
T.P. 10 : Enveloppes convexes dans le plan

Ce T.P. a pour objectif de calculer des enveloppes convexes de nuages de points dans le plan
affine, un grand classique de la géométrie algorithmique. On rappelle qu’un ensemble C ⊂ R2 est
convexe si et seulement si pour toute paire de points p, q ∈ C le segment de droite [p, q] est inclus
dans C. L’enveloppe convexe d’un ensemble P ⊂ R2, notée Conv(P), est le plus petit convexe
contenant P . 1 Dans le cas où P est un ensemble fini (appelé nuage de points), le bord de Conv(P)

est un polygone convexe dont les sommets appartiennent à P , comme illustré dans la figure 1.

Figure 1– Un nuage de points, numérotés de 0 à 11 et le bord de son enveloppe convexe.

Dans ce sujet, nous allons écrire un algorithme de calcul du bord de l’enveloppe convexe d’un
nuage de points P dans le plan affine. Cette algorithme, dit algorithme du paquet cadeau, consiste
à envelopper le nuage de points progressivement en faisant pivoter une droite tout autour.

On verra que le temps d’exécution de cet algorithme est majoré par une constante fois nm,
où n désigne le nombre total de points de P et m le nombre de points de P appartenant au
bord de Conv(P). Rappelons que le temps d’exécution d’un programme A (fonction ou procédure)
est le nombre d’opérations élémentaires (comparaisons, additions, soustractions, multiplications,
divisions, affectations, etc) nécessaires à l’exécution de A. Sauf mention contraire dans l’énoncé du
sujet, le candidat n’aura pas à justifier des temps de calculs de ses programmes. Toutefois, il devra
veiller à ce que ces derniers ne dépassent pas les bornes prescrites.

Dans toute la suite on supposera que le nuage de points P est de taille n ≥ 3 et en
position générale, c’est-à-dire qu’il ne contient pas 3 points distincts alignés.

Ces hypothèses vont permettre de simplifier les calculs en ignorant les cas pathologiques comme
par exemple la présence de 3 points alignés sur le bord de l’enveloppe convexe. Nos programmes
prendront en entrée un nuage de points P dont les coordonnées sont stockées dans un tableau tab
à 2 dimensions, comme dans l’exemple ci-dessous qui contient les coordonnées du nuage de points
de la figure 1.

i \j 0 1 2 3 4 5 6 7 8 9 10 11
0 6 1 1 4 4 5 5 0 7 8 11 13
1 -1 4 8 1 4 9 6 -1 2 5 6 1

1. Question de maths : pourquoi cela existe-t-il ?

1

Précisons que les coordonnées, supposées entières, sont données dans une base orthonormée du
plan, orientée dans le sens direct. La première ligne du tableau contient les abscisses, tandis que
la deuxième contient les ordonnées. Ainsi, la colonne d’indice j contient les deux coordonnées du
point d’indice j. Ce dernier sera nommé pj dans la suite.
N.B. Le tableau tab prend en Python la forme :

d’une liste de listes :

tab=[[6,1,1,4,4,5,5,0,7,8,11,13],

[-1,4,8,1,4,9,6,-1,2,5, 6, 1]]

ou d’un tableau numpy.

tab=np.array([[6,1,1,4,4,5,5,0,7,8,11,13],

[-1,4,8,1,4,9,6,-1,2,5, 6, 1]])

Partie I. Préliminaires

Question 1. Ecrire une fonction plusBas(tab) qui prend en paramètre un tableau tab de taille
2 × n et qui renvoie l’indice j du point le plus bas (c’est-à-dire de plus petite ordonnée) parmi les
points du nuage P . En cas d’égalité, votre fonction devra renvoyer l’indice du point de plus petite
abscisse parmi les points les plus bas.

Sur le tableau exemple précédent, le résultat de la fonction doit être l’indice 7.

Dans la suite, nous aurons besoin d’effectuer un seul type de test géométrique : celui de l’orien-
tation.

