MPSI 1 Samedi 9 Janvier 2021

DEVOIR SURVEILLE 4 : MATHS-INFORMATIQUES (4H)

LLes calculatrices et autres appareils électroniques (téléphones, montres connectées etc.) sont interdits.}

oignez la précision de la rédaction, faites des phrases liées logiquement.

Encadrez ou soulignez vos résultats, séparez clairement vos questions, la clarté de votre
présentation est un élément important d’appréciation.

L’essentiel du probleme porte sur les partie 1 et 2. Les parties 0 et 3 sont indépendantes du
reste.

es questions comptant dans le bareme d’info seront notées . Bon courage!

0 La méthode d’Euler promise :
0.1 Le banquier réel

Un banquier vous crédite vos intéréts de maniere continue, en temps réel, c’est moderne : si
votre taux d’intérét est un nombre r € R**, et votre capital au temps 0 est ¢(0) = A, la fonction
t — ¢(t) donnant I’évolution de votre capital vérifie alors ’équation différentielle :

(E) : V t20, d'(t) =r.c(t).

Ensuite, parce qu’il a oublié son bon cours sur les E.D. de I’époque ou il était en prépa ECS, il
confie la résolution de cette E.D. a un ordinateur ol est seulement implémentée la méthode d’Euler,
avec un pas 1/n.

Disons que la variable ¢ représente le temps en année, donc ¢t = 0.1 représente un dixieme
d’année. S’il choisit n = 10, il exécutera donc la méthode d’Euler avec 10 pas de 1/10 pour savoir
a combien sera votre capital au bout d’un an.

a) Pour n fixé, on note ¢, la solution approchée de (F) obtenue par la méthode d’Euler
avec un pas de 1/n et la C.I. ¢,(0) = A. On note alors ¢ = k/n. Donner, en la justifiant, une
formule explicite pour ¢, (k/n) pour chaque k€ [0,n ].

b) 1 se dit ensuite qu’en faisant tendre n vers l'infini, ¢, (1) devrait tendre vers ¢(1) ol ¢ est la
vrage solution du probléeme de Cauchy donné par (E) et ¢(0) = A\. Démontrez cette intuition
dans cet exemple particulier (on dit qu’ici la méthode d’Euler converge).

0.2 Le banquier imaginaire

A force de chercher ses cours de prépa, le banquier est tombé sur le chapitre sur les nombres
complexes. Il se prend a réver des comptes ou l'argent sera représenté par un nombre complexe
z =x +1y avec x en euro et y en bitcoin.

La fonction ¢ = ¢(t) est maintenant de R* dans C avec ¢(0) = A € C et il vaut propose un taux
d’intérét z € C définissant I’évolution de votre capital suivant la méme E.D. :

Vt>0, ' (t)=z.c(t).
a) Déterminer la solution exacte de ce probleme de Cauchy.
b) On note pour tout n €N, z, = (1 + E)” et z = x +iy avec (x,y) € R
n

i) Montrer que |z,| — exp(z).
n—>+oo

z z, .
ii) On pose 1+ = = |1+ ~|e?" ou @, €] - 7, n]. Montrer que 6, —> 0.
n n n—+oo
1
iii) Montrer que tan(6,,) = LA o(—) quand n - +oo.
n n
¢) Déduire de ce qui précede qu’ici encore la méthode d’Euler converge.

N.B. La méthode présentée ici, en séparant x et y n’est pas tres jolie... une plus conceptuelle sera
possible en deuxieme année



1 Etre ou ne pas étre un carré modulo p : symbole de Legendre

Motivation et terminologie — On note dans ce probleme P I’ensemble des nombres premiers.
Le but de cette partie 1 est d’étudier, pour tout nombre premier p € P et tout entier a € Z a quelle
condition I’équation x? = a[p] a-t-elle une solution, autrement dit, de savoir quand a € Z/pZ peut
s'écrire 72 avec T € Z/pZ. Dans ce cas, on dira simplement que : a est un carré modulo p.

