Chap. 8 : Algebre relationnelle et SQL

1 Le modéle relationnel : son intérét

1.1 La limite des structures de données de type liste pour la recherche
d’information : un exemple

Ce qu’on veut faire :

e On veut stocker la liste des éleves de prépa. de notre lycée en renseignant leur prénom, leur
nom, leur classe, leur lycée de terminale.

e On veut ensuite pouvoir exploiter facilement ces données i.e. rechercher facilement p.ex. :

— les éleves appartenant a une méme classe,

— les éleves venant d’'un méme lycée en Terminale.

Quelle structure choisir pour nos données ?

Disons pour simplifier qu’on a des toutes petites classes et pour simplifier encore on se contentera
de prénoms :
e MPSI 1, avec comme éleves :

— Alexis (terminale : J. Jaures)

— Alexandre (terminale : A. Daudet)
e MPSI 2, avec comme éleves

— Noélie (terminale : G. Pompidou)

— Arnaud (terminale : Nevers)
e PCSI 1, avec comme éleves

— Arthur (terminale : A. Lavoisier)

— Géraldine(terminale : G. Eiffel)

Avec ce que nous connaissons pour l'instant, en PYTHON, on peut choisir de rentrer ces données
sous forme d’une liste de listes comme suit :

lycee=[["MPSI 1", [["Alexis","Jaureés"],["Alexandre","Daudet"]]],
["MPSI 2", [["Noé&lie","Pompidou"], ["Arnaud","Nevers"]]1],

["PCSI 1", [["Arthur","Lavoisier"], ["Géraldine" ,"Eiffel"]]]

]

Avec ce choix, on voit que la liste (en info. en général on dit plutét tableau) Lycee a trois
entrées correspondantes aux trois classes! (MPSI 1, MPSI 2, PCSI 1).

La notion d’attribut

e Avec ce choix chaque classe (scolaire) a ce qu’on appelle des attributs ici au nombre de deux :
— son nom "MPSI 1”7 ou "MPSI 2” ou "PCSI 17
— sa liste d’éleve.
e De méme chaque éleve a deux attributs :
— son prénom ” Alexis”
— son lycée d’origine ” Jaures”.

L’exploitation des données : data mining

Avec la structure choisie :
e si on veut avoir la liste des éleves d’une classe c’est tres facile :

def eleve_classe(nomcl):
"renvoie la liste des éléves d’une classe"
for classe in lycee:

1. au sens scolaire du mot classe, et pas celui de python!

if classe[0]==nomcl:
return classe[1]
return None

e en revanche, si on voit avoir la liste des éleves ayant fait leur Terminale dans un lycée donné c’est
plus compliqué :

def eleve_terminale(term):

"renvoie la liste des éléves ayant fait leur terminale en term"
resultat=[]
for classe in lycee:

for eleve in classe[1]:

if eleve[l]==term:
resultat.append(eleve)

return resultat

Moralité :

Bien sir, on aurait pu fabriquer la liste lycée autrement, en classant au départ par lycée
d’origine, mais dans ce cas, c’est la premiére recherche (par classe) qui aurait été plus cotiteuse.
Ce qu’il faut comprendre :

ans cet exemple, un éleve a des liens d’appartenance a la fois a une classe et a un lycé
d’origine. Or la représentation des données sous forme d’une liste de listes en PYTHON (en
informatique en général, on appelle plutot cela un tableau de tableauz), contraint a privilégier
un de ces liens. On va développer dans ce qui suit une autre fagon de représenter les données
fondée sur la notion de relation, qui n’a plus ce défaut *.

a. mais nous ne dirons pas comment cette représentation relationnelle est effectivement implantée en
machine

1.2 Représentation dans le modele relationnel
Définition en deux temps d’une relation

La facon suivante de représenter notre probleme repose sur un déclaration en deux temps. Elle
ressemble & 'usage que vous pouvez avoir fait d’un tableur pour lesquel on a donné un nom aux
colonnes.

e ler temps : schéma ou intension de la relation eleve On définit un éleve comme
un triplet prénom, classe, lycée-de-term : les trois entrées de ce triplet s’appellent les attributs de
I’éleve.

e 2éme temps : entrée de la table des éleves : extension de la relation eleve

L’information sur les éléeves peut étre représentée par un tableau (ou table) ou la premiere ligne
n’apparait pas normalement :

prénom classe lycée-de-term
” Alexis” "MPSI 17 ” Jaures”
” Alexandre” | "MPSI 17 ”Daudet”
?Noélie” "MPSI 2”7 | ”Pompidou”
” Arnaud” "MPSI 2” ”Nevers”
” Arthur” "PCSI 17 ”Lavoisier”
”Géraldine” | "PCSI 17 ? Eiffel”

a, ou, informatiquement, la relation est plus qu'un tableau est qu’elle a été déclarée
avec des attributs au départ : autrement dit on ne fabrique pas seulement un tableau,
mais un tableau ot chaque colonne a déja un nom. D’ou le mot relation : entre chaque
concept (attribut) et les valeurs prises.

