
Chap. 8 : Algèbre relationnelle et SQL

1 Le modèle relationnel : son intérêt

1.1 La limite des structures de données de type liste pour la recherche
d’information : un exemple

Ce qu’on veut faire :

● On veut stocker la liste des élèves de prépa. de notre lycée en renseignant leur prénom, leur
nom, leur classe, leur lycée de terminale.

● On veut ensuite pouvoir exploiter facilement ces données i.e. rechercher facilement p.ex. :
— les élèves appartenant à une même classe,
— les élèves venant d’un même lycée en Terminale.

Quelle structure choisir pour nos données ?

Disons pour simplifier qu’on a des toutes petites classes et pour simplifier encore on se contentera
de prénoms :
● MPSI 1, avec comme élèves :

— Alexis (terminale : J. Jaurès)
— Alexandre (terminale : A. Daudet)

● MPSI 2, avec comme élèves
— Noëlie (terminale : G. Pompidou)
— Arnaud (terminale : Nevers)

● PCSI 1, avec comme élèves
— Arthur (terminale : A. Lavoisier)
— Géraldine(terminale : G. Eiffel)
Avec ce que nous connaissons pour l’instant, en Python, on peut choisir de rentrer ces données

sous forme d’une liste de listes comme suit :

lycee=[["MPSI 1",[["Alexis","Jaurès"],["Alexandre","Daudet"]]],

["MPSI 2",[["Noëlie","Pompidou"],["Arnaud","Nevers"]]],

["PCSI 1",[["Arthur","Lavoisier"],["Géraldine","Eiffel"]]]

]

Avec ce choix, on voit que la liste (en info. en général on dit plutôt tableau) Lycee a trois
entrées correspondantes aux trois classes 1 (MPSI 1, MPSI 2, PCSI 1).

La notion d’attribut

● Avec ce choix chaque classe (scolaire) a ce qu’on appelle des attributs ici au nombre de deux :
— son nom ”MPSI 1” ou ”MPSI 2” ou ”PCSI 1”
— sa liste d’élève.

● De même chaque élève a deux attributs :
— son prénom ”Alexis”
— son lycée d’origine ”Jaurès”.

L’exploitation des données : data mining

Avec la structure choisie :
● si on veut avoir la liste des élèves d’une classe c’est très facile :

def eleve_classe(nomcl):

"renvoie la liste des élèves d’une classe"

for classe in lycee:

1. au sens scolaire du mot classe, et pas celui de python !

1

if classe[0]==nomcl:

return classe[1]

return None

● en revanche, si on voit avoir la liste des élèves ayant fait leur Terminale dans un lycée donné c’est
plus compliqué :

def eleve_terminale(term):

"renvoie la liste des élèves ayant fait leur terminale en term"

resultat=[]

for classe in lycee:

for eleve in classe[1]:

if eleve[1]==term:

resultat.append(eleve)

return resultat

Moralité :

Bien sûr, on aurait pu fabriquer la liste lycée autrement, en classant au départ par lycée
d’origine, mais dans ce cas, c’est la première recherche (par classe) qui aurait été plus coûteuse.

Ce qu’il faut comprendre :'

&

$

%

Dans cet exemple, un élève a des liens d’appartenance à la fois à une classe et à un lycée
d’origine. Or la représentation des données sous forme d’une liste de listes en Python (en
informatique en général, on appelle plutôt cela un tableau de tableaux), contraint à privilégier
un de ces liens. On va développer dans ce qui suit une autre façon de représenter les données
fondée sur la notion de relation, qui n’a plus ce défaut a.

a. mais nous ne dirons pas comment cette représentation relationnelle est effectivement implantée en
machine

1.2 Représentation dans le modèle relationnel

Définition en deux temps d’une relation

La façon suivante de représenter notre problème repose sur un déclaration en deux temps. Elle
ressemble à l’usage que vous pouvez avoir fait d’un tableur pour lesquel on a donné un nom aux
colonnes.

● 1er temps : schéma ou intension de la relation eleve On définit un élève comme
un triplet prénom, classe, lycée-de-term : les trois entrées de ce triplet s’appellent les attributs de
l’élève.

● 2ème temps : entrée de la table des élèves : extension de la relation eleve

L’information sur les élèves peut être représentée par un tableau (ou table) où la première ligne
n’apparâıt pas normalement :

prénom classe lycée-de-term
”Alexis” ”MPSI 1” ”Jaures”

”Alexandre” ”MPSI 1” ”Daudet”
”Noëlie” ”MPSI 2” ”Pompidou”

”Arnaud” ”MPSI 2” ”Nevers”
”Arthur” ”PCSI 1” ”Lavoisier”

”Géraldine” ”PCSI 1” ”Eiffel”�

�

�

�
Là, où, informatiquement, la relation est plus qu’un tableau est qu’elle a été déclarée
avec des attributs au départ : autrement dit on ne fabrique pas seulement un tableau,
mais un tableau où chaque colonne a déjà un nom. D’où le mot relation : entre chaque
concept (attribut) et les valeurs prises.

