]
les lignes 1 a 3, mais seulement la colonne 0.

4 Application au portrait de phase de I’O.H.

4.1 Rappel sur 'obtention de l’intégrale premiere de 1’énergie :

A partir de I'E.D. donnée par le P.F.D. pour un oscillateur harmonique :
my" (t) = ~ky(t)

par multiplication des deux membres par y’(t), on obtient
my' (t)y" (t) = —ky' ()y(t)

qui équivaut a I'égalité :
d, 1
=(=
dt 2
et conduit a la conservation de ’énergie : il existe une constante E telle que pour tout ¢

my (1) + Shy(t)?) =0

S (0P + Shy(W* =B (D)

4.2 Une courbe dans I’espace des phases

Par déf. la courbe dans I’espace des phases correspondant a une solution de I’équation de ’0O.H.
est la courbe paramétrée t — (y(t),y'(t)). Avec le résultat du § 3.2, son tracé est immédiat :

pl.figure("Courbe dans 1’espace des phases")
pl.clf()

pl.plot(Y[:,0],Y[:,1])

pl.show()

On obtient bien des ellipses comme prévus par (1). Mieux (cf. cours de physique) si on prend

4
t
comme variables (y(t), v )) on obtient un cercle puisque :
w
1 1 ! 2F
Sk om(y) = Eeyts (D)= =0
2 2 wo k

ce qui se voit bien & condition de prendre des coordonnées en base orthonormée avec la commande
pl.axis("equal").

4.3 Tout un portrait ?

Pour avoir tout un portrait de phase, on doit faire varier les C.I. Cf. T.P.