Remarque 1. Bien sir, informatiquement, on a besoin d’un langage qui permette cette déclaration
(comme votre tableur). Le langage adapté & la création de cette structure s’appelle SQL, nous y
reviendrons plus loin.

Le domaine des attributs :

Dans 'exemple précédent, pour la table eleve, chacun des attributs prend comme valeur une
chaine de caractéres.

Si on considére une nouvelle table eleve2 ou les attributs sont (prénom,année-naissance,sexe,
classe) qu’on remplit par exemple comme suit :

” Alexis” 1996 | M | "MPSI 1”7
” Alexandre” | 1995 | M | "MPSI 17
?Noélie” 1996 | F | "MPSI 2”7
” Arnaud” 1996 | M | "MPSI 27

dans ce cas, lors de la déclaration des attributs, on va demander que le domaine de D'attribut
année-naissance soit un entier et que le domaine de I'attribut sexe soit M ou F.

1.3 Le lien entre les tables : répercuter les modifications

Imaginons que Noélie passe de MPSI 2 en MPSI 1 & un moment de ’année. Avec des tableaux
python, il nous faudrait modifier ”manuellement” les deuz tables eleve et eleve2. Le principe des
SGBD (systemes de gestion de base de données) est de relier les données des tables entre elles :
I’attribut classe de la table eleve et celui de la table eleve2 devront étre reliés pour qu’une
modif. de I'un entraine une modif. de I'autre. Ici, ils seront reliés grace aux valeurs communes des
attributs nom des éleves. Nous allons détailler cela dans ce qui suit.

2 Définitions plus générales (abstraites) sur les relations

2.1 Deux définitions : schéma relationnel et relation proprement dite

Défnition : [Schéma relationnel ou intension d’une relation] On considére un ensemble
fini A dont les éléments sont appelés attributs. On appelle schéma relationnel (ou intension d’une
relation), la donnée d’un n-uplet S = (Ay,...,A,) ol Ay,..., A, sont des attributs deux & deux
distincts, et, pour chaque i € [1,n], d’'un ensemble D; appelé domaine de l'attribut A;.

Remarque 2. Souvent, on note un schéma relationnel en précisant a coté de chaque attribut A;
son domaine D;, ce qui donne 1’écriture :

S=((A1,D1),...,(An,Dy)).

Exemple Un schéma relationnel correspondant a la relation eleve2 ci-dessus est :

Schemaeleve2=((prénom,string), (datenaissance,integer), (sexe,{M,F}), (classe,string))

Définition : [Table ou extension d’une relation| Etant donné un schéma relationnel S comme
défini ci-dessus, une table (ou simplement une relation!) associée & ce schéma est la donnée d’un
ensemble fini de n-uplets, éléments de Dy x --- x D,,. On note R(S) une telle relation pour dire
qu’elle est associée a S. Le nombre m de n-uplets s’appelle le cardinal de la relation.

Exemple Au schéma relationnel S de ’exemple ci-dessus, on peut associer par exemple la table
eleve2 déja donnée, qui est de cardinal 4.

7 Alexis” 1996 | M | "MPSI 17
7 Alexandre” | 1995 | M | "MPSI 17
" Noélie” 1996 | F | "MPSI 2”7
” Arnaud” 1996 | M | "MPSI 27

Remarque 3. Ainsi, sur la table de la relation, le nombre n correspond au nombre de colonnes
du tableau (nombre d’attributs) alors que le cardinal m de la relation correspond au nombre de
lignes du tableau (on dit parfois le nombre de valeurs).

D’une maniere générale, la table d’une relation R(S) ou S = ((A1,D1),...,(A4,,D,)) ressem-
blera donc & ceci (la premiere ligne ne figure pas dans la table, elle est 1& pour mémoire) :

A1,Dy | ... | A;,D; | ... | Ay, D,
t171 tl,j tl,n
avec t; ; € D; pour tout i € [1,m] et j € [1,n].
ti,l c. ti,j C ti,n
ot | | tmi |- | fom

N.B. On a fixé un ordre sur les attributs par commodité ici, mais du point de vue de 'information
cet ordre est sans importance, ce qui compte est que les attributs ont un nom.

etenir : se donner une relation c’est se donner :
e son schéma S avec ses attributs (qui seront les noms des colonnes
de la table qui n’existe pas encore)
o ses éléments (qui sont les lignes de la table que 'on crée).

2.2 Sous-ensembles du schéma S et de la relation R(S) :

Abus de notation : On a dit qu'un schéma S était un n-uplet (A4y,...,A,) d’attributs (deux a
deux distincts). Un tel uplet étant ordonné, on peut définir clairement chaque ligne de la relation
R(S) associée comme un n-uplet. Cependant, il est commode aussi (et indifférent du point de vue
de l'information stockée) de considérer S comme 'ensemble {A;,..., A,} des attributs.

Moralité (appartenance et inclusion dans S5) :

e On se permettra de noter A € S pour dire que A est un attribut du schéma S.

e De méme si p.ex. S=(nom,prénom,adresse, code-postal,ville, tél) on pourra considérer un
sous-ensemble X={nom,prénom, ville} d’attributs et noter (abusivement) X c S.