1.1. Une premiére caractérisation des carrés
a) Un détour par les groupes et les corps

i) Soit (G,-) un groupe commutatif de neutre noté e.
Soit k € N fixé et H = {a € G, a* = e}. Montrer que H est un sous-groupe de (G,-).

ii) Soit K un corps (commutatif) quelconque ou 2 # 0. Justifier que les fonctions polyno-
miales du second degré f : x — ax? + bz + ¢ admettent au plus deux racines dans K.

iii) Résultat admis utile pour la suite : on admet ici (cf. chapitre K) que dans un corps
(commutatif) K quelconque une équation de degré d, i.e. de la forme agr+-+aiz+ag = 0,
avec ag,...,a, dans K et ag # 0 admet au plus d solutions x € K.

b) Cas de G =7Z/pZ* : Soit peP, p+2
On note G = Z/pZ* i.e. G = Z/pZ~{0}. On sait que (G, -) est un groupe ayant p—1 éléments.
Soit C = {a € Z/pZ*, 3z € Z|pZ*, a = 2*}.
Autrement dit C est 'ensemble des carrés dans Z/pZ*.
On note H = {a € Z/pZ*,a®~D/? =1},
i) Montrer que C c H.
ii) Montrer aussi que pour tout a € Z/pZ*, a®?"/? =1 ou aP~1/2 = 1.
iii) Démontrer que C' admet exactement (p—1)/2 éléments, autrement dit qu’il y a exacte-
ment (p—1)/2 carrés différents dans Z/pZ*.

iv) A l'aide d’un résultat précédemment cité, justifié que H ne peut pas avoir plus de (p-1)/2
éléments et conclure que C' = H.

Conclusion de cette partie : on a démontré que a est un carré dans Z/pZ* ssi aP D2 =1
et que si a n’est pas un carré alors aP"/2 = 1.

v) A l'aide de la conclusion, déterminer la CNS sur p (modulo 4) pour que -1 soit un carré
modulo p.

1.2. Introduction du symbole de Legendre

Définition (symbole de Legendre) : soit p € P et a € Z. On va noter :
L(a,p)=0 sia=0[p],

L(a,p)=1 sia#0[p], etaest un carré mod p.
L(a,p) =-1 sia#0[p],etan’est pas un carré mod p.
a) Démontrer la formule d’Euler suivante :

VaeZ VpeP~{2}, L(a,p)=a? V2 [p].

b) En déduire que pour tout p € P et tout (a,b) € Z2 : L(ab,p) = L(a,p)L(b,p).

c) Montrer qu’avec la formule d’Euler du a), on peut calculer L(a,p) en un O(log(p))
opérations : préciser ’algorithme a utiliser.




1.3. Propriétés clef du calcul du symbole de Legendre

On admet les deux propriétés cruciales (et plus difficiles) suivantes :

e pour tout p € P~ {2}, L(2,p) = (—1)(”2_1)/8, autrement dit 2 est un carré modulo p ssi
p=1loup=-1[8].

e pour tout (p,q) € (P~ {2})?, L(q,p) = (—1)(%;1)'%L(p,q) (réciprocité de Gauss).
Autrement dit comme des nombres premiers impairs sont congrus & 1 ou 3 modulo 4, on a
L(q,p) = -L(p,q) ssip=q=3[4] et L(q,p) = +L(p,q) sinon.

La loi de réciprocité permet un calcul rapide du symbole de Legendre comme nous allons le
montrer sur un exemple. Ne pas oublier que par déf. L(a,p) ne dépend que de la classe de a modulo
p, donc si a =a’ [p] alors L(a,p) = L(a’,p). Donc on peut & chaque étape remplacer a par a%p, le
reste de sa division euclidienne par p.

a) Justifier chaque étape du calcul suivant en précisant le résultat utilisé : on veut savoir si 11
est un carré dans Z[83Z.

