
Chap 9 : introduction à numpy et pylab.

1 Présentation de numpy

Le module numpy pour numeric Python est un gros module pour le calcul numérique en Python.
Avec scipy et matplotlib il permet de faire en Python l’analogue de ce qu’on peut faire avec
Matlab ou Scilab, qui sont des logiciels de calculs numériques. Le module pylab regroupe numpy

et matplotlib.
Fait essentiel :�
�

�
�

Aujourd’hui, en calcul scientifique, les objets de bases ne sont pas les nombres mais les
tableaux de nombres. Ainsi la plupart des fonctions numpy vont agir directement sur des
tableaux de nombres, comme on va le voir ci-après

On l’importe classiquement avec l’alias np :

import numpy as np

On peut voir toutes les fonctions numpy avec dir(np). Notamment np contient toutes les fonctions
mathématiques qu’on a déjà vu dans math mais dans une version plus puissante, car, comme on
va le voir, elles s’appliquent aux tableaux.

1.1 L’objet de base de numpy : le np.array

On déclare un tableau (array en anglais) avec le mot clef np.array

>>>A=np.array([1,2,17])

>>>type(A)

numpy.ndarray

Le nd signifie n-dimensional array. Ici, le tableau est dit 1-dimensionnel, par opposition à ce qu’on
va voir ensuite. L’accès se fait comme pour les listes :

>>>A[2]

17

On peut déclarer, et cela sera très utile ensuite pour le calcul matriciel, des tableaux bi-
dimensionels, qui ressemblent à nos listes de listes :

T=np.array([[1,2,3],[4,5,6]])

En numpy ce tableau est à interpréter comme tableau à deux lignes et trois colonnes, comme le
montre la commande d’affichage :

>>>print(T)

[[1 2 3]

[4 5 6]]

On accède alors aux entrées comme pour les listes de listes : avec T[1][2], ou bien, et c’est
spécifique à numpy, avec une syntaxe qui sera plus proche de l’usage matriciel, T[1,2].

La commande np.shape renvoie la forme du tableau : nombre de lignes, nombres de colonnes.

>>>np.shape(T)

(2, 3)

Pour un tableau unidimensionnel elle renvoie simplement le nombre d’entrée

>>>np.shape(A)

(3,)
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On peut faire des tableaux avec davantage de dimension, mais nous ne les utiliserons pas pour
l’instant. Une différence entre np.array et list :�



�
	Les données à l’intérieur de chaque entrée d’un np.array sont toutes de même type. La

raison de cette contrainte sera expliquée au paragraphe 3 plus théorique.

On peut déclarer le type des données avec dtype.

A=np.array([1,2,3],dtype=int)

B=np.array([1,2,3],dtype=float)

C=np.array([1,2.4,3.2])

Pour C toutes les entrées seront considérées comme des float : structure de donnée homogène.

1.2 Des commandes natives sur les np.array

1.2.1 Les opérations usuelles

●Additions entrée par entrée : pour deux np.array T = [t0,t1, . . . ,tn−1] et S = [s0,s1, . . . ,sn−1]
de même longueur, la commande T+S renvoie non pas la concaténation comme pour les listes python,
mais le tableau obtenu en ajoutant entrée par entrée les éléments de T et S.

T + S = [t0 + s0, . . . ,tn−1 + sn−1].
● Multiplication entrée par entrée, division etc... : même chose en remplaçant + par −,

∗, /.
● Multiplication ou addition d’un nombre à un tableau : si a=2 et T=np.array([1,1,1])

alors a*T renverra le np.array([2,2,2]) et a+T renverra np.array([3,3,3]).

1.2.2 Les fonctions numpy s’appliquent à chaque entrée d’un np.array

a) Les fonctions mathématiques usuelles sont dans numpy : par exemple np.sin.�
�

�
�

La différence entre np.sin et math.sin c’est que les fonctions np s’appliquent entrée par
entrée à des tableaux. On dit qu’elles sont ≪ vectorialisées ≫. Ceci permet une économie
d’écriture car cela épargne l’écriture d’un certain nombre de boucles for pour parcourir le
tableau.

Ainsi par exemple :

>>>L=np.array([0,np.pi/2,np.pi, 3*np.pi/2])

>>>M=np.sin(L)

>>>print(M)

[ 0.00000000e+00 1.00000000e+00 1.22464680e-16 -1.00000000e+00]

Ce n’est peut-être pas très joli, mais c’est des braves flottants qui doit être considérés comme 0, 1,
0, -1.

b) Un laxisme typique de Python :�� ��Les fonctions numpy s’appliquent aussi aux listes Python, mais elles renvoient un np.array

Par exemple :

>>>T=[1,2,3]

>>>L=np.exp(T)

>>> L

array([ 2.71828183, 7.3890561 , 20.08553692])
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c) Exemples utiles pour les TP sur les nombres complexes :
(i) si T=np.array([complex(1,2),complex(3,4)]) est un tableau (ici de deux nombres com-

plexes) alors np.real(T) renvoie le tableau des parties réelles ici np.array([1,3]) et np.imag(T)
le tableau des parties imaginaires.