2

Remarque 1. Bien sûr, informatiquement, on a besoin d’un langage qui permette cette déclaration
(comme votre tableur). Le langage adapté à la création de cette structure s’appelle SQL, nous y
reviendrons plus loin.

Le domaine des attributs :

Dans l’exemple précédent, pour la table eleve, chacun des attributs prend comme valeur une
châıne de caractères.

Si on considère une nouvelle table eleve2 où les attributs sont (prénom,année-naissance,sexe,
classe) qu’on remplit par exemple comme suit :

”Alexis” 1996 M ”MPSI 1”
”Alexandre” 1995 M ”MPSI 1”

”Noëlie” 1996 F ”MPSI 2 ”
”Arnaud” 1996 M ”MPSI 2”

dans ce cas, lors de la déclaration des attributs, on va demander que le domaine de l’attribut
année-naissance soit un entier et que le domaine de l’attribut sexe soit M ou F.

1.3 Le lien entre les tables : répercuter les modifications

Imaginons que Noëlie passe de MPSI 2 en MPSI 1 à un moment de l’année. Avec des tableaux
python, il nous faudrait modifier ”manuellement” les deux tables eleve et eleve2. Le principe des
SGBD (systèmes de gestion de base de données) est de relier les données des tables entre elles :
l’attribut classe de la table eleve et celui de la table eleve2 devront être reliés pour qu’une
modif. de l’un entrâıne une modif. de l’autre. Ici, ils seront reliés grâce aux valeurs communes des
attributs nom des élèves. Nous allons détailler cela dans ce qui suit.

2 Définitions plus générales (abstraites) sur les relations

2.1 Deux définitions : schéma relationnel et relation proprement dite

Défnition : [Schéma relationnel ou intension d’une relation] On considère un ensemble
fini A dont les éléments sont appelés attributs. On appelle schéma relationnel (ou intension d’une
relation), la donnée d’un n-uplet S = (A1, . . . ,An) où A1, . . . ,An sont des attributs deux à deux
distincts, et, pour chaque i ∈ ⟦1, n⟧, d’un ensemble Di appelé domaine de l’attribut Ai.

Remarque 2. Souvent, on note un schéma relationnel en précisant à côté de chaque attribut Ai

son domaine Di, ce qui donne l’écriture :

S = ((A1,D1), . . . , (An,Dn)).
Exemple Un schéma relationnel correspondant à la relation eleve2 ci-dessus est :

Schemaeleve2=((prénom,string),(datenaissance,integer),(sexe,{M,F}),(classe,string))

Définition : [Table ou extension d’une relation] Etant donné un schéma relationnel S comme
défini ci-dessus, une table (ou simplement une relation !) associée à ce schéma est la donnée d’un
ensemble fini de n-uplets, éléments de D1 × ⋅ ⋅ ⋅ ×Dn. On note R(S) une telle relation pour dire
qu’elle est associée à S. Le nombre m de n-uplets s’appelle le cardinal de la relation.
Exemple Au schéma relationnel S de l’exemple ci-dessus, on peut associer par exemple la table
eleve2 déjà donnée, qui est de cardinal 4.

”Alexis” 1996 M ”MPSI 1”
”Alexandre” 1995 M ”MPSI 1”

”Noëlie” 1996 F ”MPSI 2 ”
”Arnaud” 1996 M ”MPSI 2”

3

Remarque 3. Ainsi, sur la table de la relation, le nombre n correspond au nombre de colonnes
du tableau (nombre d’attributs) alors que le cardinal m de la relation correspond au nombre de
lignes du tableau (on dit parfois le nombre de valeurs).

D’une manière générale, la table d’une relation R(S) où S = ((A1,D1), . . . , (An,Dn)) ressem-
blera donc à ceci (la première ligne ne figure pas dans la table, elle est là pour mémoire) :

A1,D1 . . . Aj ,Dj . . . An,Dn

t1,1 . . . t1,j . . . t1,n
.
ti,1 . . . ti,j . . . ti,n
.
tm,1 . . . tm,j . . . tm,n

avec ti,j ∈Dj pour tout i ∈ ⟦1,m⟧ et j ∈ ⟦1, n⟧.

N.B. On a fixé un ordre sur les attributs par commodité ici, mais du point de vue de l’information
cet ordre est sans importance, ce qui compte est que les attributs ont un nom.�

�

�

�
Retenir : se donner une relation c’est se donner :
● son schéma S avec ses attributs (qui seront les noms des colonnes
de la table qui n’existe pas encore)
● ses éléments (qui sont les lignes de la table que l’on crée).

2.2 Sous-ensembles du schéma S et de la relation R(S) :

Abus de notation : On a dit qu’un schéma S était un n-uplet (A1, . . . ,An) d’attributs (deux à
deux distincts). Un tel uplet étant ordonné, on peut définir clairement chaque ligne de la relation
R(S) associée comme un n-uplet. Cependant, il est commode aussi (et indifférent du point de vue
de l’information stockée) de considérer S comme l’ensemble {A1, . . . ,An} des attributs.