Les éléments de la relation R(S) : Avec la table donnée plus haut, le quadruplet e=(" Alexis”,1996,” M” ” MPSI
17) est un élément de la relation eleve2=R(Schemaeleve2)
On pourra noter e € R(Schemaeleve2).

Composante d’un élément ¢ € R(S) sur un attribut Ae S :sice R(S)et A€ S, onnote e. A la
composante du n-uplet e associée & l’attribut A. Par exemple si e=(” Alexandre”,1995,”M” ,” MPSI
17) et A="sexe”, alors e. A="M".

Concretement si e est & la ligne i et A & la colonne j, alors e. A est simplement Uentrée (7, j) du
tableau.

Généralisation : composante d’un e € R(S) sur un sous-ensemble {4, ,...A4; } de S : si
X =(4;,...,4;,) cS (ordonnées comme dans S) et e € R(S) on note e(X) = (e.4;,,...,e.4;,).

3 Notion de clé, clé primaire

Définition : [Clé] Soit R(S) une relation de schéma S et K c S un sous-ensemble d’attributs.
On dit que K est une clé pour R(S) si, et seulement si, pour toutes valeurs t1 et t5 de R(.S) telle
que tl(K) = tQ(K) on a t1 = tQ.

De maniére plus informelle : deux lignes distinctes de R(.S) auront donc leur entrées corres-
pondants a la clé qui seront distinctes.

N.B. Comme R(S) est un ensemble, on ne répete jamais deux fois la méme ligne.

Exemple Si on considére la relation R définie par la table suivante (la premiere ligne, qui donne le

prénom nom datenaissance | telbureau
Arthur | duschmol 01042000 0983
schéma de la relation, ne fait pas partie de la table) :| gérard machin 03081983 0332
Arthur | duschmol 15121965 0222
norbert truc 15121965 0983

K=(prénom,nom) n’est pas une clé de R, aucun attribut a lui seul ne l'est ici, en revanche,
K=(nom,datenaissance) ou K=(prénom,nom,telbureau) sont des clés.

Remarque : c’est un exemple tordu. Souvent, on pourra fabriquer une clé avec un seul attribut
(par exemple votre numéro INSEE).
Définition : Clé primaire Lors de la confection d'un schéma relationnel S, on peut imposer
qu'un certain sous-ensemble d’attributs K c S soit toujours une clé pour les relations R(S) qu’on
va fabriquer & partir de S. Cette clé (unique) choisie s’appelle une clé primaire. On dit alors qu’on
impose la contrainte de clé primaire.

Notation : lorsqu’on se donne un tel schéma avec une clé primaire, on souligne les attributs
qui constitue la clé primaire.

Exemple : Sion se donne le schéma S=(prénom,nom,datenaissance, telbureau) alors la relation
R(S) définie par le tableau précédent wiole la contrainte de la clé primaire . En revanche, si on
enléve le deuxieme Arthur duschmol du tableau c’est ok. En pratique, pour un tel schéma avec la
contrainte de clé primaire imposée, on ne pourrait pas rentrer le deuxieme Arthur duschmol dans
la relation.

Remarque 4. Souvent on essaiera de choisir une clé primaire constituée d’un seul attribut.

4 Opérations sur les relations : algebre relationnelle et SQL

4.1 Motivation (double)

e Pour linstant nous n’avons pas introduit les opérations par lesquelles nous allons pouvoir
interroger notre base de données : dans le langage des base de données on parlera de faire des
requétes.

C’est ce que nous allons développer dans ce qui suit, en commengant par les opérations les plus
simples qui correspondent aux requétes les plus simples.

e Ensuite comme nous avons définis deux tables eleve et eleve2, nous verrons dans un second
temps au § 5 comme exploiter conjointement les données de deux tables.

4.2 Introduction aux requétes a la SQL

Considérons la table eleve qui suit le schéma relationnel défini au § 1.2 :

” Alexis” "MPSI 17 ” Jaures”
” Alexandre” | "MPSI 17 ”Daudet”
?Noélie” "MPSI 2” | ”Pompidou”
” Arnaud” "MPSI 2” ”Nevers”
” Arthur” "PCSI 1”7 | ”Lavoisier”
?Géraldine” | "PCSI 17 ? Eiffel”

Supposons qu’on veuille avoir la liste des nom des éleves qui viennent de ”Daudet” ou qui sont
en "PCSI 17. Dans le langage SQL (Structured Query Langage) que nous introduirons plus loin, en
ayant déclaré pour la tables eleve le schéma (nom, classe, lyceeterm) cette liste s’obtiendra
comme suit :

SELECT nom FROM eleve WHERE lyceeterm="Daudet" OR classe="PCSI 1"

” Alexandre”
Le langage renverra alors la table réduite| 7 Arthur”
” Géraldine”

Dans les deux paragraphes qui suivent, nous allons décomposer les opérations en jeu dans cette
requéte comme des opérations sur les tables.

