
T.P. 9 : nombres complexes et une fractale

1 Introduction

A la fin de ce TP, si tout va bien, vous saurez obtenir des dessins de ce genre avec Python :

0.0 0.5 1.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

L’idée de base de la construction d’une courbe de Von Koch, sur le dessin suivant à partir du
segment [A,B] ⊂ C avec A d’affixe 0 et B d’affixe 1, est de transformer ce segment en la ligne
brisée suivante où C est d’affixe 1/3, E d’affixe 2/3 et CDE est équilatéral :

Ensuite, on itère cette opération sur chacun des quatre segments de la figure précédente, ce qui
donne :

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

On peut alors recommencer autant de fois qu’on veut, par exemple après cinq itérations :

1

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

2 Informations sur les manipulations de complexes en Py-
thon :

Il y a au moins deux façons de rentrer un nombre complexe en Python :

>>>z=1+2j

>>>z=complex(1,2)

En pratique l’entrée sous forme a+bj n’est pas très commode (syntaxe pénible : coller la partie
imaginaire à j ...), et on recommande plutôt la commande complex.

Pour un nombre complexe z, avec z.real et z.imag (sans parenthèses) on aura resp. la partie
réelle et la partie imaginaire de z.
Conventions pour numpy et matplotlib.pyplot : dans tout ce qui suit, on convient qu’on a
fait

import numpy as np

import matplotlib.pyplot as plt

On peut aussi remplacer ces deux importations par une seule, celle de pylab :

import pylab as pl

On rappelle que pour tracer un segment [A,B] si A = (1,0) et B = (2,3) avec la commande
plt.plot on doit créer des listes (ou un tableau numpy) X=[1,2] et Y=[0,3] puis les passer en
argument à plot : plt.plot(X,Y).

Mais si A=complex(1,0) et B=complex(2,3), et L=[A,B] (liste de complexes) on peut aussi
définir directement X=np.real(L) et Y=np.imag(L) qui fabriquent les tableaux des parties réelles
et imaginaires respectivement (dans l’esprit des commandes numpy qui s’appliquent entrée par
entrée à un tableau) et ensuite faire plt.plot(X,Y).�� ��Pour obtenir l’affichage dans un repère orthonormé, utilisez plt.axis(’equal’).

3 Travail à faire pour obtenir les courbes de Von Koch

a) Ecrire une fonction TS (pour Transformation Segment), qui prend en argument deux com-
plexes A et B, et renvoie la liste formée des complexes A,C,D,E de la construction de la
courbe de Von Koch donnée au § 1.

N.B. 1 : Les coordonnées complexes de C,D,E sont relatives à celles de A et B.

N.B. 2 : on ne met pas B dans la liste, on va voir pourquoi après : pour coller les listes les
unes à la suite des autres.

2

b) Fonction donnant une transformation globale

Ecrire une fonction TG (pour Transformation Globale) qui prend en argument une liste L de
nombres complexes et qui retourne une liste qu’on appellera LT dans la fonction, qui est la
liste obtenue à partir de L en intercalant entre deux nombres successifs A,B de la liste, les
nombres C,D,E de la construction de Von Koch.

c) Fonction d’affichage avec choix du nombre d’itérations

Ecrire une fonction VonKoch1 qui prend comme argument obligatoire un entier n et comme
argument facultatif une liste L de nombres complexes, avec la valeur par défaut L=[0,1] et
qui affiche la courbe de Von Koch obtenue en n itérations à partir du segment L grâce à la
fonction TG précédente.

d) Passage de la courbe de Von Koch au triangle de Von Koch

En appliquant la fonction VonKoch1 précédente aux trois côtés d’un triangle équilatéral,
obtenir le flocon de neige de l’introduction.

4 Comme introduction à l’option info. : récursion

4.1 Définition et exemple

Définition Une fonction récursive est une fonction f telle que le code de définition de f

contienne un (ou plusieurs) appel(s) à f. Ces appels sont appelés appels récursifs.

Comme on va le voir dans les exemples ci-dessous, cette méthode de définition de fonction est
très proche de la notion de définition par récurrence en maths.

