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Devoir surveillé 4 : maths-informatiques (4h)

�� ��Les calculatrices et autres appareils électroniques (téléphones, montres connectées etc.) sont interdits.#

"

 

!

Soignez la précision de la rédaction, faites des phrases liées logiquement.
Encadrez ou soulignez vos résultats, séparez clairement vos questions, la clarté de votre
présentation est un élément important d’appréciation.
L’essentiel du problème porte sur les partie 1 et 2. Les parties 0 et 3 sont indépendantes du
reste.
Les questions comptant dans le barème d’info seront notées Info . Bon courage !

0 La méthode d’Euler promise :

0.1 Le banquier réel

Un banquier vous crédite vos intérêts de manière continue, en temps réel, c’est moderne : si
votre taux d’intérêt est un nombre r ∈ R+∗, et votre capital au temps 0 est c(0) = λ, la fonction
t↦ c(t) donnant l’évolution de votre capital vérifie alors l’équation différentielle :

(E) ∶ ∀ t ≥ 0, c′(t) = r.c(t).
Ensuite, parce qu’il a oublié son bon cours sur les E.D. de l’époque où il était en prépa ECS, il

confie la résolution de cette E.D. à un ordinateur où est seulement implémentée la méthode d’Euler,
avec un pas 1/n.

Disons que la variable t représente le temps en année, donc t = 0.1 représente un dixième
d’année. S’il choisit n = 10, il exécutera donc la méthode d’Euler avec 10 pas de 1/10 pour savoir
à combien sera votre capital au bout d’un an.

a) Info Pour n fixé, on note cn la solution approchée de (E) obtenue par la méthode d’Euler
avec un pas de 1/n et la C.I. cn(0) = λ. On note alors tk = k/n. Donner, en la justifiant, une
formule explicite pour cn(k/n) pour chaque k ∈ ⟦0, n ⟧.

b) Il se dit ensuite qu’en faisant tendre n vers l’infini, cn(1) devrait tendre vers c(1) où c est la
vraie solution du problème de Cauchy donné par (E) et c(0) = λ. Démontrez cette intuition
dans cet exemple particulier (on dit qu’ici la méthode d’Euler converge).

0.2 Le banquier imaginaire

A force de chercher ses cours de prépa, le banquier est tombé sur le chapitre sur les nombres
complexes. Il se prend à rêver des comptes où l’argent sera représenté par un nombre complexe
z = x + iy avec x en euro et y en bitcoin.

La fonction t↦ c(t) est maintenant de R+ dans C avec c(0) = λ ∈ C et il vaut propose un taux
d’intérêt z ∈ C définissant l’évolution de votre capital suivant la même E.D. :

∀ t ≥ 0, c′(t) = z.c(t).
a) Déterminer la solution exacte de ce problème de Cauchy.

b) On note pour tout n ∈ N, zn = (1 + z
n
)n et z = x + iy avec (x, y) ∈ R2.

i) Montrer que ∣zn∣ Ð→
n→+∞

exp(x).

ii) On pose 1 + z
n
= ∣1 + z

n
∣eiθn où θn ∈] − π,π]. Montrer que θn Ð→

n→+∞
0.

iii) Montrer que tan(θn) =
y

n
+ o( 1

n
) quand n→ +∞.

c) Déduire de ce qui précède qu’ici encore la méthode d’Euler converge.

N.B. La méthode présentée ici, en séparant x et y n’est pas très jolie... une plus conceptuelle sera
possible en deuxième année
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1 Être ou ne pas être un carré modulo p : symbole de Legendre

Motivation et terminologie – On note dans ce problème P l’ensemble des nombres premiers.
Le but de cette partie 1 est d’étudier, pour tout nombre premier p ∈ P et tout entier a ∈ Z à quelle
condition l’équation x2 ≡ a [p] a-t-elle une solution, autrement dit, de savoir quand ā ∈ Z/pZ peut
s’écrire x̄2 avec x̄ ∈ Z/pZ. Dans ce cas, on dira simplement que : a est un carré modulo p.

1.1. Une première caractérisation des carrés

a) Un détour par les groupes et les corps

i) Soit (G, ⋅) un groupe commutatif de neutre noté e.