4.3 Opérations sur une table : sélections et projections (algebre rela-
tionnelle et SQL)

Définition : (sélection)

Soit R = R(S) une relation (table) de schéma S = (41,...,4,). Soit A un des attributs de S
et a une valeur dans le domaine de A. On appelle sélection de R selon A = a la relation obtenue
en sélectionnant dans R uniquement les valeurs e de R (i.e. les lignes de la table) pour lesquelles
e.A=a.

Notation la relation obtenue est notée oa-q(R).

On peut aussi écrire, avec les mémes conventions qu’en maths. o4-,(R) = {e € Rle.A = a}

Exemple Avec la table eleve du § 4.2 ci-dessus, 0iyceeterm="Daudet” (eleve) donne la relation :

’ ” Alexandre” ‘ "MPSI 17 ‘ ”Daudet” ‘

Définition : (projection) Soit R = R(.S) une relation de schéma S. Soit X c .S un sous-ensemble
d’attributs. On appelle projection de R selon X la relation 7mx (R) obtenue en ne gardant que les
composantes des valeurs de R sur les attributs de X (cf. § 2.2).

Formellement : 7x(R) = {e(X)|e € R}
Exemple Avec la table eleve § 4.2 ci-dessus, S=(nom, classe, lyceeterm), et par exemple X=(nom,
lyceeterm), on obtient pour 7x (eleve) :

” Alexis” ” Jaures”
” Alexandre” ”Daudet”
"Noélie” ”Pompidou”
” Arnaud” ”Nevers”
” Arthur” ”Lavoisier”
” Géraldine” 7 Eiffel”

Remarque : Du coup le schéma relationnel de mx (R) est X.

Retenir :
e la sélection agit sur les lignes (choix des valeurs),
e la projection sur les colonnes (choix des attributs).

Remarque 5 (L’algébre relationnelle vs SQL). Les notations 04—, ou mx sont les notations de
P’algebre relationnelle. Cette algebre, que nous allons continuer a développer, va nous permettre
de décomposer nos requétes en processus élémentaires.

Concretement, ces requétes se feront avec le langage SQL dont les algorithmes internes resteront
cachés pour nous! Nous ne ferons donc aucune étude de complexité pour ces requétes.

[Dans le langage SQL la commande SELECT permet de faire les deux opérations de sélection et projection.]

Ainsi :
e pour obtenir 7wy (eleve) on rentrera :

SELECT nom, lyceeterm FROM eleve
e pour obtenir oyycecterm="Daudet” (€leve) on rentrera :
SELECT * FROM eleve WHERE lyceeterm="Daudet"

ou le joker * permet d’avoir tous les attributs.

N.B. Ainsi la commande SELECT est la fonction de base pour les requétes d’interrogation de
base de données en SQL. Noter que SELECT * FROM eleve nous affichera toute la table eleve par
exemple.

4.4 Opérations ensemblistes simples sur deux tables ayant le méme
schéma
Les définitions suivantes sont immédiates : il s’agit des définitions ensemblistes usuelles. Définition :
Soient R;(S) et Ro(.S) deux relations (tables) ayant le méme schéma relationnel S. On peut définir

leur réunion Ry U Ry, leur intersection R1 N Ry, leur différence R; — R». Il s’agit encore de relations
associées au schéma S.

Par exemple

si Ry est : et F; est :
NP TMPSIT | _ ” Alexandre” | "MPSI 17 ”Daudet”
ex1s 1 Jaures ”Noélie” "MPSI 2”7 | ”Pompidou”
” Alexandre” ? MPSI 1” ”Daudet” 77Arnaudn) MPSI 277 ”NeVerS”
alors Ry U Ry est : et R1 N Ry est :
” Alexis” "MPSI 17 " Jaures” ’ ” Alexandre” ‘ "MPSI 17 ‘ ”Daudet” ‘
” Alexandre” | "MPSI 17 ?Daudet”
”Noélie” "MPSI 2”7 | ”Pompidou” et Ry — Ry est :
”Arnaud” ”MPSI 2” ”Nevers” ’ ”Alexis” ‘ ”MPSI 1” ‘ ”Jaures” ‘

4.5 Opérations de sélections composées avec des opérations ensemblistes

4.5.1 Retour sur ’exemple donné plus haut : la réunion en algeébre relationnelle et
le OR en SQL

a) Une requéte SQL avec un OR :
On peut reprendre ’exemple écrit en SQL au § 4.2.

SELECT * FROM eleve WHERE lyceeterm="Daudet" OR classe="PCSI 1"

b) Comment interpréter cette requéte en terme d’algébre relationnelle ?

[H s’agit de fabriquer la table réunion des deux tables, chacune obtenue par sélection sur eleve]

Ces deux tables sont : 0jyceeterm="Daudet” (€leve) €t Ociasse=" posii» (eleve).

