T.P. 9 : nombres complexes et une fractale

1 Introduction

A la fin de ce TP, si tout va bien, vous saurez obtenir des dessins de ce genre avec PYTHON :

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

L’idée de base de la construction d’une courbe de Von Koch, sur le dessin suivant a partir du
segment [A,B] ¢ C avec A d’affixe 0 et B d’affixe 1, est de transformer ce segment en la ligne
brisée suivante ou C' est d’affixe 1/3, E d’affixe 2/3 et CDE est équilatéral :

03 D
024

0.14

-0.14

Ensuite, on itére cette opération sur chacun des quatre segments de la figure précédente, ce qui
donne :

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

0.0 0.2 0.4 0.6 0.8 1.0

On peut alors recommencer autant de fois qu’on veut, par exemple apres cinq itérations :

0.5

0.3

0.2

0.1

0.0

-0.1

-0.2

0.0 0.2 0.4 0.6 0.8 1.0

2 Informations sur les manipulations de complexes en Py-
THON :

Il y a au moins deux facons de rentrer un nombre complexe en PYTHON :

>>>z=1+2j
>>>z=complex(1,2)

En pratique lentrée sous forme a+bj n’est pas trés commode (syntaxe pénible : coller la partie
imaginaire & j ...), et on recommande plutdt la commande complex.

Pour un nombre complexe z, avec z.real et z.imag (sans parentheéses) on aura resp. la partie
réelle et la partie imaginaire de z.
Conventions pour numpy et matplotlib.pyplot : dans tout ce qui suit, on convient qu’on a
fait

import numpy as np
import matplotlib.pyplot as plt

On peut aussi remplacer ces deux importations par une seule, celle de pylab :
import pylab as pl

On rappelle que pour tracer un segment [A, B] si A = (1,0) et B = (2,3) avec la commande
plt.plot on doit créer des listes (ou un tableau numpy) X=[1,2] et Y=[0,3] puis les passer en
argument a plot : plt.plot(X,Y).

Mais si A=complex(1,0) et B=complex(2,3), et L=[A,B] (liste de complexes) on peut aussi
définir directement X=np.real(L) et Y=np.imag(L) qui fabriquent les tableaux des parties réelles
et imaginaires respectivement (dans l’esprit des commandes numpy qui s’appliquent entrée par
entrée a un tableau) et ensuite faire plt.plot(X,Y).

[Pour obtenir Uaffichage dans un repére orthonormé, utilisez plt.axis(’equal’)]

3 Travail a faire pour obtenir les courbes de Von Koch

a) Ecrire une fonction TS (pour Transformation Segment), qui prend en argument deux com-
plexes A et B, et renvoie la liste formée des complexes A,C,D,E de la construction de la
courbe de Von Koch donnée au § 1.

N.B. 1 : Les coordonnées complexes de C, D, E sont relatives & celles de A et B.

N.B. 2 : on ne met pas B dans la liste, on va voir pourquoi apres : pour coller les listes les
unes a la suite des autres.

b) Fonction donnant une transformation globale

Ecrire une fonction TG (pour Transformation Globale) qui prend en argument une liste L de
nombres complexes et qui retourne une liste qu’on appellera LT dans la fonction, qui est la
liste obtenue & partir de L en intercalant entre deux nombres successifs A,B de la liste, les
nombres C,D,E de la construction de Von Koch.

¢) Fonction d’affichage avec choix du nombre d’itérations
Ecrire une fonction VonKochl qui prend comme argument obligatoire un entier n et comme
argument facultatif une liste L de nombres complexes, avec la valeur par défaut L=[0,1] et
qui affiche la courbe de Von Koch obtenue en n itérations & partir du segment L grace a la
fonction TG précédente.

d) Passage de la courbe de Von Koch au triangle de Von Koch
En appliquant la fonction VonKochl précédente aux trois cotés d’un triangle équilatéral,
obtenir le flocon de neige de 'introduction.

4 Comme introduction a option info. : récursion

4.1 Définition et exemple

Définition Une fonction récursive est une fonction f telle que le code de définition de £
contienne un (ou plusieurs) appel(s) & £. Ces appels sont appelés appels récursifs.

Comme on va le voir dans les exemples ci-dessous, cette méthode de définition de fonction est
trés proche de la notion de définition par récurrence en maths.

