MPSI 1 : D.S. 1 d’Informatique Commune (1h15)

ous les appareils électroniques sont interdits. Les deux parties sont completemen
indépendantes (le début du 2 est plus facile que la fin du 1)).
Sauf mention du contraire, on n’utilisera pas de module comme math. Les seules méthodes
sur les listes autorisées sont : 'acces a 'entrée i de L via L[i], 'ajout a L d’une entrée ayant
a valeur de a via L.append(a), 'acces a la longueur de la liste via len(L) .

Autour du calcul des décimales du nombre e :

a) Ecrire une fonction factorielle(n) qui prend en argument un entier naturel n et renvoie
la valeur de n!.

b) Justifier le comportement de votre fonction factorielle lorsqu’on lui passe 'argument 0,
c’est-a-dire lorsqu’on fait I’appel : factorielle(0).

¢) Ecrire une fonction SommeListe(L) qui prend en argument une liste L = [ao, ..., a,-1] dont
n-1
les entrées sont supposées étre des nombres, et qui renvoie la valeur de la somme : Z a;.
i=0

Exemple d’utilisation de SommelListe :

>>> L=[1,5,4]
>>> SommeListe (L)

10

d) Ecrire une fonction ListInverseFact(n) qui prend un argument un entier naturel n et
retourne la liste (de longueur n+1) donnant les valeurs flottantes de [1/0!,1/1!,1/2!,...,1/n!]
Exemple :

>>>ListInverseFact (4)
[1.0, 1.0, 0.5, 0.16666666666666666, 0.041666666666666664]

1 1 1

e) On montrera (chapitre F de maths) que la suite (u,,) définie par Vn e N, u,, = TRETRE
converge vers e = exp(1).

Ecrire une fonction approxiE1l (n) qui prend comme argument un entier n et renvoie la valeur

(flottante) de w, correspondante, en utilisant les deux fonctions précédemment créées. Le

code de cette fonction ne dépassera pas deux lignes.

f) Bien que, pour le calcul numérique de e avec des flottants, la fonction approxiEl précédente
soit largement assez efficace, du point de vue strictement informatique elle présente au moins
deux défauts :

e elle stocke les 1/k! dans un tableau (une liste python), ce qui utilise de la mémoire
inutilement
e lorsqu’on 'appelle pour un entier n, elle calcule successivement 1!, 2!,...k!,...,n! en
repartant a chaque fois du début pour le calcul de chaque factorielle, alors que, lorsqu’on
connait la valeur de k! il suffit de la multiplier par (k + 1) pour avoir celle de (k + 1)!.
Ecrire une autre fonction approxiE2(n) qui renvoie encore la valeur de u,, mais en éliminant
les deux défauts précédents (elle n’utilisera donc pas les fonctions précédentes).

g) La différence de temps de calcul entre le deux programmes précédents n’est pas significative
pour les petites valeurs de n qui suffisent pour avoir les seize décimales de e significatives
dans D’écriture en flottant (obtenues & partir de n=17) : 2.718281828459045

Cependant, si on veut connaitre davantage de décimales exactes de e, on peut ne pas utiliser
le type flottant, et calculer a ’aide du type Fraction du module fractions.

(i) Question : Quelle commande rentrer pour importer tout le contenu du module fractions ?
On rappelle I'utilisation de ce module avec quelques exemples :



>>> F=Fraction(1,3)
>>> G=Fraction(1,4)
>>> F+G

Fraction(7, 12)

>>> H=F+G

>>> H.numerator

7

>>> H.denominator
12

(ii) Question : Modifier votre fonction approxiE2 en une fonction approxiE2Frac qui
renvoie cette fois son résultat sous la forme d’une Fraction. Par exemple, on aura :

>>> approxiE2Frac(3)
Fraction(8, 3)

Pour F=approxiE2Frac(100), on a :

>>> F
Fraction(2666905705783137373306341322880702364612402788688346977445977371,
981099780700431549793955102131121575625085211901952000000000000)
On démontrera en maths que pour tout n € N*, u,, <e<u, + —
n.n!

Question : Sachant qu’il est facile de calculer que 1057 < 100! < 10'%®, comment calculer
de maniére exacte a l'aide de calcul sur les entiers les 159 premiers chiffres de I’écriture du
nombre e, a partir de la fraction F, ci-dessous ?

2 Exemple d’algorithme glouton pour le rendu de monnaie :

On veut programmer une caisse automatique pour qu’elle rende la monnaie avec le nombre
minimal de pieces et de billets.

On se donne donc une liste de valeurs de billets ou de pieces, par exemple en euros :

liste=[200,100,50,20,10,5,2,1]

Une méthode possible est d"utiliser un algorithme glouton® dont I’idée est la suivante : imaginons
qu’on doive rendre 47 euros. On commence par chercher la piece ou le billet de la plus grande valeur
possible inférieure a égale a la somme & rendre, donc ici 20, on déduit cette valeur de la somme a
rendre qui devient 27, et on recommence jusqu’a obtenir une somme nulle. On obtiendra une liste :
monnaie =[20,20,5,2] dont il n’est pas difficile de montrer qu’elle est ici optimale car le nombre
total de solutions possibles n’est pas tres grand.

a)

Pour la fonction de rendu de monnaie, nous utiliserons seulement des listes écrites dans
l'ordre décroissant. Ecrire une fonction verifieDecroissant(L) qui prend en argument
une liste L et vérifie que les entrées de liste sont bien écrites dans 1’ordre décroissant (au
sens large) : cette fonction retourne un booléen.

Ecrire une fonctionMonMax (L) qui prend en argument une liste L et retourne un couple
M, imax ou M est le maximum des valeurs de L et imax est un indice tel que L[imax] donne
cette valeur maximum.

Ecrire une fonction MaxEnTete (L) qui ne retourne rien mais modifie la liste L en échangeant
la valeur apparaissant en L[0] et la valeur L[imax] (avec les notations du b)).

Ecrire une fonction Python rendre (valeur,liste) qui prend en argument un entier valeur
et une liste d’entiers liste (supposée rangée dans 'ordre décroissant) et applique I’algo-
rithme glouton décrit ci-dessus pour renvoyer une liste qu’on notera monnaie décomposant
I’entier valeur a 'aide des éléments de liste comme dans ’exemple précédent.

En supposant que 1’on passe a la fonction rendre les arguments :

valeur=63 et liste=[200,100,50,20,2,1], (on n’a pas de billets de 5 ni de 10), quelle
sera la liste monnaie renvoyée par la fonction ?

Montrer que cette liste monnaie n’est pas optimale.

1. D’une maniére générale un algorithme glouton fait toujours le choix qui lui semble le meilleur sur le moment