La requéte s’écrit donc en algebre relationnelle :

¢) Une alternative SQL avec UNION au lieu de OR
Le SQL est muni d’un opérateur UNION qui colle davantage avec 1’algebre relationnelle :

SELECT * FROM eleve WHERE lyceeterm="Daudet" UNION SELECT * FROM eleve WHERE classe="MPSI 1"

Cet exemple doit aussi faire comprendre que le résultat de chaque SELECT est une table et
donc qu’on va pouvoir imbriquer les résultats de plusieurs SELECT.

d) Attention aux parenthéses : ['usage de parentheéses en SQL est un sujet délicat, qui
peut provoquer facilement des erreurs de syntaxe. Ici, il n’en faut pas entre les deux requétes
reliées par un UNION. Voir le paragraphe 4.6 plus loin.

4.5.2 Plusieurs fagons de réaliser une différence ensembliste en SQL

Par exemple si on veut les noms des éleves n’ayant pas fait leur terminale & J. Jaures :

Dans ce qui suit, on suppose d’abord que nom est une clé, autrement dit qu’il n’y a pas deux
éleves ayant le méme nom. Ensuite, on comparera les requétes dans le cas ou nom n’est pas
un clé.

a) Une fagon assez intuitive avec WHERE NOT : on voit ici les conditions de sélection
qui sont apres le WHERE comme des booléens.

b) Par différence de deux tables en algébre relationnelle :

¢) La commande EXCEPT de SQL qui colle a la structure ensembliste :
Ou encore avec EXCEPT qui a l’avantage de vraiment opérer entre deux tables :

SELECT nom FROM eleve EXCEPT SELECT nom FROM eleve WHERE lyceeterm="Jaures"

d) Une autre méthode avec une sous-requéte

SELECT nom FROM eleve WHERE nom NOT IN (SELECT nom FROM eleve WHERE lyceeterm="Jaures")

3

e) Comparer maintenant 'effet des requétes précédentes si Iattribut NOM n’est pas une clé
autrement dit il peut y avoir plusieurs éleves ayant le méme nom.

4.6 Un mot sur les parentheses en SQL

Attention : je ne prétends pas que les regles empiriques que je donne ici soient completement
générales.

Lorsqu’on veut mettre ensemble des requétes (donc plusieurs SELECT) suivant Iarticulation
entre les requétes , il faut ou ne faut pas mettre des parentheses autour de ces requétes sous peine
d’erreur...

e Cas de « conjonctions de coordination en requétes » : si les requétes sont « de méme
niveau reliées par des UNION, INTERSECT, EXCEPT on ne met PAS de parentheses;

e Cas des « conjonctions de subordination entre requétes » : pour les sous-requétes
introduites par exemple par WHERE.. IN ou WHERE .. NOT IN on met la sous-requétes
ntre parentheses.

4.7 Résumé des opérations de comparaison en SQL

On vient de voir que le langage SQL permet de coder 'algebre relationnelle élémentaire et
davantage avec la souplesse des OR en plus des UNION etc. Voici une petite syntheses des opérations
entre valeurs dans les tables (et pas seulement entre tables) que permet SQL

— Les opérateurs de comparaisons mathématiques : <,>,=,<>,>=,<=

— Le test pour savoir si une case du tableau est vide : IS NULL ou IS NOT NULL

— Le test pour savoir si un élément est dans un tableau IN

5 Opérations entre tables de schémas différents : fabrication
d’un lien entre les tables

Les opérations que nous allons définir maintenant permettent de croiser les informations présentes
dans plusieurs tables.

5.1 Produit cartésien

Comme pour I'intersection, la réunion, la définition du produit cartésien de deux relations (deux
tables) suit celle des ensembles avec toutefois une subtilité liée au suivi des attributs.

Union disjointe forcée

Définition : Soit S = (A1,...,A,) et S’ = (By,...,By) deux schéma relationnels pouvant
avoir des attributs communs. On appellera union disjointe et on note S w S le schéma relationnel
(Al, . 7AAn,Bl, e ,Bnl).

N.B. Méme si S et S" ont des attributs communs, on va les distinguer dans SwS’. En pratique,
cela passe par le renommage d’attribut.
Exemple Si S=(nom,classe,lyceeterm) et S’ =(nom,age,sexe) alors :

S¢S’ =(noml,classe,lyceeterm,nom2,age,sexe).

Les deux attributs qui portaient le méme « nom > ont été renommés pour pouvoir les distinguer
dans 'union (voulue disjointe) S'w S’

Application a la déf. du produit cartésien

Définition : Soient R = R(S) et R’ = R'(S”) deux relations. On définit le produit cartésien Rx R’
comme ’ensemble des couples (e,e’) pour e€ R et ¢’ € R’.

Cependant, si S = (A1,...,A,) et 8" = (By,...,B,) alors chaque e € R est un n uplet e =
(a1,...,a,) (représentant une ligne de la table de R) et chaque ¢’ € R’ est un n'-uplet (by,...,b,)
et on identifie naturellement (e,e’) au n + n'-uplet (a1,...,an,b1,...,bpn).