0l'=1,
VneN nl=n x(n-1)!
Une déf. récursive de la factorielle en PYTHON, calquée sur la déf. mathématique précédente,
est la suivante :

Exemple : En maths, on peut définir la factorielle d’un entier n € N par

def fact(n):
if n==
return 1
else :
return n*fact(n-1)

Remarque : On utilise la méme syntaxe de déf. de fonctions : il n’y pas de déclaration particuliere
pour les fonctions récursives (ce sera différent en Caml).

4.2 Le von Koch en récursif

On peut alors écrire le programme donnant le flocon de Von Koch en récursif comme suit (code
a compléter) ;

def KochRec(n,A=complex(0,0),B=complex(1,0)):
alpha=np.pi/3
R=np.exp(complex(0,alpha))
if n==0:
X=np.real([A,B])
Y=np.imag([A,B])
pl.plot(X,Y)
pl.axis(’equal’)
pl.show()
else :
Ecart=(B-A)/3
C=A+Ecart
E=B-Ecart

D=C+R*Ecart
Puis plusieurs appels de KochRec(n-1, ..) & compléter.

4.3 Le chou fleur

En adaptant ce qui précede réaliser successivement les figures suivantes :

18 T T T T T T
161
201
14}
12t
15¢
1.0}
0.8
10r
0.6
0.4
0.5
0.2
0.0 . . .
-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0
3.0
2.5+ 8
201 8
15} 8
1.0} 8
0.5 8
0.0 L L . L L
-1.0 -0.5 0.0 0.5 1.0 15 2.0

5 Tracés de lignes polygonales a partir des angles successifs

On veut écrire une fonction trace qui prend en argument une liste (ou tableau) de nombres
[ao,...,an-1] et trace la courbe polygonale (Mo, ..., M,) telle que M_; = (0,0), My = (1,0) et
e pour tout k € [0,n - 1] la distance entre M et My, vaut 1,

e pour tout k € [0,n — 1] Vangle (M1 My, My Mjy,1) est congru & ay modulo 27.
a) On note 2y, les affixes des points My,. Justifier qu’on peut écrire zi,1 = 25, +e'%* et exprimer
0, a l’aide des a;.
b) En déduire un code de la fonction trace demandée.
¢) A l'aide de la fonction trace précédente, comment faire tracer un polygone régulier & n
cOtés 7
Pour n suffisamment grand, que voit-on a I’écran ?

6 Application a la courbe du dragon

La courbe que nous allons construire, appelée courbe du dragon est une ligne polygonale
(My, ..., M,) du méme type qu’au paragraphe précédent, ott 'on tourne & chaque fois d’un angle
ay, constant en valeur absolue, mais dont le signe change, suivant une regle que ’on va préciser.

Dans ce qui suit, on prendra ay = exm/2.

Reste a définir la liste T = [eg, .. .,&n].

On construit T par récurrence.

e L’initialisation est le tableau Ty = [1].

e Pour passer de ’étape k a 1’étape k + 1, on prend le tableau Ty obtenu a I’étape k qui est
disons de taille ng et on fabrique le tableau Ty, de taille 2n; + 1 défini comme suit :

Ty4+1 commence par un 1, ensuite on met la premiere entrée de Ty, suivie d’un —1, puis la seconde
entrée de Ty suivie d’un +1, puis la troisieme entrée de T} suivie d'un -1 etc, jusqu’a la derniere
entrée de T}, suivie soit d’un 1 soit d’un —1 suivant la parité de ng.

Exemple : on met en gras les entrées du tableau précédent; 77 =[1,1,-1] puis T5 = [1, 1,
-1,1, 1,-1, -1].

a) Ecrire une fonction dragon qui recoit un entier n et qui renvoie la liste 7, ou toutes les
entrées sont multipliées par /2.
Remarque : on pourra utiliser une fonction auxiliaire iter pour passer de Ty & Tgy1.

b) A laide de la fonction dragon et de la fonction trace obtenir la courbe du dragon.

Exemple : avec trace(dragon(15)) on obtient (en enlevant les axes avec plt.axis("off"))

100

—100

=150

—200 - : - - - - -
—-100 50 0 50 100 150 200 250 300