L(11,83) =-L(83,11) = -L(6,11) = —L(2,11)L(3,11) = L(3,11) = -L(11,3) = -L(2,3) = 1.
Donc 11 est un carré mod. 83

b) Déterminer de méme si 95 est un carré modulo 191 (sachant que 191 est premier).

Remarque : Le calcul de ’exemple précédent suggére un algorithme pour calculer les symboles
de Legendre plus rapide que celui du 1.2.c).*

1l s’avére plus commode d’écrire un algorithme passant par le calcul d’un objet un peu plus
général, appelé symbole de Jacobi, que nous introduisons maintenant.

1.4. Généralisation : le symbole de Jacobi et ses propriétés immédiates

Au 1.3. précédent, on a défini le symbole de Legendre L(a,p) pour a € Z quelconque et p € P.
Pour aboutir & un algorithme de calcul efficace de ce symbole, il est commode de commencer par
étendre sa définition en remplacant le nombre premier p par un entier b positif, impair, quelconque.

Définition du symbole de Jacobi — Soit a € Z et b € N impair. On décompose b en produit
b=p;...ps de nombres premiers (non nécessairement distincts!), et on définit :

J(a,b) = Iij,p»

Bien siir on a toujours J(a,b) € {-1,0,1}. Si b =1, le produit est vide et J(a,b) = 1.

a) Déterminer une C.N.S. sur a,b pour que J(a,b) = 0.

b) Justifier que pour tout a,a’ dans Z et b,b" impairs, positifs :
J(aa',b) = J(a,b).J(a’,b) et J(a,bb")=J(a,b).J(a,b")

¢) Sianb=1, combien valent les symboles .J(a?,b) et J(a,b?)?

d) Calculer J(2,15). En déduire qu’'on peut avoir J(a,b) = 1 sans que a ne soit un carré
modulo b.

e) Justifier que la loi de réciprocité de Gauss se généralise aux symboles de Jacobi, autrement
dit que pour tout couple (a,b) d’entiers impairs, positifs, premiers entre eux :

(a—1) (b-1)

J(a7b) = (_1) 2 2 J(b7a)

1. A lire & la maison : On pourrait s’étonner de la recherche d’un algorithme plus rapide quand on a dit que

celui-ci est en O(log(p)) Mais cette estimation a été faite en considérant que toutes les multiplications ont le méme

cout. En fait quand on fait des calculs sur les trés grands entiers, ce modeéle n’est plus pertinent, et avec un modele
plus fin, lalgo du 1.2. ¢) devient en O((log(p))?). Dans ce qui suit on obtiendra au 1.5. un algo en O((log(p))?).




f) On va illustrer I'intérét du symbole de Jacobi pour le calcul du symbole de Legendre, en
donnant une deuxiéme méthode de calcul de L(95,191), déja calculé au 1.3. b).

Bien stir L(95,191) = J(95,191) et en utilisant la loi de réciprocité pour les symboles de
Jacobi, on a immédiatement J(95,191) = -J(191,95) = -J(1,95) = -1.
Ainsi L(95,191) = -1 et 95 n’est pas un carré modulo 191.

expliquer (sans rentrer dans les détails, donner juste une idée) I'intérét de la différence
entre ces deux méthodes en terme de complexité de programmation informatique.

1.5. Algorithme de calcul du symbole de Jacobi

Le calcul informatique du symbole de Jacobi J(a,b) repose sur les six régles suivantes, qui
découlent immédiatement des propriétés vues précédemment :

Trois régles de terminaison :
(R1) J(0,b)=0
(R2) J(1,b) =1

(R3) J(2,b)=-1sib=3oub=5mod. 8 et J(2,b) =+1sib=1oub=7 mod. 8.