Moralité (appartenance et inclusion dans S) :
● On se permettra de noter A ∈ S pour dire que A est un attribut du schéma S.
● De même si p.ex. S=(nom,prénom,adresse, code-postal,ville, tél) on pourra considérer un

sous-ensemble X={nom,prénom, ville} d’attributs et noter (abusivement) X ⊂ S.

Les éléments de la relation R(S) : Avec la table donnée plus haut, le quadruplet e=(”Alexis”,1996,”M”,”MPSI
1”) est un élément de la relation eleve2=R(Schemaeleve2)

On pourra noter e ∈ R(Schemaeleve2).

Composante d’un élément e ∈ R(S) sur un attribut A ∈ S : si e ∈ R(S) et A ∈ S, on note e.A la
composante du n-uplet e associée à l’attribut A. Par exemple si e=(”Alexandre”,1995,”M”,”MPSI
1”) et A=”sexe”, alors e.A=”M”.

Concrètement si e est à la ligne i et A à la colonne j, alors e.A est simplement l’entrée (i, j) du
tableau.

Généralisation : composante d’un e ∈ R(S) sur un sous-ensemble {Ai1 , . . .Aik} de S : si
X = (Ai1 , . . . ,Aik) ⊂ S (ordonnées comme dans S) et e ∈ R(S) on note e(X) = (e.Ai1 , . . . , e.Aik).

3 Notion de clé, clé primaire

Définition : [Clé] Soit R(S) une relation de schéma S et K ⊂ S un sous-ensemble d’attributs.
On dit que K est une clé pour R(S) si, et seulement si, pour toutes valeurs t1 et t2 de R(S) telle
que t1(K) = t2(K) on a t1 = t2.

De manière plus informelle : deux lignes distinctes de R(S) auront donc leur entrées corres-
pondants à la clé qui seront distinctes.

N.B. Comme R(S) est un ensemble, on ne répète jamais deux fois la même ligne.

4

Exemple Si on considère la relation R définie par la table suivante (la première ligne, qui donne le

schéma de la relation, ne fait pas partie de la table) :

prénom nom datenaissance telbureau
Arthur duschmol 01042000 0983
gérard machin 03081983 0332
Arthur duschmol 15121965 0222
norbert truc 15121965 0983

K=(prénom,nom) n’est pas une clé de R, aucun attribut a lui seul ne l’est ici, en revanche,
K=(nom,datenaissance) ou K=(prénom,nom,telbureau) sont des clés.

Remarque : c’est un exemple tordu. Souvent, on pourra fabriquer une clé avec un seul attribut
(par exemple votre numéro INSEE).
Définition : Clé primaire Lors de la confection d’un schéma relationnel S, on peut imposer
qu’un certain sous-ensemble d’attributs K ⊂ S soit toujours une clé pour les relations R(S) qu’on
va fabriquer à partir de S. Cette clé (unique) choisie s’appelle une clé primaire. On dit alors qu’on
impose la contrainte de clé primaire.

Notation : lorsqu’on se donne un tel schéma avec une clé primaire, on souligne les attributs
qui constitue la clé primaire.

Exemple : Si on se donne le schéma S=(prénom,nom,datenaissance, telbureau) alors la relation
R(S) définie par le tableau précédent viole la contrainte de la clé primaire . En revanche, si on
enlève le deuxième Arthur duschmol du tableau c’est ok. En pratique, pour un tel schéma avec la
contrainte de clé primaire imposée, on ne pourrait pas rentrer le deuxième Arthur duschmol dans
la relation.

Remarque 4. Souvent on essaiera de choisir une clé primaire constituée d’un seul attribut.

4 Opérations sur les relations : algèbre relationnelle et SQL

4.1 Motivation (double)

● Pour l’instant nous n’avons pas introduit les opérations par lesquelles nous allons pouvoir
interroger notre base de données : dans le langage des base de données on parlera de faire des
requêtes.

C’est ce que nous allons développer dans ce qui suit, en commençant par les opérations les plus
simples qui correspondent aux requêtes les plus simples.

● Ensuite comme nous avons définis deux tables eleve et eleve2, nous verrons dans un second
temps au § 5 comme exploiter conjointement les données de deux tables.

4.2 Introduction aux requêtes à la SQL

Considérons la table eleve qui suit le schéma relationnel défini au § 1.2 :

”Alexis” ”MPSI 1” ”Jaures”
”Alexandre” ”MPSI 1” ”Daudet”

”Noëlie” ”MPSI 2” ”Pompidou”
”Arnaud” ”MPSI 2” ”Nevers”
”Arthur” ”PCSI 1” ”Lavoisier”

”Géraldine” ”PCSI 1” ”Eiffel”

Supposons qu’on veuille avoir la liste des nom des élèves qui viennent de ”Daudet” ou qui sont
en ”PCSI 1”. Dans le langage SQL (Structured Query Langage) que nous introduirons plus loin, en
ayant déclaré pour la tables eleve le schéma (nom, classe, lyceeterm) cette liste s’obtiendra
comme suit :

SELECT nom FROM eleve WHERE lyceeterm="Daudet" OR classe="PCSI 1"

Le langage renverra alors la table réduite

”Alexandre”
”Arthur”

”Géraldine”

5

Dans les deux paragraphes qui suivent, nous allons décomposer les opérations en jeu dans cette
requête comme des opérations sur les tables.