De la sorte R x R’ est une relation associée au schéma Sw S’

Exemple On reprend les exemples du § 1.2. On prend la relation R = eleve associée au schéma
S=(nom,classe,lyceeterm) et définie par la table :

” Alexis” "MPSI 17 ? Jaures”
” Alexandre” | "MPSI 17 ”Daudet”
”Noélie” "MPSI 2” | ”Pompidou”

On prend la relation R’ associée au schéma S’=(nom,annee-naissance,sexe) et définie par la
table

” Alexis” 1996 | M
?Alexandre” | 1995 | M
”Noélie” 1996 | F

Alors le produit cartésien R x R’ est associé & 1'union disjointe des schémas (en renommant les
attributs de méme nom) S w S'=(noml,classe,lyceeterm,nom2,datenaissance,sexe) et défini par la
table

7 Alexis” "MPSI 17 ” Jaures” ” Alexis” 1996 | M
” Alexis” "MPSI 17 ” Jaures” ” Alexandre” | 1995 | M
” Alexis” "MPSI 17 ” Jaures” "Noélie” 1996 | F
” Alexandre” | "MPSI 17 ”Daudet” ” Alexis” 1996 | M
” Alexandre” | "MPSI 17 ”Daudet” ” Alexandre” | 1995 | M
” Alexandre” | "MPSI 17 ”Daudet” " Noélie” 1996 | F
”Noélie” "MPSI 2”7 | ”Pompidou” ” Alexis” 1996 | M
”Noélie” "MPSI 2” | ”Pompidou” | ”Alexandre” | 1995 | M
”Noélie” "MPSI 2”7 | ”Pompidou” "Noélie” 1996 | F

Remarque 6. Si R est de card. m (ce qui signifie que la table de R a m lignes) et R’ est de
cardinal m' alors R x R’ est de cardinal

Scholie : A premiere vue, on se dit que ce produit cartésien fabrique des tables monstrueuses,
pas tres utiles. Si elles peuvent effectivement devenir monstrueuses 2, elles sont au moins utiles du

2. et donc si possible a éviter du point de vue de 'efficacité informatique

point de vue conceptuel, car a partir de celles-ci on va pouvoir sélectionner, projeter, pour fabriquer
une table qui résultera vraiment d’un lien qu’on veut établir entre deux relations. C’est le sens de
Popération de jointure qu’on va expliquer ci-dessous.

5.2 Opération de jointure

Définition : Soient Ry = R1(S1) et Re = Ra(S2) deux relations et si A est un attribut de Sy
et B est un attribut de Sy ayant le méme domaine alors on définit la jointure de R; et Rs selon
A = B, comme :

Rl AD—qB R2 = {(6, 6,) € Rl X R2|€.A = e'.B}

De maniere moins formelle : pour fabriquer cette jointure, on prend la table Ry x Ry et on ne
garde que les lignes telles que 'entrée correspondant a I'attribut A coincide avec celle correspondant
a lattribut B.

Exemple On va utiliser la jointure pour relier les deux relations eleve et eleve2 que nous avons
constituées pour I'instant. Bien stir on va considérer la relation :

eleve3d=eleve 5 eleve?2.
eleve.nom=eleve2.nom

On obtient comme table de la relation :

’Alexis” "MPSI 1”7 ? Jaures” ” Alexis” 1996 | M
” Alexandre” | "MPSI 17 ?Daudet” ” Alexandre” | 1995 | M
?Noélie” "MPSI 2”7 | ”Pompidou” ”Noélie” 1996 | F

A ce stade pour avoir une relation eleve3 plus jolie, on peut effectuer une projection :

eleveB:T‘-noml,classe,lyceeterm,datenaissance,seze(eleve 3)
ce qui enlevera la colonne inutile

Code SQL pour la jointure (deux méthodes) Vous aurez noté qu’ en algebre relationnelle,
on a mis les préfixes eleve.nom et eleve2.nom pour la jointure.
(M1) En SQL, la jointure peut s’effectuer ainsi :

SELECT eleve.nom, eleve.classe, eleve.lyceeterm, eleve2.datenaissance,eleve2.sexe
FROM eleve, eleve2
WHERE eleve.nom=eleve2.nom -- la condition de jointure

Remarque 7. On peut aussi introduire des abréviations pour citer les tables qu’on utilise, comme
suit :

SELECT e.nom, e.classe, e.lyceeterm, e2.datenaissance,e2.sexe —-- projection
FROM eleve e, eleve2 e2 -- introduction des abréviations séparée du mot par une espace
WHERE e.nom=e2.nom -- vous avez compris que les deux -- désignent le début d’un commentaire

(M2) On peut aussi utiliser 'opérateur JOIN

SELECT eleve.nom, eleve.classe, eleve.lyceeterm, eleve2.datenaissance,eleve2.sexe
FROM eleve JOIN eleve2 ON eleve.nom=eleve2.nom -- on pourrait mettre un WHERE apreés

Remarque 8. A quoi bon avoir cette commande JOIN alors qu’on peut tout faire avec le WHERE
? Une raison est la lisibilité des scripts. Lorsqu’on a des scripts avec beaucoup de jointures et des
sélections, il est bon de savoir ce qui est jointure et ce qui est sélection.