Trois regles de réduction :

(R4) (réduction des facteurs 2) : J(2a,b) = J(2,b).J(a,b)

(R5) (réduction modulo b)
division euclidienne de a par b.

ssia>bouac<0, J(a,b) = J(a%b,b) ou a%b est le reste de la

(R6) (réciprocité de Gauss pour les impairs premiers entre eux) : si a, b sont impairs et anb =1

alors :
J(a,b) = {

Programme Python :

def jacobi(a,b):

j=1
a=a%b # R7?
while a!=0:
t=0
while a%2==0:
a=a//2
t=t+1
if t%2==1 and (b%8==3 or b¥%8==5):
j=-j # R? et R?
if al4==b%4 and a}4==3:
j=-j # R?
a,b=bja,a
if b==1:
return j
else :
return O

-J(b,a)
+J(b,a)

sia=b=3 [4],

sinon

Travail a faire

a) Compléter (sur la feuille de
script séparée p.7) les commen-
taires donnant la regle utilisée a
chaque étape.

b) Expliquer le rdle de la variable t.
c) Expliquer le role de la variable j.

d) Justifier la terminaison de ’algo-
rithme

e) Justifier que si au départ a et b
sont premiers entre eux, alors a
tout moment dans I'exécution de
I’algorithme a et b restent pre-
miers entre eux.

f) Justifier la correction de I’algo-
rithme en distinguant les deux
casanb +1et anb=1au départ.



2. Algorithmes de calcul des racines carrées modulo p
2.1. Cas ou p #1[8] : des formules rusées qui donnent un algo. évident.

Soit p € P et a € Z/pZ* dont on sait (par exemple grace au calcul du symbole de Legendre
L(a,p)) qu’il admet une racine carrée x € Z/pZ*. On cherche ici & expliciter une telle racine.
On sait donc d’apres les résultats du 1.1., que a®"D/2 = 1.
On va distinguer suivant que p =3 [4] ou p=1 [4].
a) Montrer que si p=3 [4] alors z = aP*1)/* est une racine carrée de a dans Z/pZ.
b) Montrer quesi p=1[4] et sip=5 [8],
e si a®D/* =1 alors z = a?*3)/3 est une racine carrée de a dans Z|pZ.
e si a® D/ = _T alors x = 2a(4a)®~5)/8 est une racine carrée de a dans Z/pZ.

Les formules du a) et b) donnent des méthodes efficaces de calculs de ces racines carrées par
exponentiation rapide. Reste donc le cas ot p = 1 [8] dans ce cas aucune formule explicite pour la
racine carrée n’est connue. On va donner un algorithme au paragraphe suivant.

2.2. Cas ou p=1[8] : pas de formules mais un algorithme

Entrée de ’algorithme : p un nombre premier tel que p =1 [8], et a € Z dont on sait qu’il
admet une racine carrée modulo p.

On dispose aussi un nombre h € Z qui n’est pas un carré modulo p, qui sera fourni par une
fonction auxiliaire non demandée.

Sortie de I’algorithme : un nombre z tel que x
Description de 1’algorithme :

2=a(p].

L’algorithme consiste & faire évoluer deux exposants (e, es) € N? tels qu'a chaque étape
a®.h® =1 [p] (invariant de lalgorithme).

e Initialisation : on prend e; = (p—1)/2 et e3 =p—1.

e Itération : a ’étape 7 : tant que ey est pair, on divise e; par 2.

Toujours a I'étape i, on divise aussi e5 par 2, mais ensuite on distingue deux cas.
ee Cas 1 : Si on a encore a®'.h®* =1 [p], ’étape i est finie.

ee Cas 2 : Si a ce stade a®*.h®* # 1 [p], alors on remplace ey par es + (p—1)/2,

o Arrét de ’algo. lorsque e; est impair. On va voir ci-dessous ce qu’on va renvoyer.

Travail a faire sur cet algorithme

Pour les justifications théoriques, on pourra noter e;; et ez ; les valeurs contenues dans les
variables ey et eo a la fin de l’étape i de l’algorithme.

On écrit le nombre pair p -1 sous la forme (p—1) = 2¥q avec ¢ est impair. Autrement dit k est
la valuation 2-adique de (p-1).

a) Avec cette notation (p— 1) = 2¥q et la description faite pour I’algorithme, on sait que
I’algorithme s’arréte au bout de k étapes. Justifier qu’ici k > 3.