4.3 Opérations sur une table : sélections et projections (algèbre rela-
tionnelle et SQL)

Définition : (sélection)
Soit R = R(S) une relation (table) de schéma S = (A1, . . . ,An). Soit A un des attributs de S

et a une valeur dans le domaine de A. On appelle sélection de R selon A = a la relation obtenue
en sélectionnant dans R uniquement les valeurs e de R (i.e. les lignes de la table) pour lesquelles
e.A = a.
Notation la relation obtenue est notée σA=a(R).

On peut aussi écrire, avec les mêmes conventions qu’en maths. σA=a(R) = {e ∈ R∣e.A = a}
Exemple Avec la table eleve du § 4.2 ci-dessus, σlyceeterm=”Daudet”(eleve) donne la relation :

”Alexandre” ”MPSI 1” ”Daudet”

Définition : (projection) Soit R = R(S) une relation de schéma S. Soit X ⊂ S un sous-ensemble
d’attributs. On appelle projection de R selon X la relation πX(R) obtenue en ne gardant que les
composantes des valeurs de R sur les attributs de X (cf. § 2.2).

Formellement : πX(R) = {e(X)∣e ∈ R}
Exemple Avec la table eleve § 4.2 ci-dessus, S=(nom, classe, lyceeterm), et par exemple X=(nom,
lyceeterm), on obtient pour πX(eleve) :

”Alexis” ”Jaures”
”Alexandre” ”Daudet”

”Noëlie” ”Pompidou”
”Arnaud” ”Nevers”
”Arthur” ”Lavoisier”

”Géraldine” ”Eiffel”

Remarque : Du coup le schéma relationnel de πX(R) est X.�
�

�
�

Retenir :
● la sélection agit sur les lignes (choix des valeurs),
● la projection sur les colonnes (choix des attributs).

Remarque 5 (L’algèbre relationnelle vs SQL). Les notations σA=a ou πX sont les notations de
l’algèbre relationnelle. Cette algèbre, que nous allons continuer à développer, va nous permettre
de décomposer nos requêtes en processus élémentaires.

Concrètement, ces requêtes se feront avec le langage SQL dont les algorithmes internes resteront
cachés pour nous ! Nous ne ferons donc aucune étude de complexité pour ces requêtes.

�� ��Dans le langage SQL la commande SELECT permet de faire les deux opérations de sélection et projection.

Ainsi :
● pour obtenir πX(eleve) on rentrera :

SELECT nom, lyceeterm FROM eleve

● pour obtenir σlyceeterm=”Daudet”(eleve) on rentrera :

SELECT * FROM eleve WHERE lyceeterm="Daudet"

où le joker * permet d’avoir tous les attributs.
N.B. Ainsi la commande SELECT est la fonction de base pour les requêtes d’interrogation de

base de données en SQL. Noter que SELECT * FROM eleve nous affichera toute la table eleve par
exemple.

6

4.4 Opérations ensemblistes simples sur deux tables ayant le même
schéma

Les définitions suivantes sont immédiates : il s’agit des définitions ensemblistes usuelles. Définition :
Soient R1(S) et R2(S) deux relations (tables) ayant le même schéma relationnel S. On peut définir
leur réunion R1 ∪R2, leur intersection R1 ∩R2, leur différence R1 −R2. Il s’agit encore de relations
associées au schéma S.

Par exemple

si R1 est :

”Alexis” ”MPSI 1” ”Jaures”
”Alexandre” ”MPSI 1” ”Daudet”

et R2 est :

”Alexandre” ”MPSI 1” ”Daudet”
”Noëlie” ”MPSI 2” ”Pompidou”

”Arnaud” ”MPSI 2” ”Nevers”
alors R1 ∪R2 est :

”Alexis” ”MPSI 1” ”Jaures”
”Alexandre” ”MPSI 1” ”Daudet”

”Noëlie” ”MPSI 2” ”Pompidou”
”Arnaud” ”MPSI 2” ”Nevers”

et R1 ∩R2 est :

”Alexandre” ”MPSI 1” ”Daudet”

et R1 −R2 est :

”Alexis” ”MPSI 1” ”Jaures”

4.5 Opérations de sélections composées avec des opérations ensemblistes

4.5.1 Retour sur l’exemple donné plus haut : la réunion en algèbre relationnelle et
le OR en SQL

a) Une requête SQL avec un OR :

On peut reprendre l’exemple écrit en SQL au § 4.2.