Remarque 9. (Algébre relationnelle vs SQL)

e Dans le cadre de ’algebre relationnelle, la jointure se déduit logiquement des autres opérations
(produit cartésien, sélection).

e En revanche, pour les logiciels de gestion de base de donnée, la jointure est programmée de
maniere optimisée sans passer par le calcul du produit cartésien plus cotiteux. Pour avoir le produit
cartésien en SQL, il suffit d’enlever le WHERE dans le code précédent.

10

6 Fonctions et agrégation : calculs sur les tables en SQL

6.1 Un exemple élémentaire de fonction : calcul de moyenne

Disons qu’on dispose d’une table elevenote avec les attributs (nom, classe,note) :

TABLE elevenote | Recherche | | Tout voir | | Ajouter une nouvelle entrée | | Duplicate | | Editer les entrées sélectionnées | | Supprimer le
rowid nom prenom classe note

1 |lruc |nono |1 |19

2 |chose |Iea |1 |10

3 |zz |alchoum |1 |5

toujy jojo

o
]
I
=

Si on veut la moyenne (average en anglais) des notes des éleves de la classe 1 :
SELECT avg(note) FROM elevenote WHERE classe=1
Le résultat étant un nombre, on peut aussi utiliser le résultat pour faire des comparaisons :

SELECT * FROM elevenote WHERE note>=(SELECT avg(note) FROM elevenote)

6.2 Cinqg fonctions a connaitre :

comptage | COUNT
max MAX
Pour les exercices, on n’utilisera que les cing fonctions suivantes : min MIN
somme SUM
moyenne AVG
On a vu un exemple avec AVG ci-dessus. Un exemple avec COUNT qui va compter le nombre de
lignes du tableau réalisant une condition, comme ceci par exemple si on veut le nombre d’éleves
ayant une note en dessous de la moyenne (strictement), avec COUNT () ou bien COUNT (nom) c’est
pareil ici.

Précision sur le COUNT :

a) La différence entre COUNT (*) et COUNT (nom d’attribut) : une ligne olt Pattribut correspon-
dant ne sera pas renseigné (case vide) ne sera pas comptée.

b) L’intérét du COUNT (DISTINCT attribut) : on ne comptera que les lignes correspondant &
des valeurs distinctes des attributs.

Voir T.P. pour des exemples.

Remarque 10. Fonctions symétriques Toutes les fonctions qui s’appliquent a des tableaux

sont symétriques i.e. le résultat ne change pas si on permute les variables en entrée.

6.3 Les agrégations : groupement GROUP BY

Dans ’exemple précédent, on veut maintenant faire la moyenne sur chaque classe. On doit donc
regrouper les éleves d’une méme classe puis faire une opération sur chacun de ces regroupements
(ou agrégats).

En SQL cela donne :

SELECT classe, avg(note) FROM elevenote GROUP BY classe

11

Entrez les commandes SQL

SELECT classe, avg{note) FROM elevencte CROUP BY classe

| Exécuter les commandes SQL | | Actions ¥ | Derniére erreur: not an error

classe avg(note)

1 11.333333333333334
2 [115

On peut aussi donner un nom a la colonne avg(note) ainsi créée pour y faire référence par la
suite, en utilisant ’instruction AS :

SELECT classe, avg(note) AS moyenne FROM elevenote GROUP BY classe

D’une maniére plus générale : si on a une relation R avec (notamment) des attributs
Aq,...,A,, et By,...,B,, et fi,..., f;n des fonctions d’opération sur les attributs By, ..., B,, res-
pectivement, on peut :

e regrouper les valeurs de R qui sont identiques sur les attributs Ay,..., A4,

e puis définir des nouveaux attributs f;(B;) pour ces valeurs regroupées.

En SQL la syntaxe sera :

(SELECT A1,...,An, £1(B1),..,fn(Bm) FROM R GROUP BY Al,.., An]

N.B. Comme indiqué dans la formule du cartouche : tous les attributs mis apres le GROUP BY
doivent aussi figurer dans le SELECT.

Voyons cela sur une table NotesCB plus compliquée :

nom filiere classe
machin |mpsi |2
truc |mpsi 1
chose [mpsi |2
bidule |mpsi |2
duschmol |pcsi |2
tytotit |pcsi 1
uriteu |pcsi |2
reuhnge |PC5I |2
Exercice :

(i) Pour avoir la moyenne des MPSI et des PCST :
(i) Pour avoir la moyenne de chaque classe au sens usuel "MPSI 17, etc...