Définition 1 Etant donnés trois points pi,pj, pk du nuage P , distincts ou non, le test d’orientation
renvoie +1 si la séquence (pi, pj , pk) est orientée positivement, −1 si elle est orientée négativement,
et 0 si les trois points sont alignés (c’est-à-dire si deux au moins sont égaux d’après l’hypothèse de
position générale).

Pour déterminer l’orientation de (pi, pj , pk), il suffit de calculer l’aire signée du triangle, comme
illustré sur la figure ci-dessous. Cette aire est la moitié du déterminant de la matrice 2 × 2 formée
par les coordonnées des vecteurs ÐÐ→pipj et ÐÐ→pipk.

Figure 2 – Test d’orientation sur (pi, pj , pk) : positif à gauche, nul au centre, négatif à droite

Question 2 Sur le tableau précédent, donner le résultat du test d’orientation pour les choix
d’indices suivantes :

— i = 7, j = 3, k = 4
— i = 8, j = 9, k = 10.

Question 3 Ecrire une fonction orient(tab,i,j,k) qui prend en paramètres le tableau tab et trois
indices de colonnes, potentiellement égaux, et qui renvoie le résultat (-1,0, ou +1) du test d’orien-
tation sur la séquence (pi, pj , pk) de points de P .

Partie II. L’algorithme du paquet cadeau

Cet algorithme a été proposé par R. Jarvis en 1973. Il consiste à envelopper peu à peu le nuage
de points P dans une sorte de paquet cadeau, qui à la fin du processus est exactement le bord de
Conv(P). On commence par insérer le point de plus petite ordonnée (et parmi ceux-ci le plus à
gauche, celui d’indice 7 dans l’exemple précédent) dans le paquet cadeau, puis à chaque étape de
la procédure on sélectionne le prochain point du nuage P à insérer.

La procédure de sélection fonctionne comme suit. Soit pi le dernier point inséré dans le paquet
cadeau à cet instant. Par exemple i = 10 dans l’exemple de la figure 3.

Considérons la relation binaire ⪯ définie sur l’ensemble P ∖ {pi} par :

pj ⪯ pk ⇔ orient (tab,i,j,k) ≤ 0.

2

Figure 3 – Mise à jour du paquet cadeau après insertion du point p10.

Question 4 (de maths, admise pour le T.P.). Justifier brièvement le fait que ⪯ est une relation
d’ordre total sur l’ensemble P ∖ {pi} c’est-à-dire :

— (réflexivité) pour tout j ≠ i, pj ⪯ pj ,
— (antisymétrie) pour tous j, k ≠ i, pj ⪯ pk et pk ⪯ pj implique pj = pk
— (transitivité) pour tous j, k, l ≠ i, pj ⪯ pk et pk ⪯ pl implique pj ⪯ pl.
— (totalité) pour tous j, k ≠ i, pj ⪯ pk ou pk ⪯ pj .

N.B. Pour ceux et celles qui veulent y réfléchir à la maison, la transitivité est un peu subtile, et
repose de manière essentielle sur les hypothèses définissant pi à chaque étape.

Ainsi, le prochain point à insérer (le point d’indice 5 dans la figure ci-dessus) est l’élément
maximum de P ∖{p10} pour la relation d’ordre ⪯. Il peut se calculer en temps linéaire (c’est-à-dire
majoré par une constante fois n) par une simple itération sur les points de P ∖ {pi}.

Question 5. Ecrire une réalisation en Python de la procédure. Elle prendra la forme d’une fonction
prochainPoint(tab,i) qui prend en paramètre le tableau tab de taille 2 × n ainsi que l’indice i du
point inséré en dernier dans le paquet cadeau, et qui renvoie l’indice du prochain point à insérer.
Le temps d’exécution de votre fonction doit être majoré par une constante fois n, pour tous n et
i. La constante doit être indépendante de n et i et on ne demande pas de la préciser.

Question 6. Décrire à la main le déroulement de la procédure prochainPoint sur l’exemple de
la figure ci-dessus. Plus précisément, indiquer la séquence de points de P ∖ {p10} considérés et la
valeur de l’indice du maximum à chaque itération.