Soit k ∈ N fixé et H = {a ∈ G, ak = e}. Montrer que H est un sous-groupe de (G, ⋅).
ii) Soit K un corps (commutatif) quelconque où 2 ≠ 0. Justifier que les fonctions polyno-

miales du second degré f ∶ x↦ ax2 + bx + c admettent au plus deux racines dans K.

iii) Résultat admis utile pour la suite : on admet ici (cf. chapitre K) que dans un corps
(commutatif)K quelconque une équation de degré d, i.e. de la forme adx

d+⋯+a1x+a0 = 0,
avec a0, . . . , an dans K et ad ≠ 0 admet au plus d solutions x ∈K.

b) Cas de G = Z/pZ∗ : Soit p ∈ P, p ≠ 2

On note G = Z/pZ∗ i.e. G = Z/pZ∖{0̄}. On sait que (G, ⋅) est un groupe ayant p−1 éléments.

Soit C = {a ∈ Z/pZ∗, ∃x ∈ Z/pZ∗, a = x2}.

Autrement dit C est l’ensemble des carrés dans Z/pZ∗.

On note H = {a ∈ Z/pZ∗, a(p−1)/2 = 1̄}.

i) Montrer que C ⊂H.

ii) Montrer aussi que pour tout a ∈ Z/pZ∗, a(p−1)/2 = 1̄ ou a(p−1)/2 = −1̄.

iii) Démontrer que C admet exactement (p − 1)/2 éléments, autrement dit qu’il y a exacte-
ment (p − 1)/2 carrés différents dans Z/pZ∗.

iv) A l’aide d’un résultat précédemment cité, justifié que H ne peut pas avoir plus de (p−1)/2
éléments et conclure que C =H.

Conclusion de cette partie : on a démontré que a est un carré dans Z/pZ∗ ssi a(p−1)/2 = 1̄
et que si a n’est pas un carré alors a(p−1)/2 = −1̄.

v) A l’aide de la conclusion, déterminer la CNS sur p (modulo 4) pour que −1 soit un carré
modulo p.

1.2. Introduction du symbole de Legendre

Définition (symbole de Legendre) : soit p ∈ P et a ∈ Z. On va noter :
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L(a, p) = 0 si a ≡ 0 [p],
L(a, p) = 1 si a /≡ 0 [p], eta est un carré mod p.

L(a, p) = −1 si a /≡ 0 [p], eta n’est pas un carré mod p.

.

a) Démontrer la formule d’Euler suivante :

∀a ∈ Z,∀p ∈ P ∖ {2}, L(a, p) ≡ a(p−1)/2 [p].

b) En déduire que pour tout p ∈ P et tout (a, b) ∈ Z2 : L(ab, p) = L(a, p)L(b, p).
c) Info Montrer qu’avec la formule d’Euler du a), on peut calculer L(a, p) en un O(log(p))

opérations : préciser l’algorithme à utiliser.
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1.3. Propriétés clef du calcul du symbole de Legendre

On admet les deux propriétés cruciales (et plus difficiles) suivantes :

● pour tout p ∈ P ∖ {2}, L(2, p) = (−1)(p2−1)/8, autrement dit 2 est un carré modulo p ssi
p ≡ 1 ou p ≡ −1 [8].
● pour tout (p, q) ∈ (P ∖ {2})2, L(q, p) = (−1)

(p−1)
2 ⋅

(q−1)
2 L(p, q) (réciprocité de Gauss).

Autrement dit comme des nombres premiers impairs sont congrus à 1 ou 3 modulo 4, on a
L(q, p) = −L(p, q) ssi p ≡ q ≡ 3 [4] et L(q, p) = +L(p, q) sinon.

La loi de réciprocité permet un calcul rapide du symbole de Legendre comme nous allons le
montrer sur un exemple. Ne pas oublier que par déf. L(a, p) ne dépend que de la classe de a modulo
p, donc si a ≡ a′ [p] alors L(a, p) = L(a′, p). Donc on peut à chaque étape remplacer a par a%p, le
reste de sa division euclidienne par p.

a) Justifier chaque étape du calcul suivant en précisant le résultat utilisé : on veut savoir si 11
est un carré dans Z/83Z.