(iii) Pour avoir la moyenne de la MPSI 1 et celle de la PCSI 1 :

(iv) Transition avec le paragraphe suivant : si on veut la liste des classes dont la moyenne est
supérieure ou égale a 87

SELECT * FROM (SELECT filiere, classe, avg(note) AS moyenne
FROM NotesCB GROUP BY filiere, classe) WHERE moyenne >=8

6.4 Selection en aval : HAVING

Dans la derniere question de ’exercice précédent, on fait une requéte avec une condition portant
sur le résultat d’une fonction (ici avg). On a déja rencontré cela & la fin du § 6.1, mais la différence
ici est qu’on aurait envie d’écrire WHERE avg(note)>8. Mais avg(note) n’est pas une colonne de
notre table a ce stade. On pourrait faire cela en deux temps, en créant une colonne moyenne comme
expliqué au § 6.3.

Cela donne le résultat donné fin du (iv)

12

Une autre fagon est d’utiliser le HAVING qui code ce qu’on appelle logiquement la sélection en
aval (apres application de la fonction).

Le code SQL correspondant est :

SELECT filiere, classe, avg(note) FROM NotesCB GROUP BY filiere,classe

HAVING avg(note)>8.

7 De 'importance des sous-requétes

Le fait de pouvoir utiliser le résultat d’une requéte dans une autre requéte est évidemment
essentiel. On notera qu’on a rencontré deux types de sous-requétes :

7.1 Les sous-requétes qui renvoient une nombre

Pour celles-ci, on peut utiliser leur résultat avec =, >,>=,<=,< ou méme dans un calcul. C’était
le cas avec

SELECT * FROM elevenote WHERE note>=(SELECT avg(note) FROM elevenote)

7.2 Les sous-requétes qui renvoient une table

On utilise leur résultat avec IN ou bien NOT IN, ou bien avec FROM comme vu ci-dessus!

13

8 Memento SQL

8.1 Comparaison en SQL

— Les opérateurs de comparaisons mathématiques : <,>,=,<>,>=,<=
— Le test pour savoir si une case du tableau est vide : IS NULL ou IS NOT NULL
— Le test pour savoir si un élément est dans un tableau IN

8.2 Opérations ensemblistes

UNION, INTERSECT, EXCEPT a mettre en perspective avec OR, AND, WHERE NOT, WHERE NOT
IN.
8.3 Jointure

FROM tablel, table2 WHERE tablel.truc=table2.chose ou bien

FROM tablel JOIN table2 ON tablel.truc=table2.chose

8.4 Fonctions de calculs par agrégation

COUNT, MAX, MIN, SUM, AVG, a utiliser avec des GROUP BY si on ne veut pas tout compter.

8.5 Présentation des résultats :
8.5.1 SELECT DISTINCT

A la suite d’une projection, il se peut qu’en SQL, on ait plusieurs fois la méme ligne qui apparait.
Exemple 7
Si on veut éviter cela, on peut utiliser SELECT DISTINCT.

8.5.2 ORDER BY

Si 'on veut afficher la table elevenote du § 6.3 par notes décroissantes, on peut faire.

SELECT * FROM NotesCB ORDER BY note DESC -- sans DESC 1’ordre est croissant par défaut.

8.5.3 LIMIT

On peut demander de ne pas afficher plus de N valeurs avec LIMIT N a la fin de la requéte.

14

Table des matiéres

1

Le modele relationnel : son intérét

1.1 La limite des structures de données de type liste pour la recherche d’information :
un exemple . ..o

1.2 Représentation dans le modele relationnel

1.3 Le lien entre les tables : répercuter les modifications

Définitions plus générales (abstraites) sur les relations
2.1 Deux définitions : schéma relationnel et relation proprement dite
2.2 Sous-ensembles du schéma S et de la relation R(S) :

Notion de clé, clé primaire

Opérations sur les relations : algébre relationnelle et SQL
4.1 Motivation (double) L
4.2 Introduction aux requétes a la SQL
4.3 Opérations sur une table : sélections et projections (algebre relationnelle et SQL) . .
4.4 Opérations ensemblistes simples sur deux tables ayant le méme schéma
4.5 Opérations de sélections composées avec des opérations ensemblistes
4.5.1 Retour sur ’exemple donné plus haut : la réunion en algebre relationnelle et
leORen SQL o e e
4.5.2 Plusieurs fagons de réaliser une différence ensembliste en SQL
4.6 Un mot sur les parenthéses en SQL oo oo
4.7 Résumé des opérations de comparaison en SQL Lo Lo L

Opérations entre tables
5.1 Produit cartésien
5.2 Opération de jointure L

Fonctions et agrégation : calculs sur les tables en SQL

6.1 Un exemple élémentaire de fonction : calcul de moyenne
6.2 Cing fonctions a connaitre : L
6.3 Les agrégations : groupement GROUP BY
6.4 Selection en aval : HAVING it e

De 'importance des sous-requétes
7.1 Les sous-requétes qui renvoient une nombre
7.2 Les sous-requétes qui renvoient une table L.

Memento SQL

8.1 Comparaison en SQL

8.2 Opérations ensemblistes

8.3 Jointure

8.4 Fonctions de calculs par agrégation L o oL

8.5 Présentation des résultats : Lo
8.5.1 SELECT DISTINCT e e
8.5.2 ORDER BY e
8.5.3 LIMIT

15

10

11
11
11
11
12

13
13
13