On peut maintenant combiner la fonction prochainPoint avec la fonction plusBas de la ques-
tion 1 pour calculer le bord de l’enveloppe convexe de P . On commence par insérer le point pi
d’ordonnée la plus basse, puis on itère le processus de mise à jour du paquet cadeau jusqu’à ce
que le prochain point à insérer soit de nouveau pi. A ce moment-là, on renvoie le paquet cadeau
comme résultat sans insérer pi une seconde fois.

Un détail technique : comme la taille du paquet cadeau augmente peu à peu lors du processus,
et qu’à la fin elle peut être petite par rapport au nombre n de points de P , nous stockerons les
indices des points du paquet cadeau dans une liste. Par exemple sur le nuage de la figure 1, le
résultat sera la liste [7,0,11,10,5,2].

3

Question 7. Ecrire une fonction convJarvis(tab) qui prend en paramètre le tableau tab de taille
2×n représentant le nuage P , et qui renvoie une liste contenant les indices des sommets du bord de
l’enveloppe convexe de P , sans doublon. Le temps d’exécution de votre fonction doit être majoré
par une constante fois nm, où m est le nombre de points de P situés sur le bord de Conv(P).

Question 8. Justifier brièvement le temps d’exécution de l’algorithme du paquet cadeau.

Question 9. La fonction suivante paquetCadeau suivante, due à Mathieu Vermeil, (MPSI 1
2016/2017), est disponible dans /home/profs/bondil/public/TP-MPSI dans le fichier afficheNuage.py.

Elle s’applique à un tableau tab dont les entrées ne sont pas nécessairement des entiers, ce qui
sera utile à la question suivante.

Vérifiez le bon fonctionnement de votre fonction convJarvis de la question 7 à l’aide de cette
fonction d’affichage, appliquée au tableau tab de l’énoncé.

def arrondi(x):

"""Arrondit un nombre au plus loin de 0."""

from math import ceil

return(sgn(x)*ceil(abs(x)))

def paquetCadeau(tab):

"""Affiche le nuage de points correspondant à tab

et son paquet cadeau obtenu par l’algorithme de Jarvis."""

fig, ax = plt.subplots()

plt.grid(True)

plt.axis("equal")

plt.axhline(color="black")

plt.axvline(color="black")

xMin,xMax=min(tab[0])-1,max(tab[0])+1

yMin,yMax=min(tab[1])-1,max(tab[1])+1

xMin,xMax=arrondi(xMin),arrondi(xMax)

yMin,yMax=arrondi(yMin),arrondi(yMax)

plt.xlim((xMin,xMax))

plt.ylim((yMin,yMax))

ax.xaxis.set_ticks(np.arange(xMin,xMax+1,1))

ax.yaxis.set_ticks(np.arange(yMin,yMax+1,1))

plt.scatter(tab[0],tab[1],s=60)

for i in range(len(tab[0])):

plt.annotate(str(i),(tab[0][i]+0.1,tab[1][i]+0.1),size="large")

iPaquet=convJarvis(tab)

iPaquet.append(iPaquet[0])

xPaquet=[tab[0][i] for i in iPaquet]

yPaquet=[tab[1][i] for i in iPaquet]

plt.plot(xPaquet,yPaquet,color="red",linewidth=2)

plt.show()

Question 10 Mieux, écrire une fonction : jarvisAleatoire(n=10,fenetre=[[-5,5],[-5,5]])
qui prend en argument un entier n et une fenêtre [[xMin,xMax],[yMin,yMax]] avec les valeurs
par défaut ci-dessous, et affiche un nuage de n points pris aléatoirement dans cette fenêtre et son
paquet cadeau obtenu par l’algorithme de Jarvis.

Pour éviter d’avoir des risques d’alignement de points (i.e. vérifier les conditions de posi-
tions générales données plus haut), on pourra utiliser la fonction uniform du module random :
uniform(a,b) renvoie un flottant aléatoire suivant une loi uniforme, entre a et b.

4