L(11,83) = −L(83,11) = −L(6,11) = −L(2,11)L(3,11) = L(3,11) = −L(11,3) = −L(2,3) = 1.

Donc 11 est un carré mod. 83

b) Déterminer de même si 95 est un carré modulo 191 (sachant que 191 est premier).

Remarque : Le calcul de l’exemple précédent suggère un algorithme pour calculer les symboles
de Legendre plus rapide que celui du 1.2.c). 1

Il s’avère plus commode d’écrire un algorithme passant par le calcul d’un objet un peu plus
général, appelé symbole de Jacobi, que nous introduisons maintenant.

1.4. Généralisation : le symbole de Jacobi et ses propriétés immédiates

Au 1.3. précédent, on a défini le symbole de Legendre L(a, p) pour a ∈ Z quelconque et p ∈ P.
Pour aboutir à un algorithme de calcul efficace de ce symbole, il est commode de commencer par
étendre sa définition en remplaçant le nombre premier p par un entier b positif, impair, quelconque.

Définition du symbole de Jacobi – Soit a ∈ Z et b ∈ N impair. On décompose b en produit
b = p1 . . . ps de nombres premiers (non nécessairement distincts !), et on définit :

J(a, b) =
s

∏
i=1

L(a, pi)

Bien sûr on a toujours J(a, b) ∈ {−1,0,1}. Si b = 1, le produit est vide et J(a, b) = 1.

a) Déterminer une C.N.S. sur a, b pour que J(a, b) = 0.

b) Justifier que pour tout a, a′ dans Z et b, b′ impairs, positifs :

J(aa′, b) = J(a, b).J(a′, b) et J(a, bb′) = J(a, b).J(a, b′)

c) Si a ∧ b = 1, combien valent les symboles J(a2, b) et J(a, b2) ?

d) Calculer J(2,15). En déduire qu’on peut avoir J(a, b) = 1 sans que a ne soit un carré
modulo b.

e) Justifier que la loi de réciprocité de Gauss se généralise aux symboles de Jacobi, autrement
dit que pour tout couple (a, b) d’entiers impairs, positifs, premiers entre eux :

J(a, b) = (−1)
(a−1)

2 ⋅
(b−1)

2 J(b, a)
1. A lire à la maison : On pourrait s’étonner de la recherche d’un algorithme plus rapide quand on a dit que

celui-ci est en O(log(p)) Mais cette estimation a été faite en considérant que toutes les multiplications ont le même
coût. En fait quand on fait des calculs sur les très grands entiers, ce modèle n’est plus pertinent, et avec un modèle
plus fin, l’algo du 1.2. c) devient en O((log(p))3). Dans ce qui suit on obtiendra au 1.5. un algo en O((log(p))2).
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f) On va illustrer l’intérêt du symbole de Jacobi pour le calcul du symbole de Legendre, en
donnant une deuxième méthode de calcul de L(95,191), déjà calculé au 1.3. b).

Bien sûr L(95,191) = J(95,191) et en utilisant la loi de réciprocité pour les symboles de
Jacobi, on a immédiatement J(95,191) = −J(191,95) = −J(1,95) = −1.

Ainsi L(95,191) = −1 et 95 n’est pas un carré modulo 191.

Info expliquer (sans rentrer dans les détails, donner juste une idée) l’intérêt de la différence
entre ces deux méthodes en terme de complexité de programmation informatique.

1.5. Algorithme de calcul du symbole de Jacobi

Le calcul informatique du symbole de Jacobi J(a, b) repose sur les six règles suivantes, qui
découlent immédiatement des propriétés vues précédemment :

Trois règles de terminaison :
(R1) J(0, b) = 0
(R2) J(1, b) = 1
(R3) J(2, b) = −1 si b ≡ 3 ou b ≡ 5 mod. 8 et J(2, b) = +1 si b ≡ 1 ou b ≡ 7 mod. 8.