SELECT * FROM eleve WHERE lyceeterm="Daudet" OR classe="PCSI 1"

b) Comment interpréter cette requête en terme d’algèbre relationnelle ?�� ��Il s’agit de fabriquer la table réunion des deux tables, chacune obtenue par sélection sur eleve

Ces deux tables sont : σlyceeterm=”Daudet”(eleve) et σclasse=”PCSI1”(eleve).
La requête s’écrit donc en algèbre relationnelle :

c) Une alternative SQL avec UNION au lieu de OR

Le SQL est muni d’un opérateur UNION qui colle davantage avec l’algèbre relationnelle :

SELECT * FROM eleve WHERE lyceeterm="Daudet" UNION SELECT * FROM eleve WHERE classe="MPSI 1"

Cet exemple doit aussi faire comprendre que le résultat de chaque SELECT est une table et
donc qu’on va pouvoir imbriquer les résultats de plusieurs SELECT.

d) Attention aux parenthèses : l’usage de parenthèses en SQL est un sujet délicat, qui
peut provoquer facilement des erreurs de syntaxe. Ici, il n’en faut pas entre les deux requêtes
reliées par un UNION. Voir le paragraphe 4.6 plus loin.

4.5.2 Plusieurs façons de réaliser une différence ensembliste en SQL

Par exemple si on veut les noms des élèves n’ayant pas fait leur terminale à J. Jaures :�
�

�

Dans ce qui suit, on suppose d’abord que nom est une clé, autrement dit qu’il n’y a pas deux
élèves ayant le même nom. Ensuite, on comparera les requêtes dans le cas où nom n’est pas
un clé.

7

a) Une façon assez intuitive avec WHERE NOT : on voit ici les conditions de sélection
qui sont après le WHERE comme des booléens.

b) Par différence de deux tables en algèbre relationnelle :

c) La commande EXCEPT de SQL qui colle à la structure ensembliste :

Ou encore avec EXCEPT qui a l’avantage de vraiment opérer entre deux tables :

SELECT nom FROM eleve EXCEPT SELECT nom FROM eleve WHERE lyceeterm="Jaures"

d) Une autre méthode avec une sous-requête

SELECT nom FROM eleve WHERE nom NOT IN (SELECT nom FROM eleve WHERE lyceeterm="Jaures")

‘

e) Comparer maintenant l’effet des requêtes précédentes si l’attribut NOM n’est pas une clé
autrement dit il peut y avoir plusieurs élèves ayant le même nom.

4.6 Un mot sur les parenthèses en SQL

Attention : je ne prétends pas que les règles empiriques que je donne ici soient complètement
générales.

Lorsqu’on veut mettre ensemble des requêtes (donc plusieurs SELECT) suivant l’articulation
entre les requêtes , il faut ou ne faut pas mettre des parenthèses autour de ces requêtes sous peine
d’erreur...�

�

�

�

● Cas de ≪ conjonctions de coordination en requêtes ≫ : si les requêtes sont ≪ de même
niveau reliées par des UNION, INTERSECT, EXCEPT on ne met PAS de parenthèses ;

● Cas des ≪ conjonctions de subordination entre requêtes ≫ : pour les sous-requêtes
introduites par exemple par WHERE.. IN ou WHERE .. NOT IN on met la sous-requêtes
entre parenthèses.

4.7 Résumé des opérations de comparaison en SQL

On vient de voir que le langage SQL permet de coder l’algèbre relationnelle élémentaire et
davantage avec la souplesse des OR en plus des UNION etc. Voici une petite synthèses des opérations
entre valeurs dans les tables (et pas seulement entre tables) que permet SQL

— Les opérateurs de comparaisons mathématiques : <,>,=,<>,>=,<=
— Le test pour savoir si une case du tableau est vide : IS NULL ou IS NOT NULL

— Le test pour savoir si un élément est dans un tableau IN

5 Opérations entre tables de schémas différents : fabrication
d’un lien entre les tables

Les opérations que nous allons définir maintenant permettent de croiser les informations présentes
dans plusieurs tables.

8

5.1 Produit cartésien

Comme pour l’intersection, la réunion, la définition du produit cartésien de deux relations (deux
tables) suit celle des ensembles avec toutefois une subtilité liée au suivi des attributs.

Union disjointe forcée

Définition : Soit S = (A1, . . . ,An) et S′ = (B1, . . . ,Bn′) deux schéma relationnels pouvant
avoir des attributs communs. On appellera union disjointe et on note S ⊎ S′ le schéma relationnel
(A1, . . . ,An,B1, . . . ,Bn′).

N.B. Même si S et S′ ont des attributs communs, on va les distinguer dans S⊎S′. En pratique,
cela passe par le renommage d’attribut.
Exemple Si S=(nom,classe,lyceeterm) et S′ =(nom,âge,sexe) alors :

S ⊎ S′ =(nom1,classe,lyceeterm,nom2,âge,sexe).
Les deux attributs qui portaient le même ≪ nom ≫ ont été renommés pour pouvoir les distinguer

dans l’union (voulue disjointe) S ⊎ S′.

Application à la déf. du produit cartésien

Définition : Soient R = R(S) et R′ = R′(S′) deux relations. On définit le produit cartésien R×R′
comme l’ensemble des couples (e, e′) pour e ∈ R et e′ ∈ R′.