Exemple : En maths, on peut définir la factorielle d’un entier n ∈ N par

⎧⎪⎪
⎨
⎪⎪⎩

0! = 1,

∀n ∈ N∗, n! = n × (n − 1)!

Une déf. récursive de la factorielle en Python, calquée sur la déf. mathématique précédente,
est la suivante :

def fact(n):

if n==0 :

return 1

else :

return n*fact(n-1)

Remarque : On utilise la même syntaxe de déf. de fonctions : il n’y pas de déclaration particulière
pour les fonctions récursives (ce sera différent en Caml).

4.2 Le von Koch en récursif

On peut alors écrire le programme donnant le flocon de Von Koch en récursif comme suit (code
à compléter) ;

def KochRec(n,A=complex(0,0),B=complex(1,0)):

alpha=np.pi/3

R=np.exp(complex(0,alpha))

if n==0:

X=np.real([A,B])

Y=np.imag([A,B])

pl.plot(X,Y)

pl.axis(’equal’)

pl.show()

else :

Ecart=(B-A)/3

C=A+Ecart

E=B-Ecart

3

D=C+R*Ecart

Puis plusieurs appels de KochRec(n-1, ..) à compléter.

4.3 Le chou fleur

En adaptant ce qui précède réaliser successivement les figures suivantes :

4

5 Tracés de lignes polygonales à partir des angles successifs

On veut écrire une fonction trace qui prend en argument une liste (ou tableau) de nombres
[a0, . . . ,an−1] et trace la courbe polygonale (M0, . . . ,Mn) telle que M−1 = (0,0), M0 = (1,0) et

● pour tout k ∈ ⟦0, n − 1⟧ la distance entre Mk et Mk+1 vaut 1,

● pour tout k ∈ ⟦0, n − 1⟧ l’angle
̂

(
ÐÐÐÐÐ→
Mk−1Mk,

ÐÐÐÐÐ→
MkMk+1) est congru à ak modulo 2π.

a) On note zk les affixes des points Mk. Justifier qu’on peut écrire zk+1 = zk+e
iθk et exprimer

θk à l’aide des ai.

b) En déduire un code de la fonction trace demandée.

c) A l’aide de la fonction trace précédente, comment faire tracer un polygone régulier à n
côtés ?

Pour n suffisamment grand, que voit-on à l’écran ?

6 Application à la courbe du dragon

La courbe que nous allons construire, appelée courbe du dragon est une ligne polygonale
(M0, . . . ,Mn) du même type qu’au paragraphe précédent, où l’on tourne à chaque fois d’un angle
ak constant en valeur absolue, mais dont le signe change, suivant une règle que l’on va préciser.

Dans ce qui suit, on prendra ak = εkπ/2.
Reste à définir la liste T = [ε0, . . . , εn].
On construit T par récurrence.
● L’initialisation est le tableau T0 = [1].
● Pour passer de l’étape k à l’étape k + 1, on prend le tableau Tk obtenu à l’étape k qui est

disons de taille nk et on fabrique le tableau Tk+1 de taille 2nk + 1 défini comme suit :
Tk+1 commence par un 1, ensuite on met la première entrée de Tk, suivie d’un −1, puis la seconde

entrée de Tk suivie d’un +1, puis la troisième entrée de Tk suivie d’un −1 etc, jusqu’à la dernière
entrée de Tk suivie soit d’un 1 soit d’un −1 suivant la parité de nk.

Exemple : on met en gras les entrées du tableau précédent ; T1 =[1,1,-1] puis T2 = [1, 1,
-1,1, 1,-1, -1].

a) Ecrire une fonction dragon qui reçoit un entier n et qui renvoie la liste Tn où toutes les
entrées sont multipliées par π/2.

Remarque : on pourra utiliser une fonction auxiliaire iter pour passer de Tk à Tk+1.

b) A l’aide de la fonction dragon et de la fonction trace obtenir la courbe du dragon.

Exemple : avec trace(dragon(15)) on obtient (en enlevant les axes avec plt.axis("off"))

5