Trois règles de réduction :
(R4) (réduction des facteurs 2) : J(2a, b) = J(2, b).J(a, b)
(R5) (réduction modulo b) : si a > b ou a ≤ 0, J(a, b) = J(a%b, b) où a%b est le reste de la

division euclidienne de a par b.
(R6) (réciprocité de Gauss pour les impairs premiers entre eux) : si a, b sont impairs et a∧b = 1

alors :

J(a, b) =
⎧⎪⎪⎨⎪⎪⎩

−J(b, a) si a ≡ b ≡ 3 [4],
+J(b, a) sinon

Programme Python :

def jacobi(a,b):

j=1

a=a%b # R?

while a!=0:

t=0

while a%2==0:

a=a//2

t=t+1

if t%2==1 and (b%8==3 or b%8==5):

j=-j # R? et R?

if a%4==b%4 and a%4==3:

j=-j # R?

a,b=b%a,a

if b==1:

return j

else :

return 0

Info Travail à faire

a) Compléter (sur la feuille de
script séparée p.7) les commen-
taires donnant la règle utilisée à
chaque étape.

b) Expliquer le rôle de la variable t.

c) Expliquer le rôle de la variable j.

d) Justifier la terminaison de l’algo-
rithme

e) Justifier que si au départ a et b
sont premiers entre eux, alors à
tout moment dans l’exécution de
l’algorithme a et b restent pre-
miers entre eux.

f) Justifier la correction de l’algo-
rithme en distinguant les deux
cas a∧b ≠ 1 et a∧b = 1 au départ.
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2. Algorithmes de calcul des racines carrées modulo p

2.1. Cas où p /≡ 1 [8] : des formules rusées qui donnent un algo. évident.

Soit p ∈ P et a ∈ Z/pZ∗ dont on sait (par exemple grâce au calcul du symbole de Legendre
L(a, p)) qu’il admet une racine carrée x ∈ Z/pZ∗. On cherche ici à expliciter une telle racine.

On sait donc d’après les résultats du 1.1., que a(p−1)/2 = 1̄.
On va distinguer suivant que p ≡ 3 [4] ou p ≡ 1 [4].
a) Montrer que si p ≡ 3 [4] alors x = a(p+1)/4 est une racine carrée de a dans Z/pZ.

b) Montrer que si p ≡ 1 [4] et si p ≡ 5 [8],
● si a(p−1)/4 = 1̄, alors x = a(p+3)/8 est une racine carrée de a dans Z/pZ.

● si a(p−1)/4 = −1̄ alors x = 2a(4a)(p−5)/8 est une racine carrée de a dans Z/pZ.

Les formules du a) et b) donnent des méthodes efficaces de calculs de ces racines carrées par
exponentiation rapide. Reste donc le cas où p ≡ 1 [8] dans ce cas aucune formule explicite pour la
racine carrée n’est connue. On va donner un algorithme au paragraphe suivant.

2.2. Cas où p ≡ 1 [8] : pas de formules mais un algorithme

Entrée de l’algorithme : p un nombre premier tel que p ≡ 1 [8], et a ∈ Z dont on sait qu’il
admet une racine carrée modulo p.

On dispose aussi un nombre h ∈ Z qui n’est pas un carré modulo p, qui sera fourni par une
fonction auxiliaire non demandée.

Sortie de l’algorithme : un nombre x tel que x2 ≡ a [p].
Description de l’algorithme :�



�
	L’algorithme consiste à faire évoluer deux exposants (e1, e2) ∈ N2 tels qu’à chaque étape

ae1 .he2 ≡ 1 [p] (invariant de l’algorithme).

● Initialisation : on prend e1 = (p − 1)/2 et e2 = p − 1.

● Itération : à l’étape i : tant que e1 est pair, on divise e1 par 2.
Toujours à l’étape i, on divise aussi e2 par 2, mais ensuite on distingue deux cas.
●● Cas 1 : Si on a encore ae1 .he2 ≡ 1 [p], l’étape i est finie.
●● Cas 2 : Si à ce stade ae1 .he2 /≡ 1 [p], alors on remplace e2 par e2 + (p − 1)/2,
● Arrêt de l’algo. lorsque e1 est impair. On va voir ci-dessous ce qu’on va renvoyer.

Info Travail à faire sur cet algorithme�



�
	Pour les justifications théoriques, on pourra noter e1,i et e2,i les valeurs contenues dans les

variables e1 et e2 à la fin de l’étape i de l’algorithme.