Cependant, si S = (A1, . . . ,An) et S′ = (B1, . . . ,Bn′) alors chaque e ∈ R est un n uplet e =
(a1, . . . , an) (représentant une ligne de la table de R) et chaque e′ ∈ R′ est un n′-uplet (b1, . . . , bn′)
et on identifie naturellement (e, e′) au n + n′-uplet (a1, . . . , an, b1, . . . , bn′).

De la sorte R ×R′ est une relation associée au schéma S ⊎ S′.
Exemple On reprend les exemples du § 1.2. On prend la relation R = eleve associée au schéma
S=(nom,classe,lyceeterm) et définie par la table :

”Alexis” ”MPSI 1” ”Jaures”
”Alexandre” ”MPSI 1” ”Daudet”

”Noëlie” ”MPSI 2” ”Pompidou”

On prend la relation R′ associée au schéma S’=(nom,annee-naissance,sexe) et définie par la
table

”Alexis” 1996 M
”Alexandre” 1995 M

”Noëlie” 1996 F

Alors le produit cartésien R × R′ est associé à l’union disjointe des schémas (en renommant les
attributs de même nom) S ⊎ S′=(nom1,classe,lyceeterm,nom2,datenaissance,sexe) et défini par la
table

”Alexis” ”MPSI 1” ”Jaures” ”Alexis” 1996 M
”Alexis” ”MPSI 1” ”Jaures” ”Alexandre” 1995 M
”Alexis” ”MPSI 1” ”Jaures” ”Noëlie” 1996 F

”Alexandre” ”MPSI 1” ”Daudet” ”Alexis” 1996 M
”Alexandre” ”MPSI 1” ”Daudet” ”Alexandre” 1995 M
”Alexandre” ”MPSI 1” ”Daudet” ”Noëlie” 1996 F

”Noëlie” ”MPSI 2” ”Pompidou” ”Alexis” 1996 M
”Noëlie” ”MPSI 2” ”Pompidou” ”Alexandre” 1995 M
”Noëlie” ”MPSI 2” ”Pompidou” ”Noëlie” 1996 F

Remarque 6. Si R est de card. m (ce qui signifie que la table de R a m lignes) et R′ est de
cardinal m′ alors R ×R′ est de cardinal

Scholie : A première vue, on se dit que ce produit cartésien fabrique des tables monstrueuses,
pas très utiles. Si elles peuvent effectivement devenir monstrueuses 2, elles sont au moins utiles du

2. et donc si possible à éviter du point de vue de l’efficacité informatique

9

point de vue conceptuel, car à partir de celles-ci on va pouvoir sélectionner, projeter, pour fabriquer
une table qui résultera vraiment d’un lien qu’on veut établir entre deux relations. C’est le sens de
l’opération de jointure qu’on va expliquer ci-dessous.

5.2 Opération de jointure

Définition : Soient R1 = R1(S1) et R2 = R2(S2) deux relations et si A est un attribut de S1

et B est un attribut de S2 ayant le même domaine alors on définit la jointure de R1 et R2 selon
A = B, comme :

R1 &
A=B

R2 = {(e, e′) ∈ R1 ×R2∣e.A = e′.B}
De manière moins formelle : pour fabriquer cette jointure, on prend la table R1 ×R2 et on ne

garde que les lignes telles que l’entrée correspondant à l’attribut A cöıncide avec celle correspondant
à l’attribut B.
Exemple On va utiliser la jointure pour relier les deux relations eleve et eleve2 que nous avons
constituées pour l’instant. Bien sûr on va considérer la relation :

eleve3=eleve &
eleve.nom=eleve2.nom

eleve2.

On obtient comme table de la relation :

’Alexis” ”MPSI 1” ”Jaures” ”Alexis” 1996 M
”Alexandre” ”MPSI 1” ”Daudet” ”Alexandre” 1995 M

”Noëlie” ”MPSI 2” ”Pompidou” ”Noëlie” 1996 F

A ce stade pour avoir une relation eleve3 plus jolie, on peut effectuer une projection :
eleve3=πnom1,classe,lyceeterm,datenaissance,sexe(eleve 3)
ce qui enlèvera la colonne inutile

Code SQL pour la jointure (deux méthodes) Vous aurez noté qu’ en algèbre relationnelle,
on a mis les préfixes eleve.nom et eleve2.nom pour la jointure.