-1

2

b) A D’étape i de la description, dans le cas 2, justifier qu’apres avoir remplacé e; par eg +
comme indiqué, on a bien a®*h®? =1 [p].

c) A larrét de lalgorithme : e; est impair. Justifier que es est pair (demande un peu de soin.)

d) A Tarrét de I’algorithme : a®**1h®? = q [p]. En déduire une racine carrée de a modulo p.

e) Implémenter cet algorithme en Python en supposant qu’on dispose d’une fonction noncarre (p)
qui prend en argument un nombre premier p et renvoie un nombre h € [1,p— 1] qui n’est
pas un carré modulo p.

f) Ecrire la fonction noncarre en testant pour un nombre z € [1,p—1 ] au hasard si 2(»~1/2 =
-1 [p] et en recommengant jusqu’a ce que cette condition soit vérifiée. Quelle est la proba-
bilité que le programme noncarre termine en N tours?



3 Calcul d’inverse modulo p puis modulo p"

En guise d’excuse : La suite logique de ce qui précéde serait la recherche de racines carrées dans
les Z|p™Z, ce qui serait bien joli, mais un peu trop long ici. On se rabat sur le méme probléeme pour
les inverses... indépendant de ce qui précéde. En fait les méthodes seraient voisines pour les racines
carrées, mais on comprendra mieux plus tard l’idée qui se cache derriere les formules du 3.2.

3.1. Modulo p

a) [Info]

On considere le script python suivant ou les entrées a et b sont deux entiers positifs.

def AEE(a,b):
u,v=1,0 # initialisation u_(i-1),v_(i-1)
up,vp=0,1 # initialisation de u_i,v_i
while b!=0:

u,V,up,Vp=up,Vp,u-q*up, v-q*vp
d= 77

return d,u,v

i) Compléter les deux lignes manquantes sur la feuille de script p.7 et le?? pour
que le triplet (d,u,v) renvoyé par cette fonction ait pour valeur (pged(a,b),u,v) avec
au+bv=1.

ii) Justifier la correction de cet algorithme.

b) Déduire de cette fonction une fonction Inverse(a,n) qui teste si la classe a de a est
inversible, et si oui, renvoie le représentant de a~! dans [0,n - 1].

3.2. Modulo p"

Soit a et n deux nombres entiers premiers entre eux : on sait que la classe @ de a dans Z/nZ
admet un inverse pour la multiplication, on la note b o1 b € Z.
Terminologie plus commode : on dira simplement que b est inverse de a modulo n.

a) Justifier qu’alors b(2 - ab) est inverse de a modulo n?.
b) Avec les notations du a), on définit une suite (by) d’entiers tels que pour tout k € N,
by € [0, ngk[ par la relation de récurrence suivante :
o bo =b [TL]
e pour tout k€ N*, by = bg_1(2 - aby_1) [an]
Montrer que pour chaque k € N, by est inverse de a modulo n?".

c) Ecrire une fonction Python InversePlusLoin(a,n,k) qui prend en entrée des entiers

positifs, a,n, k avec aAn = 1 et renvoie le représentant dans [0,n*[ de I'inverse de a modulo
k
n”.



Feuille de script a rendre

Votre NOM :

def jacobi(a,b):
j=1
a=alb # R
while a!=0:
t=0
while a%2==0:
a=a//2
t=t+1
if t%2==1 and (b%8==3 or b%8==5):
j=-j #R et R
if al%4==b%4 and a)4==3:
j=j #R
a,b=b%a,a
if b==1:
return j
else :
return O

def AEE(a,b):
u,v=1,0 # initialisation u_(i-1),v_(i-1)
up,vp=0,1 # initialisation de u_i,v_i
while b!=0:

u,Vv,up,Vp=up,Vp,u-q*up,v-q*vp
d=
return d,u,v