(ii) La fonction np.exp gère aussi les exp. complexes ! Par exemple si I=complex(0,1), T=[2*I*np.pi,0]
alors :

>>> np.exp(T)

array([ 1. -2.44929360e-16j, 1. +0.00000000e+00j])

ce qu’il faut comprendre comme [1,1].

1.3 Comment fabriquer agréablement des np.array ?

1.3.1 Il est très simple de fabriquer un tableau rempli de zéros

A=np.zeros(6)

print(A)

B=np.zeros((4,4))

print(B)

L’intérêt est qu’ensuite, on peut modifier les entrées... si on a plutôt besoin que ce tableau soit
formé d’entiers :

A=np.zeros(6,dtype=int)

1.3.2 Alternative numpy au range : np.arange

np.arange(a,b,p) renvoie le np.array([a, a+p, ..., a+kp]) jusqu’au plus grand k tel que
a+kp <b.

● Une différence avec le range de Python est qu’il peut produire des flottants avec un pas qui
peut être lui-même un flottant.

Par exemple :

>>>np.arange(0.1,1.1,0.1) # le troisième argument est le pas

array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])

● Une autre différence est donc qu’il renvoie déjà un np.array et pas un itérateur.

1.3.3 Alternative np.linspace

np.linspace(a,b,N) renvoie le np.array([a,a+(b-a)/(N-1),a+2(b-a)/(N-1),...,b] : subd-
vision régulière du segment [a,b] en N-1 intervalles, ce qui donne un tableau avec N entrées.

Par exemple :

>>> np.linspace(2,3,11)

array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3. ])

1.3.4 Redimensionner un tableau np.reshape

>>>A=array([1, 2, 3, 4, 5, 6])

>>> np.reshape(A,(2,3))

array([[1, 2, 3],

[4, 5, 6]])
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1.3.5 Concatenation des np.array

Bien sûr le + ne marche plus, pourquoi ? Fondamentalement, les tableaux ne sont pas fait pour
faire de la concaténation, cf. § 3 pour comprendre pourquoi.

Il n’y a donc pas de méthode append sur les numpy.ndarray mais :

a) Une commande np.append avec la syntaxe qui n’est donc pas celle d’une méthode, qui ne
modifie pas son argument mais fabrique un nouveau tableau :

A=np.array([1,2])

B=np.array([2,3])

C=np.append(A,B)

print(C)

b) Une commande np.concatenate qui ressemble beaucoup : attention aux parenthèses !

A=np.array([1,2])

B=np.array([2,3])

C=np.concatenate((A,B))

print(C)

2 Application des np.array pour un tracé efficace de graphes
de fonctions

On a vu en T.P. comme tracer un graphe de fonction avec le plot de matplotlib et des listes
python. Ici, on va aller un peu plus vite avec les tableaux numpy.

Par exemple si on veut tracer le graphe de sinus sur [0,2π], avec linspace on créé immédiatement
un tableau de valeurs en abscisses X et avec np.sin(X) un tableau des images et donc :

import numpy as np

import matplotlib.pyplot as plt

X=np.linspace(0,2*np.pi,50)

Y=np.sin(X)

plt.plot(X,Y)

plt.show()

Variante plus commode : avec le module pylab qui contient les deux modules précédents :

import pylab as pl

X=pl.linspace(0,2*np.pi,50)

Y=pl.sin(X)

pl.plot(X,Y)

pl.show()

3 De l’usage du mot tableau en informatique

En informatique, on appelle, au sens strict, tableau T un certain type de donnée contenant pos-
siblement plusieurs entrées modifiables, auxquelles on accède par leur numéro d’indice T[0],...,

T[i] ... avec la propriété cruciale suivante :�� ��l’accès au contenu de chaque entrée T[i] doit être à cout constant.

Techniquement, dans la plupart des langages, cette possibilité de coût constant est assurée par
le fait que le contenu de chaque entrée est du même type et donc codé sur le même nombre de
bits, et les entrées successives du tableau sont représentées par des cellules contiguës dans l’espace
mémoire.

Autrement dit : un tableau de int8 sera pointera vers une liste d’adresse mémoire successives,
chaque adresse contenant un int8, et pour accéder T[17] à partir de la lecture seulement de
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l’adresse de T[0], il suffira de faire disons +17 (ou +17*8 par exemple si on a des entiers sur 64
bits) pour avoir l’adresse de T[17].
Conséquence évidente :�� ��ces contraintes ne permettent pas d’insérer ou de supprimer un élément au milieu du tableau.

Si on veut insérer un élément, on doit refabriquer un tableau, en copiant les éléments successi-
vement...
Conséquence aussi : les listes python ne sont pas des tableaux au sens précédent. Et effective-
ment, on peut montrer que le coût d’accès aux entrées d’une liste python est constant jusqu’à une
certaine longueur de listes, puis augmente subitement .... On parle d’accès à coût constant amorti.�

�

�

�
Néanmoins, le plus souvent, quand on parlera de tableau dans les énoncés en I.P.T., on les
codera par des listes en Python ! !
Mais les tableaux numpy, eux, sont davantage des tableaux au sens précédent, d’où la
contrainte d’homogénéité par exemple et l’absence d’un append qui modifierait le tableau.

En CamL, vous verrez la différences plus claire entre tableaux au sens ci-dessous, et listes
châınées où le append est naturel, mais l’accès n’est pas à coût constant.
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