(M1) En SQL, la jointure peut s’effectuer ainsi :

SELECT eleve.nom, eleve.classe, eleve.lyceeterm, eleve2.datenaissance,eleve2.sexe

FROM eleve, eleve2

WHERE eleve.nom=eleve2.nom -- la condition de jointure

Remarque 7. On peut aussi introduire des abréviations pour citer les tables qu’on utilise, comme
suit :

SELECT e.nom, e.classe, e.lyceeterm, e2.datenaissance,e2.sexe -- projection

FROM eleve e, eleve2 e2 -- introduction des abréviations séparée du mot par une espace

WHERE e.nom=e2.nom -- vous avez compris que les deux -- désignent le début d’un commentaire

(M2) On peut aussi utiliser l’opérateur JOIN

SELECT eleve.nom, eleve.classe, eleve.lyceeterm, eleve2.datenaissance,eleve2.sexe

FROM eleve JOIN eleve2 ON eleve.nom=eleve2.nom -- on pourrait mettre un WHERE après

Remarque 8. A quoi bon avoir cette commande JOIN alors qu’on peut tout faire avec le WHERE

? Une raison est la lisibilité des scripts. Lorsqu’on a des scripts avec beaucoup de jointures et des
sélections, il est bon de savoir ce qui est jointure et ce qui est sélection.

Remarque 9. (Algèbre relationnelle vs SQL)
● Dans le cadre de l’algèbre relationnelle, la jointure se déduit logiquement des autres opérations

(produit cartésien, sélection).
● En revanche, pour les logiciels de gestion de base de donnée, la jointure est programmée de

manière optimisée sans passer par le calcul du produit cartésien plus coûteux. Pour avoir le produit
cartésien en SQL, il suffit d’enlever le WHERE dans le code précédent.

10

6 Fonctions et agrégation : calculs sur les tables en SQL

6.1 Un exemple élémentaire de fonction : calcul de moyenne

Disons qu’on dispose d’une table elevenote avec les attributs (nom, classe,note) :

Si on veut la moyenne (average en anglais) des notes des élèves de la classe 1 :

SELECT avg(note) FROM elevenote WHERE classe=1

Le résultat étant un nombre, on peut aussi utiliser le résultat pour faire des comparaisons :

SELECT * FROM elevenote WHERE note>=(SELECT avg(note) FROM elevenote)

6.2 Cinq fonctions à connâıtre :

Pour les exercices, on n’utilisera que les cinq fonctions suivantes :

comptage COUNT
max MAX
min MIN

somme SUM
moyenne AVG

On a vu un exemple avec AVG ci-dessus. Un exemple avec COUNT qui va compter le nombre de
lignes du tableau réalisant une condition, comme ceci par exemple si on veut le nombre d’élèves
ayant une note en dessous de la moyenne (strictement), avec COUNT(*) ou bien COUNT(nom) c’est
pareil ici.

Précision sur le COUNT :
a) La différence entre COUNT(*) et COUNT(nom d’attribut) : une ligne où l’attribut correspon-

dant ne sera pas renseigné (case vide) ne sera pas comptée.
b) L’intérêt du COUNT(DISTINCT attribut) : on ne comptera que les lignes correspondant à

des valeurs distinctes des attributs.
Voir T.P. pour des exemples.

Remarque 10. Fonctions symétriques Toutes les fonctions qui s’appliquent à des tableaux
sont symétriques i.e. le résultat ne change pas si on permute les variables en entrée.

6.3 Les agrégations : groupement GROUP BY

Dans l’exemple précédent, on veut maintenant faire la moyenne sur chaque classe. On doit donc
regrouper les élèves d’une même classe puis faire une opération sur chacun de ces regroupements
(ou agrégats).

En SQL cela donne :

SELECT classe, avg(note) FROM elevenote GROUP BY classe

11

On peut aussi donner un nom à la colonne avg(note) ainsi créée pour y faire référence par la
suite, en utilisant l’instruction AS :

SELECT classe, avg(note) AS moyenne FROM elevenote GROUP BY classe

D’une manière plus générale : si on a une relation R avec (notamment) des attributs
A1, . . . ,An, et B1, . . . ,Bm et f1, . . . , fm des fonctions d’opération sur les attributs B1, . . . ,Bm res-
pectivement, on peut :

● regrouper les valeurs de R qui sont identiques sur les attributs A1, . . . ,An

● puis définir des nouveaux attributs fi(Bi) pour ces valeurs regroupées.
En SQL la syntaxe sera :�� ��SELECT A1,...,An, f1(B1),..,fn(Bm) FROM R GROUP BY A1,.., An

N.B. Comme indiqué dans la formule du cartouche : tous les attributs mis après le GROUP BY

doivent aussi figurer dans le SELECT.

Voyons cela sur une table NotesCB plus compliquée :

Exercice :
(i) Pour avoir la moyenne des MPSI et des PCSI :

(ii) Pour avoir la moyenne de chaque classe au sens usuel ”MPSI 1”, etc...

(iii) Pour avoir la moyenne de la MPSI 1 et celle de la PCSI 1 :

(iv) Transition avec le paragraphe suivant : si on veut la liste des classes dont la moyenne est
supérieure ou égale à 8 ?

SELECT * FROM (SELECT filiere, classe, avg(note) AS moyenne

FROM NotesCB GROUP BY filiere, classe) WHERE moyenne >=8

6.4 Selection en aval : HAVING

Dans la dernière question de l’exercice précédent, on fait une requête avec une condition portant
sur le résultat d’une fonction (ici avg). On a déjà rencontré cela à la fin du § 6.1, mais la différence
ici est qu’on aurait envie d’écrire WHERE avg(note)>8. Mais avg(note) n’est pas une colonne de
notre table à ce stade. On pourrait faire cela en deux temps, en créant une colonne moyenne comme
expliqué au § 6.3.