On écrit le nombre pair p− 1 sous la forme (p− 1) = 2kq avec q est impair. Autrement dit k est
la valuation 2-adique de (p − 1).

a) Avec cette notation (p − 1) = 2kq et la description faite pour l’algorithme, on sait que
l’algorithme s’arrête au bout de k étapes. Justifier qu’ici k ≥ 3.

b) A l’étape i de la description, dans le cas 2, justifier qu’après avoir remplacé e2 par e2+
p − 1

2
comme indiqué, on a bien ae1he2 ≡ 1 [p].

c) A l’arrêt de l’algorithme : e1 est impair. Justifier que e2 est pair (demande un peu de soin.)

d) A l’arrêt de l’algorithme : ae1+1he2 ≡ a [p]. En déduire une racine carrée de a modulo p.

e) Implémenter cet algorithme en Python en supposant qu’on dispose d’une fonction noncarre(p)

qui prend en argument un nombre premier p et renvoie un nombre h ∈ ⟦1,p − 1⟧ qui n’est
pas un carré modulo p.

f) Ecrire la fonction noncarre en testant pour un nombre x ∈ ⟦1, p−1 ⟧ au hasard si x(p−1)/2 ≡
−1 [p] et en recommençant jusqu’à ce que cette condition soit vérifiée. Quelle est la proba-
bilité que le programme noncarre termine en N tours ?
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3 Calcul d’inverse modulo p puis modulo pn

En guise d’excuse : La suite logique de ce qui précède serait la recherche de racines carrées dans
les Z/pnZ, ce qui serait bien joli, mais un peu trop long ici. On se rabat sur le même problème pour
les inverses... indépendant de ce qui précède. En fait les méthodes seraient voisines pour les racines
carrées, mais on comprendra mieux plus tard l’idée qui se cache derrière les formules du 3.2.

3.1. Modulo p

a) Info

On considère le script python suivant où les entrées a et b sont deux entiers positifs.

def AEE(a,b):

u,v=1,0 # initialisation u_(i-1),v_(i-1)

up,vp=0,1 # initialisation de u_i,v_i

while b!=0:

u,v,up,vp=up,vp,u-q*up,v-q*vp

d= ??

return d,u,v

i) Compléter les deux lignes manquantes sur la feuille de script p.7 et le ? ? pour
que le triplet (d, u, v) renvoyé par cette fonction ait pour valeur (pgcd(a, b), u, v) avec
au + bv = 1.

ii) Justifier la correction de cet algorithme.

b) Info Déduire de cette fonction une fonction Inverse(a,n) qui teste si la classe ā de a est
inversible, et si oui, renvoie le représentant de ā−1 dans ⟦0, n − 1⟧.

3.2. Modulo pn

Soit a et n deux nombres entiers premiers entre eux : on sait que la classe a de a dans Z/nZ
admet un inverse pour la multiplication, on la note b où b ∈ Z.

Terminologie plus commode : on dira simplement que b est inverse de a modulo n.

a) Justifier qu’alors b(2 − ab) est inverse de a modulo n2.

b) Avec les notations du a), on définit une suite (bk) d’entiers tels que pour tout k ∈ N,

bk ∈ ⟦0, n2k⟦ par la relation de récurrence suivante :

● b0 ≡ b [n]
● pour tout k ∈ N∗, bk = bk−1(2 − abk−1) [n2k].
Montrer que pour chaque k ∈ N, bk est inverse de a modulo n2

k

.

c) Info Ecrire une fonction Python InversePlusLoin(a,n,k) qui prend en entrée des entiers

positifs, a,n, k avec a∧n = 1 et renvoie le représentant dans ⟦0, nk⟦ de l’inverse de a modulo
nk.
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Feuille de script à rendre

Votre NOM :

def jacobi(a,b):

j=1

a=a%b # R

while a!=0:

t=0

while a%2==0:

a=a//2

t=t+1

if t%2==1 and (b%8==3 or b%8==5):

j=-j # R et R

if a%4==b%4 and a%4==3:

j=-j # R

a,b=b%a,a

if b==1:

return j

else :

return 0

def AEE(a,b):

u,v=1,0 # initialisation u_(i-1),v_(i-1)

up,vp=0,1 # initialisation de u_i,v_i

while b!=0:

u,v,up,vp=up,vp,u-q*up,v-q*vp

d=

return d,u,v
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