Cela donne le résultat donné fin du (iv)

12

Une autre façon est d’utiliser le HAVING qui code ce qu’on appelle logiquement la sélection en
aval (après l’application de la fonction).

Le code SQL correspondant est :
SELECT filiere, classe, avg(note) FROM NotesCB GROUP BY filiere,classe

HAVING avg(note)>8.

7 De l’importance des sous-requêtes

Le fait de pouvoir utiliser le résultat d’une requête dans une autre requête est évidemment
essentiel. On notera qu’on a rencontré deux types de sous-requêtes :

7.1 Les sous-requêtes qui renvoient une nombre

Pour celles-ci, on peut utiliser leur résultat avec =, >,>=,<=,< ou même dans un calcul. C’était
le cas avec

SELECT * FROM elevenote WHERE note>=(SELECT avg(note) FROM elevenote)

7.2 Les sous-requêtes qui renvoient une table

On utilise leur résultat avec IN ou bien NOT IN, ou bien avec FROM comme vu ci-dessus !

13

8 Memento SQL

8.1 Comparaison en SQL

— Les opérateurs de comparaisons mathématiques : <,>,=,<>,>=,<=
— Le test pour savoir si une case du tableau est vide : IS NULL ou IS NOT NULL

— Le test pour savoir si un élément est dans un tableau IN

8.2 Opérations ensemblistes

UNION, INTERSECT, EXCEPT à mettre en perspective avec OR, AND, WHERE NOT, WHERE NOT

IN.

8.3 Jointure

FROM table1, table2 WHERE table1.truc=table2.chose ou bien
FROM table1 JOIN table2 ON table1.truc=table2.chose

8.4 Fonctions de calculs par agrégation

COUNT, MAX, MIN, SUM, AVG, à utiliser avec des GROUP BY si on ne veut pas tout compter.

8.5 Présentation des résultats :

8.5.1 SELECT DISTINCT

A la suite d’une projection, il se peut qu’en SQL, on ait plusieurs fois la même ligne qui apparâıt.
Exemple ?

Si on veut éviter cela, on peut utiliser SELECT DISTINCT.

8.5.2 ORDER BY

Si l’on veut afficher la table elevenote du § 6.3 par notes décroissantes, on peut faire.

SELECT * FROM NotesCB ORDER BY note DESC -- sans DESC l’ordre est croissant par défaut.

8.5.3 LIMIT

On peut demander de ne pas afficher plus de N valeurs avec LIMIT N à la fin de la requête.

14

Table des matières

1 Le modèle relationnel : son intérêt 1
1.1 La limite des structures de données de type liste pour la recherche d’information :

un exemple . 1
1.2 Représentation dans le modèle relationnel . 2
1.3 Le lien entre les tables : répercuter les modifications . 3

2 Définitions plus générales (abstraites) sur les relations 3
2.1 Deux définitions : schéma relationnel et relation proprement dite 3
2.2 Sous-ensembles du schéma S et de la relation R(S) : 4

3 Notion de clé, clé primaire 4

4 Opérations sur les relations : algèbre relationnelle et SQL 5
4.1 Motivation (double) . 5
4.2 Introduction aux requêtes à la SQL . 5
4.3 Opérations sur une table : sélections et projections (algèbre relationnelle et SQL) . . 6
4.4 Opérations ensemblistes simples sur deux tables ayant le même schéma 7
4.5 Opérations de sélections composées avec des opérations ensemblistes 7

4.5.1 Retour sur l’exemple donné plus haut : la réunion en algèbre relationnelle et
le OR en SQL . 7

4.5.2 Plusieurs façons de réaliser une différence ensembliste en SQL 7
4.6 Un mot sur les parenthèses en SQL . 8
4.7 Résumé des opérations de comparaison en SQL . 8

5 Opérations entre tables 8
5.1 Produit cartésien . 9
5.2 Opération de jointure . 10

6 Fonctions et agrégation : calculs sur les tables en SQL 11
6.1 Un exemple élémentaire de fonction : calcul de moyenne 11
6.2 Cinq fonctions à connâıtre : . 11
6.3 Les agrégations : groupement GROUP BY . 11
6.4 Selection en aval : HAVING . 12

7 De l’importance des sous-requêtes 13
7.1 Les sous-requêtes qui renvoient une nombre . 13
7.2 Les sous-requêtes qui renvoient une table . 13

8 Memento SQL 14
8.1 Comparaison en SQL . 14
8.2 Opérations ensemblistes . 14
8.3 Jointure . 14
8.4 Fonctions de calculs par agrégation . 14
8.5 Présentation des résultats : . 14

8.5.1 SELECT DISTINCT . 14
8.5.2 ORDER BY . 14
8.5.3 LIMIT . 14

15

